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Nonlinear relaxation time and the detection of weak signals
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Laser systems can be used to detect very weak optical signals. The physical mechanism is the
dynamical process of the relaxation of a laser from an unstable state to a steady stable state. We
present an analysis of this process based on the study of the nonlinear relaxation time. Our analyti-
cal results are compared with numerical integration of the stochastic differential equations that

model this process.

Recently? it has been shown that very weak optical
signals, of the same order as the intrinsic noise level but
10® (dye lasers) times smaller than the steady-state inten-
sity of the laser, can be detected using the laser as a su-
pergenerative receiver. Solid lasers can detect much
weaker signals.! The explicit details of the detection pro-
cess are given in Ref. 1. Summarizing the main aspects,
the method starts with a preparation of the laser in a
steady state of zero intensity, then the pump parameter is
suddenly changed to a value that corresponds to a finite
steady intensity. Then the laser will evolve from an ini-
tial unstable state to its final stable state. This dynamical
process is very sensitive to internal fluctuations and to
the presence of a small external field, which we are in-
terested to detect. Repeating the experiments under the
same conditions and making statistics with the results,
one can detect clearly the effect of the external field.

Two methods have been proposed to detect these sig-
nals: the first one looks at the area under the time evolu-
tion of the mean output intensity' (Fig. 1), and the second
one looks at the mean-first-passage time (MFPT) of the
intensity."’? In this paper we will pay attention to the
first method. The second one has been studied in Ref. 2.

The experimental procedure works as follows. The
laser working as a supergenerative receiver is periodically
switched on and off. During an interval of time 7, the
laser relaxes from the initial intensity I,=0 to a value
very close to the final steady state I ;. Thus the value of
T. should be taken with care in order to ensure that the
laser intensity is very close to its steady state. In Fig. 1
one can see two evolutions of the mean output intensity
of the laser during this interval of time. The smaller area,
A, corresponds to the case of the absence of external
signals and the larger area, A4,, corresponds to the case of
their presence. The ratio of the area under the two
curves A,/ A, is called the receiver output. This is the
quantity we are interested in because it is very sensitive to
the presence of weak signals. Our purpose is to calculate
this quantity in order to see its dependence on the param-
eters of our system and, in particular, on the internal
fluctuations and the external field.

Our model of laser is the same as that of Ref. 1. The
equation of motion for the complex, scaled and dimen-
sionless laser field E is

dE _ FE

di ——kE+m+q(t)+keEe s (1)
where
(g*(t)q(t'))=2ed(t —1') . 2)

I=|EJ? is the laser intensity, q(¢) is a white noise
describing the internal fluctuations of intensity €, E, is
the external field or weak signal, and k, k,, 4, and F, are
other parameters of the model. They will take the follow-
ing values:! €=4X10"° s, k=1.2X10" s,
k,=6X10°s7!, 4 =2.6X10°s"!,and F=1.4X10"s™".
These values correspond to a dye laser pumped about
20% above threshold.

The nonlinear relaxation time (NLRT) associated with
the evolution of (I(z)) is defined by?
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FIG. 1. Time evolution of (I(¢)) during the interval of time
T.. A, is the area under the solid line (E,=0). A4, is the area
under the dashed line (E,70).
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This approximation makes sense if T, 21.5T, T, being
the NLRT in the absence of external field. In our calcu-
lations we will use 7,=7X 107 % s, as in Ref. 1(a). From
this equation the area A, can be expressed as

A, =T,[{1(0)) = (I ) ]+(I)T, . “)

The same expression applies for 4, as a function of T,.

As (I(0)) =0, we obtain for the receiver output
Ae_Te“Tc_ TO_Te
A, T,—T.

1+ T.—T, (5)

We see that the receiver output is a function of the
nonlinear relaxation times 7T, and T,. The theory of
NLRT has been presented in several papers.>~> In order
to avoid this straightforward but lengthy calculation we
will make use of a result of Ref. 4. It states that in the
decy of an unstable state the MFPT calculated using the
quasideterministic theory? and the NLRT for the same
process differs only by a constant that is equal to
1/[2(F —k)]. Then we have

1
T,=(t >QDT“

aF—m Al - (6)

The term ACy =7/[12(F —k)] comes from nonlinear
contributions calculated deterministically (e—0), and
(1 >QDT is calculated with linear terms only. Neverthe-
less, the presence of the external field E, makes the calcu-
lation a bit more difficult. Following the same procedure
as in Ref. 2 we consider the linear approximation to Eq.
(1), which, for the components of E, reads

i

7 =aE;+k,E,+q;(t), i=1,2 (7)
where a =F —k. The solution can be expressed as
E(t)=h,(t)e®, (8)

1 1

where h;(¢) will play the role of the initial condition, be-
cause for long times it becomes a Gaussian random vari-
able h;( 0 )=h;. The marginal probability corresponding
to the modulus # is then obtained

h

P(m="1,
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e (1/20)[h*+(c/a)"] 9)
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where ¢ =k,|E,|, 0=€e/a, and Iy(z) is the modified
Bessel function of zeroth order.®

The MFPT to get the final value I,=F(Fk)/kA is
evaluated from Eq. (7) by doing the following average
with the probability (9):
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FIG. 2. Receiver output A,/ A, vs the modulus of the exter-
nal field E,. The line corresponds to the theoretical result (12).
Squares are the numerical results of Ref. 1(a).
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where E(z) is the integral exponential function,® ¥ is the
Euler constant, a=(20)"!, and b =c?/a% (t), is the
MFPT in the absence of external field
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From all these results we get for the receiver output (5)
A E,(ba)ty+In(ba)

e
Ay 2a(T,.—Ty)

The variable ba is proportional to lEe|2/6; thus it
compares the intensity of the external signal with the in-
tensity of internal noise. In Fig. 2 we can check our
theoretical prediction (12) with the numerical data of
Ref. 1(a). The agreement is quite remarkable. As a con-
clusion we want to stress the following aspect. Our re-
sults manifest clearly that the NLRT technique can be
used to detect weak signals of the same order or even
smaller than the intensity of the internal (quantum) fluc-
tuations.
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