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Abstract

A complex composed of a polymer and a colloid coupled together
and immersed in a fluid, is simulated by means of the Lattice-Boltzmann
Method and Molecular Dynamics. The system dynamics is character-
ized using dimensionless numbers.

Unravelling the properties of the complex might have severe impli-
cations in single molecule experiments or in any system similar to a
polymer attached to rigid object, such as some molecular machines or
the novel polymer-protein hybrid materials. In addition, the adhesion
of the colloid to one of the edges of the polymer creates a unique frame
for the latter in the sense that many new properties may arise due to
the shear effects induced near the colloid and the symmetry breaking
that its presence represents for the polymer.
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1 Introduction

1.1 Motivation

Single Molecule Experiments (SME) have become of great importance in the
field of Biophysics mainly because these techniques allow physicists to mon-
itorize and manipulate individual molecules [1]. Some representative exam-
ples are Atomic Force Microscopy (AFM), Laser Optical Tweezers (LOTs),
and Magnetic Tweezers (MTs). Of course, the choice of a technique in par-
ticular depends strongly on the experiment requirements, such as the force
range or the space resolution. From the biophysical point of view, under-
standing the dynamics of biomolecules, such as biopolymers and proteins,
is a crucial matter.

However, in most experiments involving biomolecules, the object under
study is not only a single molecule but an aggregate composed of at least two
different objects, whose interaction may be neglected in some cases. In order
to analyze a possible coupling, the present work is focused on simulating
a bead-polymer complex immersed in a fluid using the Lattice-Boltzmann
Method (LBM) for the fluid and the colloid, and Molecular Dynamics (MD)
for the evolution of the polymer.

A practical application might be related with the improvement of the
LOTs calibration. This technique uses an optical gradient force created by
a focused laser beam that interacts with an object, which possesses an index
of refraction higher than the one of the surrounding medium. This gradient
can be used to trap a great variety of objects of different sizes: microbeads,
eukaryotic cells, bacteria, viruses, etc.

Figure 1: Typical experimental set-up of LOTs.

The typical experimental set-up consists on a laser (usually near in-
frared) that is collimated by a high numerical aperture lens (Figure 1). For
practical purposes, let us focus in the case of a trapped microbead. This
object is a sphere made of polystyrene or silica, and remains still in the
focus of the laser. The ends of the molecules under study are labelled with
different molecules, like biotin and digoxigenin, in an attempt to avoid dou-
ble attachments between the two ends of a single molecule and the same
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bead. In a very good approximation the trapping potential can be consid-
ered harmonic, yielding to a force proportional to the distance between the
particle and the center of the trap, F = −kr. In this expression, k repre-
sents the stiffness of the trap and has to be determined via in the calibration
process. The bead is assumed to behave as a Brownian particle trapped in
a harmonic potential [1]. Thus, the Langevin equation that describes its
dynamics should be:

mẍ(t) = −γẋ(t) − kx(t) + fR(t) (1)

where m is the mass of the particle, γ is the drag coefficient, and fR(t) is
the stochastic force experienced by the particle due to the thermal motion
of the molecules [2]. The latter is assumed to behave as white noise:

〈

fR(t)fR(t′)
〉

= 2kbTγδ(t − t′) (2)

Since the microbead is spherical and moves in a low Reynolds number
regime, it follows the Stokes’ law in a very good approximation:

γ = 6πηR (3)

where η is the medium’s dynamic viscosity, and R the radius of the particle.
Neglecting inertial terms (the system is overdamped due to the viscosity),
the former expression is reduced to:

fR(t) = γẋ(t) + kx(t) (4)

By taking the Fourier transform and the modulus squared, it is obtained
the analytical expression of the power spectrum:

S(f) = |x(f)|2 =
kBT

γπ2 (f2 + f2
c )

(5)

where f2
c = k/2πγ is the corner frequency and can be found easily after a

fitting with the experiment. This magnitude is measured in situ, then the
LOTs are calibrated instantanously. Clearly, the drag force depends on the
radius of the bead. This statement is quite correct when the length scale
of the polymer is small in comparison with the bead radius. However, as
the polymer extends [3], its size becomes larger and somehow the Stokes’
law should take into account some kind of effect. Therefore, changes on the
drag coefficient of the complex bead-biopolymer ought to be considered for
extended polymers and the experimental results might be biased somehow
in this situation. Whether this effect can be relevant in the colloid dynamics
or not, might be unravelled from our simulations.

Another potential implication is related with some experiments with
polymers that undergo cyclic motions when are subjected to flow shears
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[4]. A polymer is tethered to a static wall, while another wall moves with
constant velocity, thus creating a constant Couette shear on the fluid. As a
consequence, the chain performs a cyclic motion with a well-defined period.
Somehow, our system shares great similarities with that system: the polymer
is attached to a (moving) wall and relevant shear effects do occur near the
colloid surface because of the relative movement between the colloid and
the fluid. Hence, some characteristic time belonging to the colloid moving
through the fluid, might make an appearance in the polymer dynamics.

Moreover, polymers are fascinating for theirselves. A knowledgeable
reader on polymers may know that their related magnitudes feature a scal-
ing law behaviour [5,6]. For instance, renormalization theory and numerical
simulations show that the characteristic size scales with a critical exponent
that depends on the model under consideration. Critical exponents are
connected with some symmetries. In our concrete case, there is a clear sym-
metry breaking due to the colloid attachment on the chain edge. Thus, new
properties on the polymer may arise because of the so-mentioned symmetry
breaking.

Last but not least, our model might look rather simplistic, but will pro-
vide us with a first glimpse of how a biopolymer interacts with a more rigid
object, like a bead or a protein. Currently, large efforts are being devoted to
the development of new polymer-protein hybrid materials because of their
unusual properties [7]. These hybrids have a large potential in the man-
ufacture of sensors, nanomachine parts, and drug-delivery systems, since
they combine the specific biological functions of proteins with the advanta-
geous bulk and processing properties of polymers. Due to its applicability,
their interaction with their surrounding media is a very pertinent question
to be addressed. In addition, the adhesion of a polymer to other kind of
proteins, like molecular machines, in the RNA transcription process or the
intracellular transport is crucial topic of the state of the art in Biophysics
[8].

As a natural consequence, in all cases understanding the effects of these
coupling will provide us with better measurements and novel ways to access
molecular information from this type of complexes for sure.

1.2 Project Outline

The present work is structured as follows. Firstly, Section 2 contains the
methodology, including the details about the two simulation techniques and
the definition of the dimensionless parameters that characterize the system
under study. Then, Section 3 includes and explains all the relevant results.
Finally, Section 4 is composed of some conclusive remarks as well as future
directions of study.
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2 Methodology

Essentially, the simulation method comprises two techniques. On the one
hand, the Lattice-Boltzmann Method (LBM) is very appropriate to char-
acterize a surrounding fluid with any imaginable boundary conditions [9]
and has been used extensively in Biophysics [10,11]. Since a colloid can be
interpreted as a special boundary inside the fluid, the LBM is also a proper
technique to deal with these kind of objects [12]. On the other hand, Molec-
ular Dynamics (MD) are used to simulate the polymer behaviour inside a
fluctuating fluid. Some authors [13-16] have been successful to couple a poly-
mer with a lattice-Boltzmann fluid but so far it has been never attempted
to couple a polymer with a colloid immersed in a solvent.

In addition, the utilization of a dimensionless group will be of great
assistance towards the characterization of the system [17].

2.1 Lattice-Boltzmann Method

The Lattice Boltzmann Method (LBM) is an advanced computational tech-
nique very helpful in the simulation of all kinds of fluids with complex bound-
aries. As its name indicates, these technique applies the Boltzmann equation
at each node of a lattice that reticulates the whole space. The central quan-
tity is the discretized one-particle velocity distribution function, ni(r, t),
which describes the density of particles with a discrete velocity ci, at point
of the lattice located at r, at a discrete time t. The hydrodynamic fields,
mass density ρ, momentum density j = ρci, and momentum flux Π are
moments of that distribution:

ρ =
∑

i

nici , j =
∑

i

nici , Π =
∑

i

nicici (6)

The time evolution of ni(r, t) is the Lattice-Boltzmann equation:

ni(r + ci∆t, t + ∆t) = ni(r, t) + ∆i [n(r, t)] (7)

where ∆i is the change in ni because of the instantaneous collisions at the
lattice sites and ∆t is the time step between collisions. A computational
useful form for the collision operator can be constructed by linearizing about
the local equilibrium:

∆i(n) = ∆i(n
eq) +

∑

j

Lij(nj − neq
j ) (8)

where Lij is the linearized collision operator, and ∆i(n
eq) = 0. It is remark-

able that this equation is second-order accurate in space and time, so it can
simulate all the Navier-Stokes phenomenology without imposing additional
artifices.
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Some of the previous parameters, such as ∆i or ci, depend on the lattice
type. All the feasible lattices can be comprised in the notation DnQm,
meaning that the lattice possesses n dimensions and m discrete velocities.
In our simulation, the used model is the D3Q19 which comprises stationary
particles and 18 velocities corresponding to the [100] and [110] directions of
a simple cubic lattice (Figure 2).

Figure 2: Representation of the D3Q19 model. While the arrows represent
all the possible velocities, the red point is the stationary one.

Each velocity has a characteristic weight ac
i that describes the fraction

of particles with velocity ci in a system at rest. Naturally, these weights
must be normalized to one:

∑

i

ac
i = 1 (9)

The optimum choice of these coefficients is a0 = 1/3, a1 = 1/18, and a
√

2 =
1/36. Proceeding with the linearization, a suitable form for the equilibrium
distribution is:

neq
i = ac

i

[

ρ +
j · ci

c2
s

+
ρuu :

(

cici − c2
s1

)

2c4
s

]

(10)

where c2
s = 1/3 represents the square of the lattice sound speed taking the

value of the distance between nodes and the time step equal to one. Among
all the hydrodynamic fields, the momentum flux is the only one modified in
the collisional process.

However, force fields have not been considered so far, and should be
included. The Lattice-Boltzmann equation that includes these external fields
reads very similar to the former:

ni(r + ci∆t, t + ∆t) = ni(r, t) + ∆i [n(r, t)] + fi(r, t) (11)
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where fi(r, t) the additional force contribution to the lattice:

fi = ac
i

[

f · ci

c2
s

+
(uf + fu) :

(

cici − c2
s1

)

2c4
s

]

(12)

where f represents the force vector.
In order to simulate the hydrodynamics interactions between colloidal

particles, the Lattice-Boltzmann scheme should be modified to incorporate
these solid-fluid boundaries. Solid particles are defined by a boundary sur-
face that cuts some of the links between the lattice nodes, so the moving
fluid particles interact with the colloid. Therefore, a discrete representation
of the particle surface is obtained and becomes preciser as the particle gets
larger (Figure 3).

Figure 3: Definition of a colloid in a lattice: dots represent the lattice nodes
while squares determine the colloid boundary.

Lattice nodes on either side of the boundary surface are treated iden-
tically. This simplifies the technical procedure while leaving the physics
basically unaffected. Because of the relatively small volume inside each par-
ticle, the interior fluid quickly relaxes to a rigid-body movement. Generally,
the most suitable place to locate the solid nodes is the midpoint of the lat-
tice link. Consequently a semi-integer radius will be chosen for a colloid. In
our case, if the solid site belongs to a particle p that moves at speed Up and
angular speed Ωp, then its speed is:

up = Up + Ωp × (rb − R) (13)
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where rb = r − 1

2
ci is the location of the boundary node, and R is the

coordinate of the center of center of mass. This speed sets the evolution of
the populations that collide to the surface. As a result, a net momentum is
transferred between the fluid and the solid site. By summing over all points
belonging to the boundary, the total force and torque is computed.

In addition, our system need to be extended to simulate thermal fluc-
tuations to simulate the brownian motion that would develop a colloidal
particle. The best way of considering this phenomenon is by means of in-
corporating a random term into the momentum flux during the collisional
process. Details of this inclusion and further simulation details can be found
elsewhere [9].

2.2 Polymer-colloid coupling in the fluid

The former subsection contained all the relevant information concerning
to the LBM and nothing has been commented about how to include the
polymer. The polymer chain is modeled via a bead-spring model with an
equilibrium bond length b between neighbouring beads. In order to pre-
vent two consecutive beads from separating infinitely, a Finite Extendable
Nonlinear Elastic (FENE) potential was chosen:

VFENE = −1

2
kR2

0 ln

[

1 −
(

r

R0

)2
]

(14)

where k is the stiffness of the nonlinear spring, and R0 is the maximum
monomer distance that is allowed by this FENE potential. The spring stiff-
ness, k = akbT/b2, was chosen so that the fluctuations in bond length,
〈

(r − b)2
〉1/2

= b/
√

a, were substantially smaller than the radius of gyra-

tion of the chain, Rg. In polymer physics, this magnitude is a very conve-
nient way of expressing the size of the polymer because it can be directly
measured in experiments and is defined as follows:

R2
g =

1

2N2

N
∑

i=1

N
∑

j=1

(Ri − Rj)
2 (15)

where N is the number of monomers and Ri is the position of the monomer
number i. This magnitude is also equal to the square of the average distance
between the segments and the center of mass of the polymer:

R2
g =

1

N

N
∑

i=1

(Ri − RCM)2 (16)

where RCM represents the position of the center of mass:

RCM =
1

N

N
∑

j=1

Rj (17)
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if all the monomers possess the same mass. Similarly, the velocity of the
center of mass is just:

VCM =
1

N

N
∑

j=1

Vj (18)

It can be demonstrated quite easily that:

Rg =

√

N

6
b (19)

for an entropically governed polymer chain. This expression is useful to set
the inferior limit of Rg because for hydrodynamically governed polymers
this magnitude will increase for sure. Therefore, considering a = 30 is more
than in enough for our needs.

Continuing with the FENE potential, note that for small extensions it
becomes the expression corresponding of the harmonic potential. For our
practical purposes, the FENE force will be:

FFENE = − k(r − b)

1 −
(

r−b
R0

)2
(20)

because the equilibrium bond length, b, must be included. In the simulation,
it is very important to keep r − b < R0 because the force between beads
would become repulsive and this situation has no physical sense. Hence, the
maximum distance between monomers is rmax = R0 + b. In the great ma-
jority of our simulations, R0 = 4.0b is considered as a standard parameter.

In addition, in order to model the excluded volume effect and avoid
the monomer overlapping, a hard-sphere [18] excluded volume interaction
between the monomers was included, with a collision diameter b/2. Other
excluded volume interactions, like a Lennard-Jones or a soft-sphere potential
could be equally well used.

The equations of motion for the monomers are integrated using the Euler
method [19]:

Ri(t + dt) = Ri(t) + Vidt +
1

2

Fi

m
dt2 (21)

Vi(t + dt) = Vi(t) +
Fi

m
dt (22)

where i refers to bead i and dt is the time step of the integrator, which is
smaller than the lattice time step. Typically, dt = 1/10, 1/100 lattice time
steps. Since the beads are immersed in a fluid, the force should also include
the friction caused by the viscosity. This force is assumed to be proportional
to the difference in velocity between the bead, V, and the surrounding fluid,
u(r):

Ff = −ξ0 [V − u(r)] + Fr (23)
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where ξ0 is the bead viscosity coefficient and Fr is a random force introduced
to balance the additional dissipation caused by not using no-slip boundary
conditions on the bead surfaces. This force has a white noise behaviour:

〈

Fr(t)Fr(t
′)
〉

= 2kbTξ0δ(t − t′) (24)

The bead viscosity coefficient satisfies the Stokes’ law with radius b/4. Since
the monomers move continuously over the grid, while the velocity field is
evaluated at the grid points, an interpolation procedure is used to evaluate
u(r), employing the fluid velocities at the nodes of the cube that encloses
the monomer. After calculating the weights of these grid points, wi, the
density, ρi, and the momentum density, ρiui, the velocity field at the bead
location is:

u(r) =

∑

i wiρiui
∑

i wiρi
(25)

where the sums are over all the eight nodes that form the interpolation cube.
In order to conserve the total momentum, the force exerted by the monomer
on the fluid is distributed to the surrounding nodes with the same weight
function. Details of the polymer-fluid coupling can be found in the literature
[13-16].

Let us turn now to the question of how the polymer and the colloid
are coupled together. At some location on the surface of the colloid, there
is a fictitious point called the base. Between the base and the monomer,
the same interactions (FENE potential and hard-spheres) do occur with the
difference that the force and the induced torque are applied to the update of
the colloid. Last but not least, a hard-sphere interaction between the colloid
and the monomers is taken into account with a collision radius equal to the
sum of the colloid and the bead radii.

2.3 Dimensionless group

In fluid dynamics, the physicist is capable of discerning between different
fluid regimes using dimensionless numbers. In general terms, our problem
belongs to the same cathegory. Essentially, the colloid is advected or diffuses
in the media and then the polymer chain will stretch in the streamwise
direction or will change its configuration towards something similar to a
random coil. Thus, the first step should be focused on characterizing the
colloid. Basically, the colloid might have two trends: it can be advected or
diffuse in the fluid. As a matter of fact, the Peclet number,

Pe =
LV

D
(26)

relates the advection and the diffusion [20]. So, this dimensionless number
should be appropriate to identify different regimes associated to the colloid.
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In the previous expression, L is the length scale, V the characteristic velocity,
and D the diffusion coefficient. Indeed, a suitable choice is L ∼ R, V ∼
F/6πηR, and D = kbT/γ, where γ also comes from the Stokes’ law. The
Peclet number turns out to be:

Pe =
FR

kbT
(27)

For high Peclet numbers, the colloid experiences a net movement and drags
the polymer, then stretching the polymer in this process. Thus for high Pe
the colloid movement should govern the chain dynamics. However, in the
contrary scenario (low Pe), both the colloid and the monomers should move
randomly. Nevertheles, being in the advective regime (high Pe) may not be
enough because the velocity of this net tranport can be as fast or slow as
possible. The question is whether the advection is greater or smaller than
the thermal noise. The quocient between the colloid velocity (Stokes’ law):

Vc ∼
F

6πηR
(28)

and the thermal agitation (equipartition theorem in the force direction):

Vf ∼
√

kbT

m
(29)

where m ∼ 4

3
πR3ρ is the colloid mass defines the advective ratio:

A ∼ Vc

Vf
∼ 1

3
√

3π

F

η

√

Rρ

kbT
(30)

where ρ is the density and in all our simulations is set to the unity. Consider
a high Peclet number. For A ≫ 1, a strong advection is present, while for
A ≪ 1, the net tranport is very small and long times will be involved to see
any advective effect.

In rheology, a complex fluid is usually characterized by means of a di-
mensionless number called the Weissenberg number, We. This number is
defined as the ratio between the fluid and the polymer characteristic times
[21]. The Zimm time is the relaxation time of the polymer:

tZ ∼
ηR3

g

kbT
(31)

The Zimm time is obtained from the Zimm model, which assumes a polymer
immersed in a fluid using a bead-spring model with hydrodynamic interac-
tions. A major result from this model is Rg ∼ bNν , where ν is the polymer
scaling factor that may depend on the model. For instance, considering the
Zimm model in a bad and a good solvent gives ν ≃ 0.5 and ν ≃ 0.6, re-
spectively. What is really important is the fact that the Zimm time goes
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as the radius of gyration to the third power. For the fluid, there are two
characteristic times: the viscous time and the time related with the shear
induced by the colloid advection. The viscous time is defined:

tV ∼ R2ρ

η
(32)

whilst the other is the time that the colloid needs to travel the length scale
of the problem:

tS =
L

V
∼ 6πηR2

F
(33)

So, the Weissenberg number when the colloid diffuses would be:

We1 ∼ η2b3N3ν

ρkbTR2
(34)

but in the advective regime:

We2 ∼ Fb3N3ν

kbTR2
(35)

which can be expressed as a function of the Peclet number and the cubic
term of the ratio between the radius of gyration and the colloid radius:

We2 ∼ Pe
R3

g

R3
(36)

Since our simulations will belong to the advective regime, basically We2 will
be used all the time. As it has been commented, the critical exponent has a
different value depending on the situation. However, in all the calculations
some symmetry arguments are supposed and this assumption cannot be
considered any longer because the symmetry is broken with the attachment
of the colloid. Therefore, the prescribed values of ν are not valid a priori in
the advective regime and will be found later on. Considering the similarity
principle, it is expected that if two different simulations behave equivalently,
they should possess the same dimensionless group.

3 Results

Before entering deeply on the results analysis, let us show some results for a
specific case just to familiarize the reader with the major output. Figures 4-
7 display the time evolution of the intermonomeric distances (also including
the distance between the first monomer and the base), the radius of gyration,
the colloid velocity, and the velocity of the center of mass of the polymer for
the following simulation parameters: F = (0.0, 0.0,−0.1), b = 0.1, N = 20,
R0 = 4.0b, kbT = 2.13 · 10−7, k = 30.0kbT/b2, η = 0.8 for both fluid and
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monomers, Rc = 2.5−2.8, and dt = 0.01. The notation of the colloid radius,
Rc, includes first the real radius and then the effective hydrodynamic radius.
All the simulations have been done in lattices periodic in the three directions.
From now on, this set will be referred as the standard input parameters. For
the standard parameters, Pe ∼ 1.3 · 106 and A ∼ 50.
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j

t

Figure 4: For the standard parameters, time evolution of the distances be-
tween monomers measured in lattice spacings and lattice time steps.

Taking a careful look to Figure 4, the fact that the distances tend to
equilibrium in an orderly fashion is quite evident: first the distance between
the base and the first bead increses gradually, meanwhile the subsequent
beads follow the same tendency in a similar way. This behaviour can be
explained with simple arguments: the colloid is advected because of the
fluid forcing, thus starting to pull the first monomer and then the non-linear
springs propagate the stretching until reaching the edge. When the polymer
chain reaches a steady state, all the forces are balanced and the values of
the distances decrease monotonocally from the base to the free end. In this
state the colloid velocity and the velocity of the polymer center of mass are
practically the same.

Of course, the radius of gyration is intimateley related with the inter-
monomeric distances. Thus, this magnitude reaches also equilibrium at the
same point as the distances do, i.e. when the distance between the last two
monomers remains still (t ∼ 3500 in Figures 4-5). Moreover, it seems that
the smallest distances and the radius of gyration undergo some kind of os-
cillatations of period τ ∼ 500 in the steady state. Actually, this oscillation
is present in all the distances, but its amplitude is greater near the polymer
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Figure 5: For the standard parameters, time evolution of the radius of gy-
ration measured in lattice spacings and lattice time steps.

Figures 6 and 7 allows us to observe the so-mentioned oscillations more
clearly. In both cases, it seems that a well-defined periodicity of τ ∼ 500 ap-
pears recurrently. In addition, since both objects possess the same velocity,
it can be inferred that the polymer-colloid complex moves as a whole.

Let us talk about the velocities briefly. Obviously, the spanwise com-
ponents of the velocities fluctuate in time, thus providing no net movement
in the other coordinates. Concerning to the colloid case (Figure 6), firstly,
the colloid moves as a bare colloid, but after some time its velocity begins
to decrease until it reaches a new plateau corresponding to the stationary
state. Due to the interaction between the polymer and the colloid, the new
velocity is smaller in comparison with the bare colloid (∼ 10%). The poly-
mer is extended and exerts a significant force to the colloid, then reducing
its velocity. This statement is in perfect agreement with what was expected
because somehow the dimensions of the complex have increased substan-
tually. About the polymer (Figure 7), in the first stages it has a random
velocity (coming from the initialization process) that changes rapidly as the
drag caused by the colloid becomes important. As the polymer stretches, it
acquires the same velocity, as well as the same observed oscillations.

In order to unravel the nature of these oscillations and its effects on the
polymer chain, some simulations varying one of the parameters at a time
have been done. Among all the parameters, the most notorius variations
occur when changing the forcing F , the viscosity η, and the colloid radius
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Figure 6: For the standard parameters, temporal evolution of the colloid
velocity where the units of length and time are the lattice spacing and the
lattice time steps.

Rc. Since all these parameters belong to the colloid, it can be suggested that
the observed oscillations originate on the colloid and are transmitted to the
chain when it is extended. In fact, the oscillations are always observable
in the colloid velocity field (Figure 6), meanwhile they only appear on the
polymer when it is elongated (Figure 7), in other words, when the coupling
has manifested for sure. Moreover, the polymer configuration has been
monitorized considering standard input parameters for approximately two
periods (from t ∼ 4000 to t ∼ 5000) when it is elongated, and it seems that
the chain is more oriented to the streamwise direction when the velocity
is greater in modulus than when it reaches its maximum. This obervation
could be related with the cyclic motion that a grafted polymer suffers under
shear flow. In our case, the shear might be caused by the moving colloid
and the polymer probably would suffer some periodic motion with some
spatial reconfigurations. However, a deeper analysis should be done in that
direction to correlate what has been expressed with the real situation. This
feature represents another evidence of the coupling between them.

Let us now make some comments of a system with the standard param-
eters but without forcing, i. e. Pe = A = 0. The colloid and the center of
mass of the polymer velocity fields fluctuate, yielding approximately zero for
the mean velocity value. However, there seems to be a little advection for
the colloid. In addition, the radius of gyration starts from a non-equilibrium
conformation and decreases exponentially with a characteristic relaxation
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Figure 7: For the standard parameters, temporal evolution of the polymer
centre of mass velocity where the units of length and time are the lattice
spacing and the lattice time steps.

time. Curiously, in this case, the coil of the chain commences at the free
tail and extends towards the colloid direction. This behaviour is completely
the opposite of what happened in the case introduced in this section. The
advection that the colloid has been experiencing is likely to be caused by the
interaction with the first monomers because they possess a length greater
than b and the relaxation process takes a long time to reach the other side.
In the stationary state the polymer is coiled and both objects diffuse as free
objects because the bind is extremely weak. The low Peclet regime has not
been tackled exhaustiveley because the simulations need enormous amounts
of time. However, by keeping Pe ≪ 1 we are pretty sure that the dynamis
are alike to the Pe = 0 case. An interesting question that could be studied
in the future is the nature of the scaling of the radius of gyration in this
regime and its similarity with the normal diffussion of a single polymer.

As we have already seen in the beginning of this section, the system
dynamics in a high Peclet regime seems much richer. Figures 4-7 show the
main features of a simulating frame with high advection (A ∼ 50). At
least, two more regions can be defined: moderate and low advection. For
the moderate advective regime, the standard parameters are considered but
with Fz = −0.01, so Pe ∼ 1.3 · 105 and A ∼ 5. In this case, the results
are analogous with the only difference that more time is necessary to arrive
to the steady state and smaller extensions are obtained. Similarly, the low
advective case imposes the standard parameters with Fz = −0.001, thus
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resulting Pe ∼ 1.3 · 104 and A ∼ 0.5. Somehow, this case is something
between the low Peclet regime and the high-moderate trend. The monomer
on the free tail tends to diffuse normally because no remarkable stresses
are induced in the chain, meanwhile the nearest monomer to the colloid is
being weakly advected. At some point the steady state is reached and both
contributions balance. However, the polymer will be much less extended
than in the other advective regimes.
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Figure 8: In a high Peclet regime, scaled radius of gyration as a function
of N for A ∼ 50 (Fz = 0.1) and A ∼ 5 (Fz = 0.01) using the standard
parameters.

Now, we want to make a more profound study of the high and moderate
region because when the colloid is being advected notoriusly the polymer
is stretched and the coupling manifests remarkably. Figures 8 and 9 show
the dependance of the dimensionless radius of gyration and colloid steady
velocity with the number of monomers. The normalizing factor V0 is the
steady velocity from simulations with the bare colloid. In all the simulations,
the standard input parameters are taken with the only difference that A ∼
50, 5 correspond to Fz = 0.1, 0.01 respectively. From both plots, it is clear
that the radius of gyration increases with the number of monomers, as well as
the coupling between the colloid and the polymer becomes more important
because the velocity is reduced drastically with the increase of N . Of course,
when A ∼ 50 the radius of gyration is greater than A ∼ 5 because of the
greater drag. Unexpectedly, both of them follow a clear linear tendency
Rg ∝ N instead of a potential law Rg ∝ Nν with whom we are more used
to. Then, the critical exponent might be considered one. Respectively,

17



the slopes for A ∼ 50, 5 are a ≃ 1.445 ± 0.004, 1.387 ± 0.009, which are very
similar. The trend for the stationary collloid velocities is not so evident. The
one with the highest Peclet displays a linear trend meanwhile the other is
not so clear. A plausible explanation of this not-so-intuitive behaviour could
be provided by hydrodynamic reasons: for A ∼ 5, the complex interacts
more significantly with the surrounding fluid, so the viscosity affects more
than when A ∼ 50. Nevertheless, this question needs to be addressed more
rigorously.
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Figure 9: In a high Peclet regime, scaled colloid steady velocity as a function
of N for A ∼ 50 (Fz = 0.1) and A ∼ 5 (Fz = 0.01) using the standard
parameters.

A new question has been posed naturally because we have already seen
that two systems with identical Pe and A are able to behave differently
depending on the polymer parameters. To deal with this problem, the
Weissenberg number comes into play. This number may help us to dis-
cern between the extensional regimes, but does not answer whether is the
number of monomers or the the polymer length the important magnitude.
Further simulations in this line have been done and some interesting results
can be seen in Table 1.

The idea is to keep the total length approximately constant in an ex-
tended state for the polymer. In this state, most of the intermonomeric
distances nearly take the maximum value rmax ≃ R0 + b. Two variations of
the standard parameter values were considered where the product rmaxN =
constant: b = 0.1, N = 50 and b = 0.25, N = 20 for A ∼ 5, 50. Contrasting
the data for A ∼ 50, the stationary radius of gyraton and the velocities
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Pe A Fz b N Rg/b Vc/V0 We

∼ 1.3 · 105 ∼ 5 0.01 0.10 50 64.865 0.6608 ∼ 8.7 · 104

∼ 1.3 · 105 ∼ 5 0.01 0.25 20 68.973 0.7428 ∼ 1.0 · 105

∼ 1.3 · 106 ∼ 50 0.1 0.10 50 71.323 0.7699 ∼ 1.2 · 106

∼ 1.3 · 106 ∼ 50 0.1 0.25 20 71.750 0.7676 ∼ 1.2 · 106

Table 1: Some results based on variations of the polymer parameters, where
V0 is the colloid steady velocity considering simulations with the bare colloid.
The remaining parameters are the standard ones. The Weissenberg number
is computed using the obtained Rg.

are much more alike than for A ∼ 5. In fact for A ∼ 50, ∼ 0.6% for the
radius of gyration and ∼ 0.3% for the steady velocities. As a consequence,
considering the fact that both situations have the same properties the di-
mensionless group that governs the system ought to be almost the same.
For the other case (A ∼ 50), the radius of gyration and the steady velocities
differ approximately in a ∼ 6% and ∼ 12%, respectiveley. In any case, the
critical exponent of the Weissenberg number should be ν ≃ 1 and Rg ∼ bN
with a proportionality factor that may depend on each case. Therefore, the
Weissenberg number is computed with the radius of gyrations obtained from
the calculations.

In the advective regime, the Weissenberg number represents the ratio
between the time that the polymer needs to move a radius length versus
the necessary time for the polymer to relax. Hence, in the low We cases,
the polymer has more time to interact with the fluid as it does for higher
Weissenberg numbers. In the same way as before, some hydrodynamic in-
teractions may be more relevant at low We that can enhance the velocity
reduction and explain our observations. Nevertheless, whether this hypoth-
esis is valid or not to explain the large variations observed in the two cases
with A ∼ 5 is not so clear and should be tackled in future studies.

4 Conclusions

There is no doubt that our model couples the colloid and the polymer. On
the one hand, the polymer slowed down its velocity when the polymer began
the stretching. On the other hand, the polymer increases its size due to the
colloid drag, thus acquiring its steady velocity and their properties, such as
the so-mentioned oscillations.

Even though more accurate measurements are desirable for the observed
oscillations, it looks like they may be created in the colloid and then trans-
ferred to the polymer. In analogy with the case of a grafted polymer under
shear flow, all the necessary ingredients are present (a shear rate character-
istic of the flow and a polymer attached to a surface), so the system is a
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promising candidate to show similar features.
The symmetry breaking of the polymer chain is really a noteworthy

fact. Some preliminar calculations were carried out only with the polymer in
different confinements and forcings. When the polymer diffuses freely or in a
in a channel, the intermonomeric distances are the same in statistical terms.
When the polymers stretches due to some kind of forcing, the distances
adopt a symmetric trend respect to the middle point. All this characteristics
disappear when the colloid is included because the nearest monomer is the
most stretched, whilst the furthest is the least one. The search of the critical
exponents in the high and moderate advective regime has determined that
ν ≃ 1. Even at low Peclet numbers and low advective regimes, the diffusion
is not the usual. However, it would be of great interest to determine how
the criticality of the chain changes in the different regions and if possible,
determine ν(Pe,A,We).

About the results, it would be desirable to carry out more simulations
and try to characterize the advective and diffusive region more exhaustively
and determine completely how the radius of gyration and the steady veloc-
ities depend on Pe, A, and We, as well as which is their exact role. From
our brief study it seems that the the total length is the most relevant pa-
rameter in the polymer because by keeping this magnitude almost constant,
very similar results are recovered. It might be interesting to see the regions
where this premise is valid and how it might change.

Also, in order to get a better approach to the real system and avoid
possible finit-size effects, exploring the whole parameter space with systems
of greater dimensions would be of great asset, i.e. increasing the lattice size,
the colloid and the polymer size. Moreover, the same model could be used
to study other effects that shall be only present in confined geometries under
different kinds of forcing (Couette or Poisseuille) or colloids with more than
one polymer attached to it. Last but not least, further studies could try to
improve the simulation employing a more realistic biopolymer, like a worm-
like chain (WLC) model, and then try to compare with real observations.
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