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We have studied the growth of interfaces in driven diffusive systems well below the critical tem-
perature by means of Monte Carlo simulations. We consider the region beyond the linear regime
and of large values of the external field which has not been explored before. The simulations sup-
port the existence of interfacial traveling waves when asymmetry is introduced in the model, a result
previously predicted by a linear-stability analysis. Furthermore, the generalization of the Gibbs-
Thomson relation is discussed. The results provide evidence that the external field is a stabilizing
effect which can be considered as effectively increasing the surface tension.

I. INTRODUCTION

Driven diffusive systems (DDS) have been studied in-
tensively! 1° from a theoretical point of view in recent
years to explore new possibilities that are open when a
system is driven out of equilibrium by an external field.
A simple realization of this type of system is given by a
discrete model in which the particles and holes of a lat-
tice gas not only interact with each other, via nearest-
neighbor forces and have usual Kawasaki (conserved) dy-
namics, but also are subject to the influence of an external
field which increases and reduces the rate of jumps of the
particles along and in the opposite direction to the field,
respectively. An interesting study, in this context, has
been the characterization, by means of Monte Carlo
simulation,! of a nonequilibrium phase transition, ocur-
ring with periodic boundary conditions taken in the
direction of the field. In such a case a high-temperature
disordered phase separates at low temperature into
particle-rich and particle-poor phases separated by an in-
terface. Each phase carries a steady-state current of par-
ticles. The critical properties of this phase transition
have been studied both from the discrete model! ™% de-
scribed above and from the corresponding continuum
version.” ™ 1?

A different aspect in the study of driven diffusive sys-
tems has been brought into focus in the study of the in-
terfacial properties.”>”'* In Ref. 13 a generalization of
the above model of a driven diffusive system allows one to
understand some of the features introduced by an exter-
nal field on a pre-existent interfacial growth instability.
Essentially, two effects are present. The first one is the
change in the rate of growth of the instability. The
second is the presence of new length scales which can be
associated with the appearance of interfacial traveling
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waves. In fact, this latter result suggests connections
with more complicated problems such as, the directional
solidification process in the presence of convective flow,'®
for which analogous results have been obtained.

To get these results a linear-stability analysis was per-
formed in Ref. 13 on a continuum version of a driven
diffusive system.” But some questions remain open.
There does not appear to be an easy recipe to go beyond
the linear regime in the macroscopic description. Furth-
ermore, the large external-field region is beyond the ap-
proach of Ref. 13, since nonequilibrium terms in the cor-
responding generalizations of the Gibbs-Thomson rela-
tion were not introduced. Generally, such nonequilibri-
um contributions are introduced phenomenologically. In
addition, the connection between the discrete' and con-
tinuum® versions of the driven system has not been
rigorously established. Hence the presence of traveling
waves in a Monte Carlo simulation of such a system (and,
if they appear, the required assumptions to obtain them)
is a question of interest.

It is the goal of this paper to look further into these
questions. We do this by means of a Monte Carlo simula-
tion which permits us to go beyond the linear regime and
also to consider large external fields. In Sec. II we
present the generalized model that we use in the Monte
Carlo simulation. In Sec. III we consider the symmetric
version of the model, for which no interface traveling
waves are present. We commment on the implications of
the simulation on the nature of the nonequilibrium terms
in the Gibbs-Thomson relation. In Sec. IV we consider
the asymmetric case. We present evidence for the pres-
ence of traveling waves in this case, and discuss the
mechanism which produces them. In Sec. V we present
concluding remarks.
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II. MODEL

We consider a lattice-gas model on a square lattice un-
der the influence of an external field E.! The discusion is
easily generalized to other lattices and higher dimension.
Half the sites are occupied by particles and half by holes;
Kawasaki (conversed) dynamics are used. The transition
probability W({n}—{n;}) for an interchange between
the occupants of sites / and j is given by

W=exp[H({n})—H({n;})+aE(x;—x;)]

J (2.1)

if the exponent in Eq. (2.1) is smaller than zero;
W({n}—{n;})=1, otherwise. {n} and {n;} are the
configurations before and after the interchange; they only
differ in the occupancies of sites i and .
H({n})=—J/kT3, jyn;n; is the reduced energy of the
configuration {n} and (i,j) indicates nearest-neighbor
pairs; n; is the occupancy variable (n; =1 for particle and
n; =0 for hole), and x; is the x-coordinate of the site i.
We allow only nearest-neighbor interchanges. The pa-
rameter a will be specified below.

The second term in the exponential of Eq. (2.1) is due
to the presence of the external field E oriented in the x-
direction. This term increases (decreases) the transition
probability for a particle to jump in the direction of (op-
posite to) E. The jumps perpendicular to E are not
affected. Periodic boundary conditions are considered in
the x direction. As usual, for each Monte Carlo step all
potentially mobile particles are given a chance to jump to
a neighboring hole.!” For each of these particles a neigh-
bor is taken at random. If a hole is selected, the ex-
change is effected with probability W. The transition
probability specified by W satisfies local detailed balance.

Below the critical temperature T,(E) the system segre-
gates into two phases,' rich ( 4) and poor (B) in particles,
respectively. At low-temperature a sharp interface be-
tween the two phases oriented parallel to E is present. A
net flux of particles in both phases, parallel to the inter-
face and in the direction of E, indicates the existence of a
nonequilibrium steady-state induced by the external field.
In this work we are interested in the growth properties of
this interface when the system is initially in the steady-
state. Furthermore, we restrict ourselves to a study of
the region around the interface. The top row of holes (at
Y =Y max) and the bottom row of particles (at y =y . ) are
pinned to establish the two-phase system.

A linear-stability analysis indicates that a generaliza-
tion'? of the continuum model of a driven diffusive sys-
tem® which allows for asymmetry between the two
phases, opens the possibility of new interfacial behavior,
the presence of a traveling wave. Here, one of our goals
is to study the situation beyond the linear regime. This
goal has been accomplished by means of a generalization
of the discrete model! in the same spirit as it was done for
the continuum version.!> To understand this step it is
convenient to introduce briefly the continuum model. It
is described by a diffusion equation:’

9,ca==Vj » 2.2)

j,=—DVc,+Eol(c,) , (2.3)
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where ¢,(r,?) and j,(r,?) are the macroscopic concentra-
tion and the flux in the rich and poor phases (¢ = 4 and
B, respectively), D is the diffusion coefficient, E=EX is
the external field and o(c,) is the conductivity. An ex-
pansion o(c,)=o(c,y)+(do /dc),c,, around the steady-
state concentration o(c,,) introduces the parameter,
Q,=E(do/dc),D”'. In a symmetric model, Q,
=—Qp. Allowing for Q ,#+—Qp (Ref. 13) may be a
more realistic hypothesis for physical systems.

An analog of this assumption in the discrete model de-
scribed by Eq. (2.1) is represented by the presence of the
parameter « in the second term of the exponential. This
term is directly related to the flux induced by E in this
model. To introduce asymmetry we take this parameter
to have a different value if the jumping particle is in the
rich or the poor phase. We model this possibility by the
following consideration: if the majority of the nearest
neighbors of this particle are particles (holes) the parame-
ter a takes a value @, (a,).'® The reason why this gen-
eralization of the discrete model' produces a traveling in-
terfacial wave will be clarified later, but it can be intui-
tively related to the imbalance of fluxes across the inter-
face

A second aspect of the modeling is connected with the
fact that an external field parallel to the interface does
not, by itself, produce an interfacial instability.!>»!* To
study the effects of E on interfacial growth, we have con-
sidered in Ref. 13 a second generalization of the usual
DDS model. In it we assumed that the system is
quenched deeper into the ordered phase. Then, as a
response, a flux of particles perpendicular to the interface
(in the y direction) going from the poor to the rich phase
will be present.!® To introduce this effect in our discrete
model, we exchange at a regular rate a randomly chosen
hole (particle) by a particle (hole) in the top (bottom) row
of the poor (rich) phase.”® Macroscopically speaking, the
quench introduces a gradient of concentration perpendic-
ular to the interface in both phases.’’ To make the mod-
eling efficient for computational purposes it is useful to
introduce an auxiliary field gradient G (like a gravitation-
al field) in the y direction which produces a biased ran-
dom walk of particles and holes. For a discussion on the
fundamental differences between the auxiliary field gra-
dient G and the external field E, see Refs. 1 and 13.

For E =0, a Mullins-Sekerka—type instability?! will be
present at the interface, and a growing pattern will
emerge. The effect of surface tension, arising through the
introduction of interaction energies at the microscopic
level in Eq. (2.1), and the flux perpendicular to the inter-
face, imagined to be induced by the quench, are the two
competing effects always present in this type of instabili-
ty. This has been the approach?® in which an instability
of the Mullins-Sekerka type (for E =0) has been studied
from a microscopic point of view. Here, we are interest-
ed in a different aspect; namely, in the effects of an exter-
nal field (which is not the gradient of a potential) on the
pattern-formation process.

III. SYMMETRIC CASE

In this and the following sections, we present the re-
sults of our simulations. First, we consider the effects of
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the external field on the interfacial growth process
without asymmetry. In Sec. IV we consider the asym-
metric situation. In the plots to follow, except where a
specific configuration is shown, typically 100-200 runs
were averaged.

For this case a=1 in Eq. (2.1). Figure 1 shows typical
patterns for different values of the external field E, taken
at the same time. They have been grown from a flat in-
terface under the influence of the nonequilibrium flux of
particles from top to bottom driving the instability. In
Fig. 2, we plot the perimeter of the interfaces for all the
patterns as a function of time.?? In Fig. 3, we plot the
height of the largest finger also as a function of time. The
fastest growth in both figures is obtained for E=0, and it
is observed that the electric field reduces the rate of
growth of the pattern. Furthermore, for sufficiently large

E, the number of fingers is reduced and, eventually, the

growth is suppressed.

We have also considered the pure decay of a well-
developed pattern in the presence of E. To do a good
comparison for the different values of E, we start the de-
cay from the same initial structure. To be realistic, we
consider only values of E for which we know from the
previous growth that four fingers would be present (see
Fig. 1). In Fig. 4 we plot the perimeter as a function of
time for the decay; a faster decay in the presence of E is
observed. Then, both in growth and decay the external
field behaves as a stabilizing effect. Intuitively, this can
be understood in terms of the enhancement and inhibi-
tion of jumps along and opposite to the external field.

At this point, the simulation may provide some in-
teresting information about features beyond the linear re-
gime (and beyond the regime of small external field).'?
Consider, for example, the macroscopic treatment of the
boundary conditions at the interface. Normally, the con-

FIG. 1. Typical structures after 64 000 Monte Carlo steps for
different values of external field. The structures grow from a
flat interface. The temperature is 7=0.5T,. The perpendicular
flux corresponds to a particle and a hole each 40 Monte Carlo
steps (MCS). The system size in the x direction is 64. The
values of E are 0, 0.05, 0.1, and 0.15. E increases from left to
right and then from top to bottom.
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FIG. 2. Perimeter of the interfaces of Fig. 1. vs time. Curves
a, b, ¢, and d correspond to E=0, 0.05, 0.1, and 0.15.

centrations at either side of the locally curved interface
are set by the Gibbs-Thomson relation embodying the re-
quirements of local equilibrium. However, sufficiently
large E might be expected to introduce a nonequilibrium
term affecting concentrations at the interface. This is
analogous to a nonequilibrium term of importance in
directional solidification when the velocity of the
solidification front is sufficiently large.?> In the present
case, there is, as yet, no microscopic derivation of the
modification of the Gibbs-Thomson relation introduced
by E#0. However, on phenomenological grounds one
expects a contribution proportional to E and to the cur-
vature of the interface. (The leading effect of E, which
applies even for zero curvature, has been included in the
steady-state solution.) For small E, the nonequilibrium
term is presumably very small in the linear regime of
small curvatures. On the other hand, this term is impor-
tant in the nonlinear regime as the simulation suggests.
The slower growth for increased E could be connected to
it. If so, the simulation suggests that this term has the
same sign as that of the surface-tension term in the
boundary condition., and the effect of E is equivalent to
an increase in the surface tension. In the previous linear
analysis,'? only small values of E were considered. None-
quilibrium contributions to the Gibbs-Thomson relation
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FIG. 3. Height of the fastest finger of the structures of Fig. 1.
vs time. Curves a, b, and ¢ correspond to E=0, 0.05, and 0.15.



T,
%db%
B -
> Y
E s - . %Ocn a -
ot
g, R,

2x10%

1
time (MC steps)

FIG. 4. Perimeter vs time for the decay of an interface. The
initial structures consist of four bumps of size 8 X 15 on the ini-
tially flat interface. No perpendicular flux is added. Curves a
and b correspond to E=0 and 0.05. Other parameters are the
same as in Fig. 1.

were not included, and a faster growth rate for the insta-
bility was predicted for such circumstances.

IV. ASYMMETRIC CASE

In this section, we present the results for the asym-
metric case. The different conductivity of the two phases
is modeled as follows. The parameter a in Eq. (2.1) takes
two different values (a, and a,) depending on whether the
majority of neighbors of the mobile particle are particles
or holes, respectively.

Figure 5(a) shows the situation for the symmetric case

(a)

FIG. 5. Top figure (a): No traveling wave for the symmetric
case, a;=a,=1and E=0.15. Bottom figure (b): Traveling wave
for the asymmetric case, a;=2, a,=0, and E=0.075. In each
case the solid line is a typical structure after 80 000 Monte Carlo
steps. The dashed line is the initial configuration. No perpen-
dicular flux is added.
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in which a;=a,=1 (E =0.15); no net motion of the pat-
tern is observed, but rather simple decay is evident. This
is contrasted in Fig. 5(b), which shows (for a;=2, a,=0
E =0.075) how the initial pattern moves to the right, that
is, in the direction of E, indicating a traveling wave.
Furthermore, we have observed that if the values of a,
and a, are interchanged the resulting motion is reversed.
To have a quantitative measure of this behavior we have
plotted in Fig. 6 the center of mass of the particles, X, as
a function of time for different values of E.>* From Fig. 6
we obtain a linear behavior of X, versus time, which gives
a constant velocity of the center of mass, V_, for each E.
In Fig. 7 the apparent linear dependence of ¥, on the
external field E is shown.

To explain this behavior we can use a simple picture.
We concentrate on the particles and holes of two adjacent
fingers in Fig. 5(a). E is in the direction from left to right.
This means that the particles located at the right border
of a finger have an enhanced probability to jump out of it.
When this jump is performed, it remains more probable
for the particle to continue the jumps in the direction of
E. Many particles would decay to the valley, but many of
them will continue until they attach to the left border of
the adjacent finger.”’> The jump of a particle out of a
finger leaves a hole in it. In the symmetric case con-
sidered in Sec. III the holes jump (opposite to E) inside
the fingers with the same probability as the particles do
out of the fingers. In this way, the increase in the number
of particles due to the arrival of new ones is compensated
by the arrival of holes. But in the asymmetric case an im-
balance in the number of particles and holes would be
present. This line of thinking suggests a net motion of
the finger in the direction of E (or in the opposite direc-
tion) according to the disparity of conductivities. This
suggests the mechanism for a traveling wave in the asym-
metric situation. Note that a very small deviation of the
center of mass from its original position in the direction
opposite to E is obtained for the symmetric case, but it
has no relation with the traveling wave. It can be under-
stood from the small asymmetry in the shape of the
fingers that appears in Fig. 1 when E=£0. This is related
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FIG. 6. x coordinate, X, of the center of mass of the parti-
cles vs time. Curves a, b, ¢, and d correspond to E=0.08, 0.1,
0.13, and 0.15.
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FIG. 7. V_, the velocity of the center of mass of the particles
vs the external field.

to the very disordered accumulation of particles when
they attached to the adjacent finger in contrast with the
systematic process of particles in line jumping out of the
finger on the opposite side.

As we noted above, this possibility of an interfacial
traveling wave was predicted in the linear regime by a
stability analysis'?
represent the continuum version of the discrete model
given by Eq. (2.1). The mechanism producing traveling
waves in the linear regime is associated with the existence
of new length scales involving the external field E. The
parameter Q, =E(do /dc), /D defined after Eq. (2.3) has
dimensions of inverse length. These new length scales are
associated with spatially modulated decay into the bulk
of small perturbations in concentration (as opposed to the
usual monotonic-exponential decay for E=0). In the
asymmetric case there is, across the interface, an imbal-
ance of fluxes induced by these gradients of concentra-
tion. The simple decay or growth of the interface in the
symmetric case is now modulated. The modulation
reflects itself in the appearance of the traveling wave.

The mechanism for traveling waves in the continuum
version beyond the linear regime has not been investigat-
ed. In any case, the essential ingredients are presumably
the difference in conductivities in both phases and then,
the existence of new length scales which differ. Using
these ingredients in a simple way in a discrete model of a
driven system, we have observed traveling waves in the
simulations.

of a model’ that is believed to'
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V. CONCLUSIONS

We have studied via Monte Carlo simulations the
growth of interfaces in a driven diffusive system well
below the critical temperature. We have introduced two
generalizations of the usual description of these systems.
The first, allowing for a flux normal to the interface, per-
mits the study of instabilities in the presence of an exter-
nal field. The second introduces the possibility of asym-
metry in the discrete version of this model. The results
show that asymmetry in the model can give rise to an in-
terfacial traveling wave. This latter possibility was pre-
dicted previously for the linear regime and small external
field by means of a linear-stability analysis of a continu-
um model. Furthermore, the simulations give us clues
about how to generalize the Gibbs-Thomson relation to
this nonequilibrium situation. Among other results, the
effect of the external field on the growth and decay of the
interface is a stabilizing effect, qualitatively like an
enhanced surface tension. For large external field the in-
terfacial instability is substantially suppressed. This sug-
gests that a kinetic term should be present in the Gibbs-
Thomson relation and this term should have the same
sign as the term proportional to the surface tension. Fur-
ther investigation is needed to understand fully such
nonequilibrium contributions in driven systems.

The model described here seems to be one of the sim-
plest in which an external field modifies a preexistent in-
terfacial instability in such a way that a new phenomenon
occurs, e.g., the traveling wave. We believe the study of
interfacial instability in a nonequilibrium steady state
could have some experimental relevance, for example, in
the growth of structures in the presence of a gravitational
field, or in cases for which convective flow or ionic trans-
port would be involved.
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