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Abstract
An experimental setup is designed and experimental studies are

done in order to investigate the behavior of fluid fronts in different
microchannels. Different levels of hydrophobicity and pressure are ex-
plored, getting very different results for hydrophobic and hydrophilic
microchannels [1]. For hydrophilic microchannels and any driving pres-
sure difference the distribution of velocities corresponds to a Gaus-
sian distribution and the front advances with h ∼ tν with the classi-
cal Washburn exponent ν = 0.5 for hydrophilic microchannels. The
same results are obtained for hydrophobic microchannels at large driv-
ing pressure differences. For hydrophobic microchannels and when
the pressure difference is decreased, the distribution of velocities cor-
responds to a Gumbel distribution that correctly characterizes rare
events like avalanches and the front advances with an exponent ν as
small as 0.38.

1 Introduction

In the last decade, the development of microfluidics has lead to the fabri-
cation of micro fluid devices useful for chemical and biochemical analysis,
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Figure 1: Chip built by Biosite Company for illness diagnosis, from [2]

biomolecular separation and micromixing to mention a few. Microfluidics
aims to integrate many functions on a single device (lab-on-a-chip) for tech-
nological applications in physics, material sciences, biology and medicine
[2, 3, 4, 5]. The so-called micro total analysis systems involve an extensive
use of microfluidic systems for biological applications like cell culture, DNA
separation, DNA sequencing and clinical diagnostic. This kind of devices
pretend to perform a certain function, or several, with an unique integrated
device. This allow to save space and, more important, to increase efficiency.

An example of this lab-on-a-chip devices for biological applications is
found in a Biosite company chip [2], shown in figure 1, which analyses a
droplet of blood in a microchannel and diagnose whether the patient had
suffered a heart attack. It takes fifteen minutes to do the whole analysis,
while traditional systems take several hours. Three proteins are detected
whose secretion is higher when a heart attack has taken place.

A successful evolution of microfluidic devices is found in the production
of pumps that can inject insulin to the liver for treatment of diabetes through
a 500 µm diameter catheter. This means an important improvement from
a medical point of view and also considering comfort for the patient. It
has also been studying a further step in which pumps would be replaced
by micropumps, having a whole integrated device which could be implanted
inside humans body, as shown in figure 2.

Many examples like these can be found in literature [4, 5], realizing that
interest for man-made microdevices has increased in recent years. Besides
these kind of applications of microfluidic science, many microfluidic systems
can be found in nature. For example, trees have a complex network of micro-
and submicrometric sized capillaries that allows to supply water efficiently
to the leaves.

Therefore, understanding the underlying physics in microfluidics is re-
quired to provide insight of the phenomena and achieve the possibility of
designing new biological applications.

When a physical investigation of systems at micro scale is carried out,
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Figure 2: Example of a micropump from Medtronic Inc. implanted in the
body of a patient needing continuous injection of a product for illness treat-
ment, from [2]

new phenomena are considered. In microfluidics, gravitational forces be-
come negligible, and the equilibria that take their place are often instead
dominated by surface forces such as capillarity, wetting and adhesion; the
nature of the interaction between the fluid and the confining media deter-
mines largely the system response since the area-to-volume ratio is very large
[7].

Mass transport in microfluidics is generally dominated by viscous dissi-
pation, and inertial effects are generally negligible. The ratio of inertial to
viscous forces on fluids is characterized by the so-called Reynolds number
[8]

Re =
Inertia terms
Viscous terms

=
v · l
ν
, (1)

where v is the characteristic velocity of the fluid, ν is its kinematic viscosity
and l is the typical scale of the system.

For the case of microfluidics, it can be estimated using typical values
of ν for water at room temperature (ν ∼ 106 m2/s), the characteristic size
of micro systems (l ∼ 100 µm) and typical velocities achieved (10 µm/s),
having Re ∼ 10−3. This low value of Re affirm that viscous forces typically
overwhelm inertial forces, and the resulting flows are linear.

The ratio of diffusion to convection in microfluidics is also very small,
having that mixing occurs by diffusion alone, which results in longer mixing
times than in macroscopic systems.

3



Figure 3: Scheme of the experiments carried out in this work. Dynamical
behavior of the position of the fluid front for different constant driving pres-
sure differences is studied. Pressure differences are obtained through height
differences between the fluid reservoir and the microchannel

Therefore, new phenomena become important when considering microflu-
idics. Behavior of fluids in small channels needs a deeper study to under-
stand this new phenomena.

In this work the advancement of fluids inside a microchannel due to a
pressure gradient is studied (see figure 3). The dynamics of a liquid meniscus
when it is driven into a microchannel at constant driving pressure differences
is analyzed, studying the spatially averaged position h(t) and its mean ve-
locity v(t). The aim is to see how the driving pressure and the wetting
conditions of the channel may affect the time evolution of the interface. It
is studied using microchannels with different levels of hydrophobicity and
different roughness. Although typical biological fluids, like blood, are vis-
coelastic, in this work Newton fluids (water) are used. This has to be taken
as a first step to characterize dynamics of biological fluids.

The level of hydrophobicity is controlled selecting specific types of ma-
terials for microchannel fabrication. The roughness is the intrinsic of the
walls of the microchannel; it is actually not controlled during the manufac-
turing of the channel, but it is assumed to be important enough to affect
the dynamics of the fluid front.

2 Theoretical Basis

To explain the behavior of a fluid in a microchannel, fluid mechanics equa-
tions have to be studied.

In the case of this work, only the macroscopic analysis of equations will
be solved in order to show what are the established results in the dynamics
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Figure 4: Scheme of a Hele Shaw geometry. The front of fluid advances
between two infinite plates separated a small distance b

of the front position at constant driving pressure in macroscopic channels.
For microchannels, the study will be carried out experimentally.

To start with the theoretical analysis, the most general equation in fluid
mechanics, the so-called Navier-Stokes equation, has to be solved:

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇p− ~∇ · ~~τ + ~f , (2)

where ρ is the fluid density, ~v is the velocity of the fluid, p is the pressure,
~~τ is the strain tensor and ~f is the external force.

This equation arises from the second law of Newton for continue systems
and incompressible fluids.

To apply equation 2 to the system considered, the geometry has to be
defined. Since the analysis made is supposed to be a starting point of a
microscopic analysis, it is interesting to choose a geometry alike to the one
in microchannels. Since several microchannels used have rectangular sec-
tion, Hele Shaw geometry is considered the most convenient. This geometry
consists in two infinite and parallel plates separated by a small distance, as
shown in figure 4.

In this geometry, it is assumed that the front advances in y direction,
having:

~v = (0, vy, 0)

Velocity modulus will not depend on x and y directions because it is
assumed that top and bottom plates are infinite. Therefore, velocity will
be:

~v = vy(z) ~ay

For Newton fluids the stress tensor is directly proportional to velocity
gradient, ~~τ = −η~∇~v, where η is the viscosity of the fluid, having:

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇p+ η∇2~v + ~f (3)
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Since Re number is small, equation 3 turns into the so-called Stokes
equation, where inertia terms and time dependence do not play any role in
the behavior of the system:

η~∇2~v = ~∇p− ~f , (4)

The only external force present in the system is the pressure gradient
applied, so ~f can be eliminated from equation 4.

The pressure gradient used is the same than in the experiments. It is
caused by a difference in height between the microchannel and the fluid
reservoir, that will drive the fluid into the microchannel. That means that
pressure gradient will only depend on y direction. Therefore, the equation
to be solved is:

d2v

dz2
=

1
η

dp

dy
(5)

This differential equation has the trivial solution:

v(z) =
1
2η
dp

dy
z2 +Az +B , (6)

where A and B are constants to determine.

Boundary conditions need to be defined to determine the constants
above. These boundary conditions will refer to the velocity at the plates
and are taken as follows:

v(z = 0) = v(z = b) = 0 (7)

Using them, unknown constants from equation 6 can be determined,
getting:

v(z) =
1
2η
dp

dy
z(z − b) (8)

Now the average is calculated to eliminate the dependence is z direction
and obtain an spatially averaged velocity:

< v >=
1
b

∫ b

0
v(z) dz = − b2

12η
dp

dy
(9)

Equation 9 is known as classic Darcy law. It can be seen that mean
velocity depends on fluid and system properties, which have constant values,
and also on pressure gradient, which may depend on front position.

Pressure gradient is introduced in the experiment as a constant difference
in height between the microchannel and the reservoir of fluid. Because of
that, the gradient can be approximated to a finite difference, having:
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dp

dy
' ∆p

h
, (10)

where h is the position of the front of fluid and ∆p = pi−pap

h is the driving
pressure difference, with pi as the pressure at the interface position and pap
as the applied pressure. Both pressures are assumed to be constant, having
a constant pressure gradient.

Therefore, Darcy law from equation 9 has the form:

< v >= − b2

12η
∆p
h

(11)

From this equation the dynamics of the averaged position h of the fluid
front is analyzed, having:

< v >=
dh

dt
= − b

2

2η
∆p
h

;
dh

dt
= −b

2∆p
12η

1
h

⇒

⇒ h ∼ t1/2 (12)

This result is the so-called Washburn law. It states that dynamics of the
front of a fluid follows a power law h ∼ tν with ν = 0.5 when a macroscopic
Hele-Shaw geometry is considered.

For the case of the dynamics of the fluid in microchannels, theoretical
studies have been carried out studying the dynamics of front position in
hydrophilic and hydrophobic microchannels [9]. For the case of hydrophilic
microchannels, it is found that the dynamics of front position follows the
typical Washburn law h ∼ t1/2. In hydrophobic microchannels, the dynam-
ics of front position follows a power law h ∼ tν , obtaining a non-classical
exponent ν as small as 0.4.

In this work, the dynamics of the fluid front for microchannels will be
studied experimentally, obtaining a power law h ∼ tν with an exponent
ν = 0.5 for hydrophilic microchannels and a ν = 0.38 for hydrophobic
microchannels, in good agreement with these theoretical results.

3 Experimental Setup

The aim of this work is study the dynamics of a front of water driven into a
microchannel through a constant pressure difference. In figure 5 is presented
a photograph of the setup.

In the experiment there are two key elements: fluid and microchannels.
The fluid chosen is purified water, which is a Newton fluid. In some cases,
water will be mixed with ink in order to get better images. This ink is
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Figure 5: Photograph of the experimental setup

carefully filtered and mixed in enough small concentrations to not affect
fluid behavior.

Microchannels are important because their size and composition will
determine the dynamics of the front. In this work, two kind of materials have
been used: PMMA, which is more hydrophilic, and PDMS, which is more
hydrophobic. The microchannels used also have different sizes, going from
500 µm to 100 µm width. These differences are mainly due to fabrication
techniques used.

3.1 Microchannels

Microchannels are one of the key elements in the experiment because they
allow to explore different wetting and roughness conditions. Wetting con-
ditions are controlled selecting specific types of materials for microchannel
fabrication. Two types of materials are used. One is hydrophilic (PMMA)
and the other is hydrophobic (PDMS).

Both types of microchannels have an intrinsic roughness which is not
controlled during their fabrication, but it is assumed to be important enough
to affect dynamics of the fluid front.

In figure 6 these microchannels are shown. They have different sizes and
different forms because of the different fabrications, but all of theme belong
to the micrometer scale, allowing the study of the properties of interest in
this work.

In table 1 sizes and material of each type of microchannel used in the
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Figure 6: Different types of microchannels used in the experiments. From
top to bottom, they correspond to types 1, 2, 3 and 4 from table 1

Type Material Section Shape Sizes Total Volum
1 PMMA Cylindrical 150 µm diameter, 3.2 cm long 0.57 µL
2 PDMS Rectangular 387 µm width, 70 µm height, 1 cm long 0.27 µL
3 PDMS Rectangular 100 µm width, 7 µm height, 6 cm long 0.04 µL
4 PDMS Cylindrical 150 µm diameter, 1.6 cm long 0.28 µL

Table 1: Types of microchannels used in the work

experiments are shown .

3.2 Experiment Design

The mean characteristic of the experiments carried out in this work is the
constant pressure difference set for driving the fluid front inside the mi-
crochannels. The experimental setup is characterized in such a way this
requirement is satisfied. In figure 7 is shown a diagram of the setup.

The setup has a plate where the reservoir of water is contained, which
is connected to the microchannel through a needle and a thin tube. Water
plate has been built with a plastic petri dish and a hole has been made to
glue the needle.

The plate is held in a platform with free movement in vertical direction,
to allow changes in height and, therefore, changes in pressure. When the
experiment is prepared, height is determined and fixed until the end of the
experiment. Because of the procedure, the choice of good heights, that is,
good pressures, is made in a trial and error method.

There is no way of determining the exact pressure induced in each ex-
periment because of the simplicity of the setup, but an estimation of it can
be made knowing height difference between microchannel and water plate
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Figure 7: Experimental setup for measurements at constant pressure

with a specific water quantity.
In figure 8, it is shown how this estimation is calculated. If the fluid

is in equilibrium, pressure at one side of the microchannel will be equal to
pressure at the other side, having:

patm + pfront = patm + ρg∆h ⇒ pfront = ρg∆h , (13)

where ρg∆h is pressure of fluid due to the presence of gravity.
Therefore, ∆h will be the cause of the difference in pressure that will

push water front. Despite figure 8, where the plate is much above the chip,
in real experiments plate and microchannel are almost at the same level,
having a typical difference between them of 10 mm. Then:

ρ = 103 kg/m3

g = 9.8 m/s2

∆h = 10 mm

}
⇒ pfront = ρg∆h = 98.1Pa ∼ 102Pa (14)

Therefore, the driving pressure differences applied in the experiment are
of the order of 100 Pascals.

The choice of a flat dish to contain the fluid is due to the necessity of
having a flat container where water is placed and, because of the constant
pressure condition, water level is constant during all the experiment. Be-
cause of that, petri dish diameter has also been chosen in such a way water
level variation due to front advancing is negligible.
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Figure 8: Pressure estimation from difference in height between water level
and microchannel

To be sure that water level remains stable during the experiments, a
estimation of how water level changes when a microchannel is filled is cal-
culated. First, it is calculated an estimation of the volume of water held in
the microchannel when an experiment is ended (see figure 9). To do it, the
bigger microchannel is used; it is a cylindrical one, with 150 µm diameter
and 3.2 cm length, having a volume of 0.6 µL.

This volume will cause water level variation in the plate. This plate, as
shown in figure 9, is cylindrical with a diameter Φ = 9.0 cm, having an area
of 6361.7 mm2.

Then, the volume of water extracted from water plate to fill the mi-
crochannel will produce a height variation of 0.1 µm.

This height variation is translated into a pressure variation, having:

∆p = ρg ∆H ' 9.8× 10−4Pa ∼ 10−3Pa (15)

This quantity can be compared with pressure exerted in the experiments,
calculated in equation 14. It can be seen that the difference is of five orders
of magnitude, a difference large enough to be negligible.

The microchannel is supported in a platform with long travel track. The
horizontal movement of the microchannel is necessary because it is too much
long to appear entirely in the screen. Movement of the track is performed
thanks to a screw that allows a soft movement, which is extremely necessary
in order to avoid perturbations in the system during the experiment.

Camera provides analog videos, which are converted to digital data and
saved in a computer through a digital converter card. Videos are saved in
the computer and then images are extracted with a special program. Images,
after recordering and extraction, have a size of 720 x 576 pixels.
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Figure 9: Scheme of water contained in a microchannel when an experiment
is ended

All the setup is put on an antivibration table in order to avoid pertur-
bations.

It is important to point out that the setup, although being very simple,
satisfies the mean requirements to guarantee good measures of the system;
that is, constant pressure during the experiment, isolation and providing
good images.

3.3 Image Analysis

When video is captured, images are extracted and analyzed with a program
written in MATLAB R©. This program analyzes all the images from the
video, allowing to have very good statistics. Depending on microchannel
used, image changes because they have different sizes and forms. In figure
10 some of these images are shown to allow the reader to have an idea of
what kind of image has to be analyzed.

The program written in MATLAB R© allows to analyze images of all this
different microchannels. First, the program takes an image and cuts it,
keeping only the area where the microchannel is. Then, it converts it into
a binary one, converting into white the pixels with a gray value below a
threshold and into black the ones with the value above the threshold ; after,
it cleans the resulting image, removing spots due to material defects and
light shadows. In appendix B is shown the code of this program.

After this process, a good binary image is obtained, allowing the program
to recognize where the interface is. The threshold is a parameter that can
be changed, which allows to analyze such different images shown in figure
10. In figure 11 is shown an example of the steps explained.

Before starting constant pressure experiments, the program was checked
analyzing some videos made with constant velocity, using a syringe pump.
The dynamics obtained experimentally where compared with the expected
behavior, that is, a constant velocity, finding very good agreement. In figure
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Figure 10: Images of several microchannels. In (a) and (b) are shown PMMA
and PDMS microchannels receptively, with water. In (c) and (d) are shown
two different PDMS microchannels filled with a mix of water and ink. In all
images fluid goes from right to left

Figure 11: Steps for image analysis. At the left, original image is shown.
At the right, from up to down the following images are shown: the cut
one, the dirty binary image and finally the cleaned image used for position
determination
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Figure 12: Experimental data of the dynamics of the front position (solid
line) when a pump is used to provide constant velocity. The agreement
with the expected behavior (dashed line) allows to check that the programs
created for analysis of images work well

12 is shown the result of one of these tests.
Oscillations observed in the experimental behavior of figure 12 appear be-

cause the pump does not push water in an exactly constant way. Therefore,
it can be seen that there is a very good agreement between the experimental
results obtained with the MATLAB R© program and the expected behavior,
concluding that the program works well.

Therefore, it has been written a simple program that allows to analyze
automatically all images from the experiment.

3.4 Data Treatment

When images are analyzed, a file with space values is obtained. This data is
measured in pixels and, to translate it into a real space magnitude, that is,
into micrometers, relation between pixels and micrometers has to be calcu-
lated. To obtain this relation, it is necessary to measure the value in pixels
of an object which size is well known. For this purpose, a tungsten wire was
selected. This material has an exact width of 50 µm, specially fabricated
for applications in which is necessary to have a controlled width. To know
its correspondence in pixels, it was put in the microscope and recorded with
the same process than in an experimental video.

Finally, relation obtained was:
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Relation = 6.25 µm/pixel (16)

This means that spacial resolution of videos is of this size.

On the other hand, obtaining time data is trivial because it is known
which time corresponds to each image. Typically it is extracted an im-
age each second of the video, having a time resolution of 1 second. This is
enough because interface runs so slowly that resolution in time is determined
by resolution in space.

Finally, data of time and front position are obtained from the experi-
ments. The experiments have intrinsic errors that will affect all measures
and results. It is important to calculate them to know how believable are
results shown.

Time has not any error associated because is a magnitude directly deter-
mined from the recordering, but front position actually does. The analysis
programs determine front position with only the error of the resolution of
the system, that is, a pixel. This value, translated to real distance using
relation 16, corresponds to 6.25 µm. Therefore, this is the error of direct
data values:

δhi = 6.25 µm (17)

But these are not the data used for result analysis because mean position
of the front is calculated. That is, when a microchannel is recordered, it has
a specific width, which is translated in a width of several pixels (here called
rows), in which each of them will have a front position associated (see figure
11). Then, to obtain a unique value for the front position at each value of
the time, the mean h has to be calculated. This will also reduce the error
associated to the measure, having:

h(t) =
1
N

∑
i

hi(t) , (18)

where N is the number of rows (that is, the width of the microchannel in
pixels) and hi(t) is front position of each of this rows at time t, and:

δh =
δhi√
N

, (19)

where δhi is the same for all rows because is the error from equation 17. In
order to obtain a final value for this expression, number of rows has to be
set. It depends on microchannel width and image quality (if, for example,
there were shadows in the walls of the microchannel, rows would be reduced);
therefore, it will change with the experiments. But here the smallest number
of rows possible is chosen in order to get an upper limit of the error, and
this number is 30 rows.
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Therefore, the error will be:

δh = 1.14 µm (20)

To realize if this number is large or small, it is calculated the relative
error, where total width of the microchannel is introduced. Once again, in
order to obtain the upper limit, the smallest microchannel width is used,
that is, type 3 value from table 1: w = 100 µm width. Then:

δhrelative =
δh

w
× 100 ' 1 % (21)

Thanks to this result, it can be concluded that once mean front position
is determined, values are good enough to give reliable results.

Once the time t and the averaged front position h are calculated, they
are plotted in linear and logarithmic scales to observe its relation h(t).

The next step in the analysis of data consists in calculate the numerical
derivative of the averaged front position, that is, numerical averaged velocity.
This is directly calculated using the relation:

vj =
hj+1 − hj
tj+1 − tj

≡ hj+1 − hj
∆t

, (22)

where j is the index referred to the time.
The corresponding error will be:

δvj =
√

2
δhj
∆t

=
1.61
∆t

, (23)

where δhj is the value of equation 20. Therefore, it can be seen that the
error will decrease when ∆t (also called time step) is increased. This occurs
because the resolution in the space will determine the resolution in the
time. That is, the time step has to be set is such a way the front position
would have time enough to advance a distance detectable experimentally.
Therefore which time step is needed depends on the velocity of the front
position, which changes for each realization.

Because of that, when velocity data is obtained for each experiment, it
is made a study of which time step is needed for obtaining a velocity with
small error for use in further calculations. An example of this is shown in
figure 13. It can be observed that the first plot is very noisy, the second one
a little less noisy and the last one is much better, revealing the real behavior
of velocity. The unique difference between these plots is the time step used
in velocity calculation.

Once velocity data is obtained, its distribution function is calculated. To
do it, a program for MATLAB R© is written, where data is normalized, as
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Figure 13: The same velocity data set is plotted versus time for three differ-
ent time steps: first with ∆t = 1, when all data is used. The second when
∆t is a little bigger and the last one when ∆t is big enough for having good
data. It can be observed how data improves drastically only changing time
step

seen in appendix B.

Finally, the power spectrum of averaged velocity is calculated. The
power spectrum P of a function f corresponds to the expression

P (ω) =
[
abs

(∫ ∞
0

f(t) e−iωtdt
)]2

, (24)

where ω is the frequency corresponding to each time t. The power spec-
trum itself is the Fourier transform of the auto-correlation function, having

R(t) =
1

2π

∫ ∞
0

P (ω) eiωtdω. (25)

The auto-correlation function represents the relationship of long and short-
term correlation within the signal itself. That is, a high value in the low
spectral region means a high correlation in a very long time scale and a
high value in the high region of the spectrum implies high correlations in
short time scales. Therefore, power spectrum will allow to explore the time
correlation of the averaged velocity in the experiments.
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For the calculation of the power spectrum of the numerical velocity of
the experiments, the Fast Fourier Transform algorithm [11] is used. It is
calculated using MATLAB R©. Source code is showed in appendix B.

4 Results

The results obtained in this work can be divided in two main parts: the first
one with results from hydrophilic microchannels and the second one with
the ones from hydrophobic chips. The experiments are the same for both
types of microchannels, but results are different.

4.1 Results for hydrophilic microchannels

To start, PMMA hydrophilic microchannels are used. Height of the setup
is changed in different realizations in order to obtain a different pressure
for each one. For the first realization, a specific height is chosen and it
is lowed in the next experiments. For each one, images are analyzed and
global position of the front as a function of time is obtained. These results
are shown in figures 14, 15, and 16.

Figure 14: Experimental dynamics of the averaged front position in a hy-
drophilic microchannel for high driving pressure differences. It is shown in
a linear scale (at the left) and a logarithmic scale (at the right)

They are plotted in a linear and logarithmic scale to study the depen-
dence of the front position with time. It can be observed that they follow a
power law:

h ∼ tν . (26)
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Figure 15: Experimental dynamics of the averaged front position in a hy-
drophilic microchannel for medium driving pressure differences. It is shown
in a linear scale (at the left) and a logarithmic scale (at the right)

Figure 16: Experimental dynamics of the averaged front position in a hy-
drophilic microchannel for low driving pressure differences. It is shown in a
linear scale (at the left) and a logarithmic scale (at the right)

The exponent ν changes as the driving pressure applied is different.
When pressure is high, the dependence is ν = 1, which means that ve-
locity is constant; as pressure is lowed, the exponent in time dependence
starts to be smaller, taking a smallest value when pressure is very low, hav-
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Figure 17: Experimental velocity as a function of time of a fluid front ad-
vancing in a hydrophilic microchannel

ing ν = 0.5, which agrees with the Washburn law. This exponent value is
the smallest obtained, despite very low pressures have been applied. It has
sense that exponent gets larger when pressure increases because then walls
effect is lost due to the high velocity of the front.

It has to be noticed that in figures of front position versus time in loga-
rithmic scales, there is at the beginning a transitory regime. The existence
of this regime (and sometimes another similar at the end of the video) is due
to the influence of connections in the microchannel. Because of that, flow
takes some time to stabilize and behave following the exponent calculated.

Now the averaged velocity is calculated. It is showed in figure 17.
It can be observed that it presents many fluctuations, having

v(t) = vo(t) + δv(t), (27)

where vo(t) ∼ tν−1 is the mean temporal dependency that comes from equa-
tion 26. The fluctuating term δv(t) is attributed to the pinning effects at
the interface induced by the roughness present at the surfaces of the chan-
nel. The point is to study how these fluctuations behave when the applied
pressure is modified. In order to characterize these fluctuations, their dis-
tribution is calculated. The same kind of distribution is obtained for the
realizations carried out at different driving pressures. An example of these
distributions is shown in figure 18. It can be observed that the distribution
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Figure 18: Distribution of the experimental fluctuations of the velocity of
the fluid front in a hydrophilic microchannel and a Gaussian distribution,
in linear and semilogarithmic scales

is very symmetric, having that velocity fluctuations are basically Gaussian

F (x) =
1

2π
exp(−1

2
x2), with x =

v − v0

σv
. (28)

From velocity profile, it can also be calculated the power spectrum, as
shown in figure 19.

It is observed that the values of the power spectrum are randomly dis-
tributed, as expected when the distribution of data is Gaussian.

4.2 Results for hydrophobic microchannels

In this case, PMMA microchannels are replaced by PDMS ones to obtain
hydrophobic conditions. Purified water is used and height is changed in
order to have realizations at different constant pressure values. Height is
chosen to have an experiment at high pressure and then it is lowed in differ-
ent realizations. In figures 20, 21 and 22 the dynamics of the front position
for several of these realizations is shown: one for high pressure realization,
other for medium pressure and a last one for very low pressure.

It can be observed that the dynamics of front position follows a power
law:

h ∼ tν (29)

This dependence is also found in the dynamics of front position for hy-
drophilic microchannels, but for hydrophobic microchannels the values ob-
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Figure 19: Logarithmic representation of the power spectrum of the exper-
imental velocity of a fluid front in a hydrophilic microchannel

Figure 20: Experimental dynamics of the averaged front position in a hy-
drophobic microchannel for high driving pressure differences. It is shown in
a linear scale (at the left) and a logarithmic scale (at the right)
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Figure 21: Experimental dynamics of the averaged front position in a hy-
drophobic microchannel for medium driving pressure differences. It is shown
in a linear scale (at the left) and a logarithmic scale (at the right)

Figure 22: Experimental dynamics of the averaged front position in a hy-
drophobic microchannel for low driving pressure differences. It is shown in
a linear scale (at the left) and a logarithmic scale (at the right)
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Figure 23: Experimental velocity as a function of time of a fluid front ad-
vancing in a hydrophobic microchannel

tained for the exponent ν are different. That is, when the driving pressure
difference applied is high, the exponent goes as ν = 1, but when this pressure
difference is reduced, the exponent ν also decreases, obtaining an exponent
as small as ν = 0.38. In this case, typical Washburn law h ∼ t1/2 is not
accomplished, revealing that new phenomena drive the fluid front along the
microchannel.

Pressure in the experiments is lowed so much as the hydrophobicity al-
lows because, if pressure is too much low, front stops and does not travel
along the microchannel, but never a coefficient lower than ν = 0.38 is ob-
tained.

From the averaged front position, the numerical derivative is calculated
in order to get the dynamics of the velocity. An example is shown in figure
23.

It can be observed the presence of fluctuations in the velocity, having

v(t) = vo(t) + δv(t), (30)

where vo(t) ∼ tν−1 is the mean temporal dependency that comes from equa-
tion 29. The fluctuating term δv(t) is attributed to the pinning effects at the
interface induced by the roughness present at the surfaces of the channel.
To study the behavior of these fluctuations, their distribution is calculated.
In figures 24, 25 and 26 these distributions are shown for three different
driving pressure differences.

It is observed that all the distributions are very asymmetric and non-
Gaussian distributed. They show a tail for big positive values, which means
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Figure 24: Distribution of the experimental fluctuations of the velocity of
the fluid front in a hydrophobic microchannel for high driving pressure differ-
ences. It is also plotted a Gaussian distribution and a Gumbel distribution,
in linear and semilogarithmic scales

Figure 25: Distribution of the experimental fluctuations of the velocity of
the fluid front in a hydrophobic microchannel for medium driving pressure
differences. It is also plotted a Gaussian distribution and a Gumbel distri-
bution, in linear and semilogarithmic scales
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Figure 26: Distribution of the experimental fluctuations of the velocity of
the fluid front in a hydrophobic microchannel for low driving pressure differ-
ences. It is also plotted a Gaussian distribution and a Gumbel distribution,
in linear and semilogarithmic scales

that there is an unusual increase of events of large velocity. These distribu-
tions are then given by a Generalized-Gumbel distribution [12]

Pa(x) =
aaba
Γ(a)

exp
{
− a
[
ba (x+ sa) + exp {−ba (x+ sa)}

]}
,

where x is the variable of study and Γ(a) is the Gamma function. There
are also three parameters: a, ba and sa but only a is free because the other
two depend on it, as seen next in their expressions:

ba =

√
d2 ln Γ(a)

da2

σx
sa =< x > +

ln a− d ln Γ(a)
da

ba
,

where < x > and σx are mean and variance of x data.

The value of the free parameter, a, is related with the distribution of the
fluctuations through the third moment of the statistics analysis, also called
skewness:

γ =
1
N

∑
i

[
v − v0

σv

]3

(31)

The skewness is related to how asymmetric is the distribution. That
is, when a distribution is very symmetric, it has γ ' 0 and, when it is
asymmetric, the skewness takes values different from zero.
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Figure 27: Logarithmic representation of the power spectrum of the exper-
imental velocity of a fluid front in a hydrophobic microchannel

The relation between the Gumbel free parameter a and the skewness γ
is:

γ ∼ 1√
a

(32)

Generalized Gumbel distribution in figures 24, 25 and 26 is calculated us-
ing the values of the free parameter obtained with relation 32. It is observed
a very good agreement either for high and low driving pressure differences
applied.

Generalized Gumbel distribution has been found in very different re-
search areas like economy, earthquakes risk or quantum physics [13]. Its
behavior is a typical signature of a burst like dynamics. This kind of distri-
bution is found in fluid physics associated to phenomena like avalanches [17].

Only when the experiments of hydrophobic microchannels are carried
out at very high driving pressure differences, having that roughness of the
walls of the microchannel and pinning effects become irrelevant, a Gaussian
distribution is obtained from the analysis of the fluctuations of the velocity.

From the velocity profile, it can also be calculated the power spectrum.
It has been calculated for the experiments at low driving pressure differences,
obtaining the result shown in figure 27. It is observed that the values of the
power spectrum increase when the frequency decreases. This reveals the
existence of long-range temporal correlations. The power spectrum has also
been calculated for the case of experiments at very high driving pressure
differences, obtaining the same behavior of figure 19 from the hydrophilic
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microchannels, which is the expected result since the fluctuations in the
velocity are also Gaussian distributed.

5 Conclusions

After all the analysis shown in this work, new results have been obtained.
It is obtained that for hydrophilic microchannels the dynamics of the

mean front position follows a power law

h ∼ tν , (33)

with an exponent going from ν = 1 for high driving pressure differences to
ν = 0.5 for low driving pressure differences, which corresponds to the typical
Washburn law. The distribution of velocities follows a Gaussian distribu-
tion, having the same behavior than for macroscopic channels.

In the case of hydrophobic microchannels, the dynamics of the averaged
front position of the fluid front also follows a power law

h ∼ tν , (34)

but with an exponent ν taking as small values as ν = 0.38 when low driving
pressure differences are applied. This exponent differs from the ν = 0.5 from
typical Washburn law.

The distribution of velocities of a fluid front advancing in hydrophobic
microchannel shows long-range temporal correlations and follows a Gumbel
distribution that correctly characterizes avalanches.

This result implies that a combination of pinning due to the roughness of
the walls of the microchannel and the hydrophobicity affects the dynamics
of the fluid front.

When the driving pressure differences are very high, the pinning effect
becomes irrelevant, having that the distribution of velocities becomes Gaus-
sian.
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Appendix A Methods and Material Fabrication

Microchannels are one of the most important element in the experiment be-
cause behavior of the fluid is supposed to depend on how they are fabricated,
mainly in the material used and the size they have. Because of that, this is
explained in detail in the following sections.

There are two types of microchannels used in the experiments: a first
type, made of a hydrophilic material and a second type, made of hydrophobic
material. Fabrication of each type is very different because the characteris-
tics of each material force to apply specific methods.

A.1. Fabrication of PMMA microchannels

Polymethyl methacrylate (PMMA) is a polymer used due to its low hy-
drophobicity properties with purified water. Its fabrication is fast, clean
and non-expensive, having a good material to use in the experiments.

To start with the fabrication [18], it is necessary to have some material:

• Oven heating temperatures up to 150◦C

• PMMA sheets

• Metal clamp

• Tungsten wire with the diameter of the future chips, typically of
150 µm diameter.

• Araldite 2014 epoxy adhesive glue

First, two PMMA sheets have to be cut with a suitable size, which
depends on the size of the microchannel required. Typical size of PMMA
sheets for microchannels used in this work is 50 mm×20 mm. Then, in one
of the pieces two holes of 1 mm diameter have to be drilled. Their position
will correspond to both ends of the microchannel.

After that, the tungsten wire has to be put on the drilled PMMA piece.
One end of the wire has to match up with the holes, as shown in figure
28. Finally, the blank PMMA piece is placed on top, matching up with the
other PMMA piece bellow. It is important to have the tungsten wire well
positioned, in such a way that it lines up with the holes. It is better to
mount all this directly on the clamp, in order to make the process easier.

When the good configuration is obtained, the clamp can be tightened
and placed in the oven. It has to be heated at 140◦C for 5 minutes. Then,
the clamp has to be re-tightened and heated for 10 additional minutes.

Then, the PMMA device can be removed from the clamp, and the tung-
sten wire pulled out. Finally, some glue can be applied to seal up the open
end from where the wire has been removed.
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Figure 28: PMMA piece with two holes and the tungsten wire (arrow), from
[18]

Figure 29: PMMA microchannel with connectors (arrows)

The microchannel has been built. To make its manipulation easier, some
connectors can be glued to the two outflows, as shown in figure 29.

PMMA microchannels built up with this technique have cylindrical sec-
tion with a diameter, which is determined by tungsten wire diameter, not
smaller than 100 µm because if tungsten wire has small diameter, then
PMMA cannot mix up around it and the microchannel is not built. There-
fore, if smaller microchannels need to be used, another technique has to be
used. In the case of this work, 150 µm microchannels are small enough to
study wall effects and verify washburn law in low hydrophobic microchan-
nels.

In order to study high hydrophobic microchannels, another material is
used: PolyDiMethylSiloxane (PDMS), which is a largely used bio-compatible
material for microfluidic applications. PDMS microchannels can be built
with a different technique, as explained below.

A.2. Fabrication of PDMS microchannels

As said before, for studying what happens if the microchannel is highly
hydrophobic, another material has to be used for building up the devices.
This material is PDMS, a soft polymer with low affinity to water and proved
bio-compatibilities.

For building up a PDMS device, two different methods can be chosen:
one is the same than for PMMA chips, and the other is a rapid prototyping
method [19]. The first one has been shown in the section above, so now the
other will be explained: this technique allows to fabricate microchannels
smaller than the ones from PMMA, until 20 µm wide. There is also a big
difference between these microchannels and the others: those have cylindri-
cal section, and the new ones have rectangular form. This difference is not
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a problem because both have small size, allowing important wall effects.
This technique is also a non-expensive one, but it needs some special

equipment and material, which is:

• High resolution laser printer

• Photosensible resin, for example SU8-50 from MicroChem, which is a
negative photoresist

• Spinner

• High temperature oven

• PDMS pre-polymer and curing agent

The steps of the procedure are:

1. Design a mask and print it on a transparent sheet with high resolution.

2. With SU8 photo resin and the mask designed, fabricate a master.

3. Fabricate the PDMS replica.

Details of the fabrication are in [19]. All the fabrication was made in
Parc Cient́ıfic de Barcelona by specific personal.

31



Appendix B Programs

B.1. Image analysis

for fotos=1:25000 % These are all photographs in the file
I=imread(fileNames{fotos}); % fileNames is the string

% where are located the files.
Ig=rgb2gray(I);
J=imread(’v01 00001.jpg’);
Jg=rgb2gray(J);

%Now images are cut:
Ig2=imcrop(Ig,[11 232 700 30]); % The numbers are:

% [FirstColumn FirstRow
% (columns-1) (rows-1)]

Ig3=imadjust(Ig2); %This allows to improve contrast.

% Conversion to a binary image. Threshold value has to
% be set and depends on the video.
bn=<=80;

%Now the binary image is cleaned.
bnlimpia=imerode(bn,SE);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Here the image is prepared to be analyzed
label=bwlabel(bnSUPERlimpia,8);
s=size(bnSUPERlimpia);
columns=s(2);
rows=s(1);

%The front has to occupy all the width of the microchannel; if
%not, it could be a spot.
for i=1:columns

for j=1:columns
if label(1,i)==label(rows,j) && label(1,i)~=0

n=label(1,i);
break

end
end

end
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%Now the position of the front is measured:
for k=1:rows

blancos=find(label(k,:)==n);
M=blancos(end);
Resultado01filas(k,fotos)=M;

end

% clear i j k s columns rows n

end

%Mean position is finally obtained.
Resultado01=mean(Resultado01filas);

%Saving the result:
save Resultado01.mat
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B.2. Calculation of velocity values and distribution

load VelocidadHistGumbel.mat
tfin=numel(Espacio45);

for tpaso=40 %Time step is set at the beginning

LimiteHist=3;
LimiteHistNeg=-LimiteHist;
binshist2=30;

h45_tpaso=[];
t45_tpaso=[];
h45_tpaso=Espacio45(1:tpaso:tfin);
t45_tpaso=Tiempo45(1:tpaso:tfin);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Derivative: calculation of the velocity
v45_tpaso=[];
tderiv45_tpaso=[];
h=h45_tpaso;
t=t45_tpaso;

Derivadah=[];
ifinal=numel(h)-1;

for i=1:ifinal
restah=h(1,i+1)-h(1,i);
restat=t(1,i+1)-t(1,i);
cociente=restah/(restat);
Derivadah=[Derivadah cociente];

end

tparaderivadah=t(1,1:ifinal);

v45_tpaso=Derivadah’;
tderiv45_tpaso=tparaderivadah’;

clear h t a ifinal i restah k cociente
clear restat h t tparaderivadah Derivadah

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Fit for normalization of velocity values
Fit45=fit(tderiv45_tpaso,v45_tpaso,’power1’);
ayyy=Fit45(tderiv45_tpaso);
V45_tpaso_FEA=(v45_tpaso-ayyy)’;
tderiv45_tpaso_FEA=tderiv45_tpaso’;
tderiv45_tpaso=tderiv45_tpaso’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Normalization
V45NORM_tpaso_FEA=(V45_tpaso_FEA-mean(V45_tpaso_FEA))

./std(V45_tpaso_FEA);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Removing wrong values in the velocity
DosSigma=2*std(V45NORM_tpaso_FEA);
V45NORM_tpaso=V45NORM_tpaso_FEA;
S=numel(V45NORM_tpaso_FEA);
LosFeos=find(abs(V45NORM_tpaso_FEA)>LimiteHist);
LS=numel(LosFeos);
for i=LS:-1:1

tatocao=LosFeos(i);
V45NORM_tpaso(tatocao)=[];
tderiv45_tpaso(tatocao)=[];

end

LosFeos2=find(V45NORM_tpaso<LimiteHistNeg);
LS2=numel(LosFeos2);
for i=LS2:-1:1

tatocao2=LosFeos2(i);
V45NORM_tpaso(tatocao2)=[];
tderiv45_tpaso(tatocao2)=[];

end
clear S i LosFeos LS tatocao LS2 LosFeos2 tatocao2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of the skewness
Gammatpaso=1/numel(V45NORM_tpaso).*

sum((V45NORM_tpaso-mean(V45NORM_tpaso))
.^3./(std(V45NORM_tpaso))^3);

Gamma(1,tpaso)=Gammatpaso;
tGamma(1,tpaso)=tpaso;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation and standardization of the histogram
[AlturaHistV45_EjeAjust BaseHistV45_EjeAjust]=

hist(V45NORM_tpaso,binshist2);
sumaV45EjeAjust=sum((AlturaHistV45_EjeAjust.*(max(V45NORM_tpaso)

-min(V45NORM_tpaso))./binshist2));
AlturaHistV45_EjeAjust_NORM =AlturaHistV45_EjeAjust

./sumaV45EjeAjust;

clear sumaV45EjeAjust

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Gumbel distribution with the specific skewness
%of data
a=1/(Gammatpaso)^2;
sigmax=1;
mediax=0;
ParametroGumbel45_aEjeRecortado=a;

b=sqrt(psi(1,a))/sigmax;

s=mediax+(log(a)-psi(0,a))/b;

K=a^a*b/gamma(a);

Gumbel=K.*(exp(-b.*(x+s)-exp(-b.*(x+s)))).^a;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Gaussian distribution:
x=V45NORM_tpaso;
Gausiana=normpdf(x,0,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Plotting experimental data, Gumbel and Gaussian distribution
%together

figure
semilogy(BaseHistV45_EjeAjust,AlturaHistV45_EjeAjust_NORM ,

’*k’,’MarkerSize’,6)
hold on
semilogy(x,Gumbel,’.’,’Color’,[0.2,0.45,0.61],’MarkerSize’,12)
semilogy(x,Gausiana,’.’,’Color’,[0.2,0.45,0.61])
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legend(’Experimental Data’,[’Gumbel Distribution with a=’,
num2str(ParametroGumbel45_aEjeRecortado),
’ calculated from skewness’,’Gaussian
Distribution’])

title([’Normalized Histogram, Time step ’,num2str(tpaso),’ sec’])
xlabel(’Velocity (\mu m/sec)’)
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B.3. Calculation of the power spectrum

load PowerSpectrum.mat

%%Experimental velocity
t=tderiv36_tpaso50segs;
V=V36NORM_tpaso50segs;

%Time step:
tpaso=50;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of the frequency
Fs=1/(t(2)-t(1));
L=numel(V);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Fast Fourier Transform Algorithm
NFFT=2^(nextpow2(L));
FT=fft(V,NFFT);
P=(abs(FT(1:NFFT/2))).^2;
w=Fs/2*(linspace(0,1,numel(P)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Plot
figure
loglog(w,P,’r’)
title([’Power Spectrum in logarithmic scale’])
xlabel(’Frequency \omega’)
ylabel(’Power Spectrum’)
grid on
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