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The dynamical process through a marginal state (saddle point) driven by colored noise is studied.
For small correlation time of the noise, the mean first-passage time and its variance are calculated
using standard methods. When the correlation time of the noise is finite or large, an alternative ap-
proach, based on simple physical arguments, is proposed. It will allow us to study also the passage
times of an unstable state. The theoretical predictions are tested satisfactorily by the use of comput-

er simulations.

I. INTRODUCTION

The behavior of physical systems under the influence of
stochastic forces or noises has been a subject of study for
some time. Recently, the study of dynamical aspects of
this subject received special attention.! One of the stud-
ied dynamical aspects is the influence of the noise in the
relaxation process of a system from an initial state to the
final steady state. Different quantities can be used to de-
scribe this dynamics. One can look at the evolution of
the probability density of the dynamical variable of in-
terest, or its statistical moments and correlations, or at
the stochastic trajectory itself.

The first-passage time statistics associated with the tra-
jectory? and the nonlinear relaxation time® for the mo-
ments have been the most common tools used in the
study of relaxation dynamics. In this paper we will focus
on the mean first-passage time (MFPT) and its variance.

Although all relaxation processes can be studied by the
use of the MFPT technique, only a few of them have par-
ticular importance. They are the processes in which the
presence of noise creates different dynamics than the pure
deterministic motion. We are referring to the relaxation
processes from an initial unstable state,* % through a
marginal state (saddle point),” !2 or a barrier between
metastable states.”!> These three types of processes
occur only with fluctuations, and the dynamics would be
very different if fluctuations were not present.

The MFPT of these processes have been obtained for
the case of Gaussian white noise, which was possible be-
cause the stochastic theory of Markovian processes is
well established.? When the noise is Gaussian, but not
white, the stochastic process is not Markovian and only
approximate theoretical schemes can be used.’”%!® Nev-
ertheless the dominant mechanisms for the decay of un-
stable states’”® and for barrier-crossing processes' are
now well understood even for colored noise, i.e.,
nonwhite. The characteristic time scales of the relaxation
through a marginal point are also known but only for the

43

case of white noise.” 12 The aim of this paper is to study
this last process when the noise is colored. In particular,
we obtain the MFPT and its variance. The accuracy of
theoretical results are tested by computer simulations.
The dominant mechanism of the dynamics is also ex-
plained. Our approximate procedure will be also useful
in the study of some aspects of the relaxation of an unsta-
ble state not considered in previous works.> 8

The sections of this paper have been organized as fol-
lows. In Sec. II we introduce the explicit models we are
interested in, the relevant dynamical parameters, and the
mathematical techniques we will use. In Sec. IIT we ob-
tain the MFPT and its variance for the relaxation process
through a marginal state driven by Gaussian colored
noise with small correlation time. A qualitative argu-
ment is presented in Sec. IV, which allows us to study the
MFPT for unstable and marginal states when the colored
noise has a large correlation time. In Sec. V we present
some conclusions.

II. MODELS AND TECHNIQUES

A typical example of crossing through a saddle-point
bifurcation appears in optical bistability. In this case the
output intensity g of the laser obeys the following dynam-
ical equation:!*

. 2cq _ :

g=y—q T4q? +£&(2) d(g)+E&(t),
where y is the input intensity and &(¢) is the noise. The
potential ¢(q) associated with this model has an inflection
point at g, =[c —1—(c?—4c)!/?]'/2 if ¢ >4. The pro-
cess of switching on corresponds to changing the value of
the control parameter y from zero to a value above the
threshold y,, =g,, +2c¢q,, /(1+g2%). For this value, the
inflection point has a horizontal slope, and corresponds
to a marginal or saddle-node state. The system starts in
g=0, passes through the marginal point g,, due to the

(2.1)
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presence of noise, and reaches its stable state at

90=29,, /(qy, — 1.

There are two different regimes in this evolution. Out-
side the marginal zone the dynamics is essentially deter-
ministic, and the noise plays a secondary role. However,
near the marginal point the potential is very flat, and
then the dynamics is dominated by the noise. This im-
plies that the almost entire action of the noise over the
systems will take place there. Then, in order to study the
influence of the noise, we will only need few terms of the
potential expansion around this marginal point:

Gg=—¢(q)+E&)

=B+alqg—q,)"+0((g—g,)" TH+E{) (2.2)

which governs the dynamics in its vicinity. The point
q=gq,, is the marginal point of the system when the con-
trol parameter 3 is equal to zero. For the model de-
scribed by Eq. (2.1), B=y —y,,, the potential is a cubic
power in the variable x =q —gq,, and, therefore, n=2.
Different systems will have the same expansion (2.2) and
then will be affected by the noise in the same way. The
difference between them can be evaluated from the
analysis of their deterministic equations, without consid-
ering the presence of noise, as it is explained in Ref. 12.
Thus, we only need to use the simplest model which is
given, for n=2, by the potential
a

¢(x)=——x3—/3x, a>0.

(2.3)
3

_rYF 1 X1
<T>_fx0 o D (x{)Ps(x;) f_wdszs(xz) ’

* 1 Xy 1
AT?= [ “dx, — > . r
arr=J x‘D(x,)Ps(xnfwd"zp(xzwxz)

where P,(x) and D (x) are defined by

P (x)= exp —fxdy%—g%

>

D(x)

(2.8)
D(x)=D(1—71¢"(x)) .

This quasi-Markovian approximation makes sense if
the initial x, and final x5 values of x are far away from
the marginal point, and then the non-Markovian tran-
sient effects are not important. Note also that the system
defined in (2.3) has no steady state, and the function P (x)
has, in general, no physical meaning. If it would have a
steady state (for instance, putting a reflecting barrier to
prevent particles to go out to infinity), P;(x) would be the
stationary probability density in this approximation.

Two important quantities can be constructed with the
parameters a and D that will be useful to obtain some ad-
ditional physical information (we will turn to that point
in Sec. III). The first one is (D /a)!/"*1; it has dimen-
sions of the variable x and denotes the size of the region
near the marginal point in which the dynamics is dom-

f_2 dX3Ps(X3)f*3 dX4PS(X4) )

Models defined by Egs. (2.2) and (2.3) have already
been analyzed for £(1) being white noise.” 2 Our aim
here is to consider a Gaussian colored noise, the
Ornstein-Uhlenbeck noise, which has a correlation func-
tion

(EEr)> =Lexp— 1=t
T T

(2.4)
where D is the intensity and 7 the correlation time of the
noise. Now the process x (#) is non-Markovian and no
precise theoretical scheme for solving this problem exists.
The best known approximation to treat this non-
Markovian problem starts from the deduction of an
effective Fokker-Planck equation for the probability den-
sity P(x,¢) valid up to order 7 and where transient terms
are neglected:” !> 16

d 9 ,,
atP(x’t)—_8x¢(x)P(x’t)
82
+——5D(1—=7¢"(x))P(x,1) . (2.5)
dx

This is equivalent to consider the case of a Gaussian
white noise but with a renormalization of the diffusion
coefficient D, which becomes a variable-dependent quan-
tity. In this approximation, the MFPT, { T'), for the sys-
tem starting from x, and reaching x, and its variance
AT?=(T?)—{T)? are given, using general formulas of
white noise!®™ 12 by

(2.6)

(2.7)

inated by the

noise. The other quantity is
2pn—1y—1/(n+1)
(a“D ) .

It has dimensions of time and is pro-
portional to Ty, the MFPT from — o to + o for the sys-
tem defined in Eq. (2.2), with =0 in the white-noise lim-
it.'° In the particular case of Eq. (2.3), that is n=2, the
value of T, is'!"!?

To=(T(B=0,7=0))=[[(1)]*3Da®)"'?. (2.9)
where I" denotes the gamma function.

For B> 0, there exists another relevant time scale. It is
the deterministic time, T4, that the system uses to go
from x=0 to x = o, driven by the only action of the po-
tential ¢(x). This time scale is proportional to
(aB”~')~!/", which is obtained from the definition

(g ]
Tdet—fo dx— oy - (2.10)

Therefore Eq. (2.2) can be made dimensionless by the
change
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—1/(n+1)
x'=|= (q_qm)’ t1=(a2Dn"l)1/(n+l)t
a
(2.11)
with the result
%Zx’"-#k '), (2.12)
t

where 7(t’) is a colored noise of unit intensity and scaled
correlation time 7', and 7’ and k are given as

T/:(aZDn‘l)l/(n-Fl)T, kz(aDn)—l/(n-i-l)B . (2.13)

The parameter k is proportional to (To /T4 )" " ~V. It

gives information on how far the system is from pure
marginality by comparing two different characteristic
times. These two parameters k and 7' are the only
relevant ones in this problem, and any quantity should
depend only on them through the changes given by Egs.
(2.11).

N T

A=2f_+°°dxlfj1 dxzfj:dx3fj;dx4[exp—[§(x?+

X[(x$+x5—x

In Figs. 1, 2(a), and 2(b) these results are compared
with the ones obtained from numerical simulation
methods!® of the system defined by Eq. (2.3). The depen-
dence on the parameter k, Fig. 1, is fairly good, mainly in
the small-7' regime, where the expansions (3.1) and (3.4)
would become more appropriate.

In the pure marginal case (k=0) these integrals can be
evaluated

T,=3"'7[1(1H)]?, 3.7
T,=273"17%, (3.8)
AT =37 [I(1)]?, (3.9)
A=19.151... . (3.10)

In this case, n=2, the dependence of T and AT on the
correlation time of the noise has been also obtained from
digital simulations of both of the systems defined through
Egs. (2.1) and (2.3) (with y =y,, and B=0 respectively,
and for different intensities of the noise), and the results
can be seen in Figs. 2(a) and 2(b). They confirm the
dependence of the dynamical quantities scaled by Eq.
(2.3) on the scaled correlation time 7'; this dependence
being the same for different physical systems. This is a

III. MFPT FOR SMALL CORRELATION TIME
OF THE NOISE

We now apply Egs. (2.5) and (2.6) to the system defined
by Eq. (2.3). Making an expansion in powers of 7/, we ob-
tain the following expression for the MFPT correspond-
ing to the evolution from xy= — o to x = oo:

(@?D)V/N(T)=Ty+T,7+0(7?), 3.1
where

To=n'" [ “dx x = exp— (x> +kx) , (3.2)

T1=7r”2f0wdxx'/zexp—-(%x3+kx) . (3.3)

In a similar way, the standard deviation is, up to first or-
der in 7'

1 . ,
(a’D)'PAT=ATy+ 2
ot AT0T+O(T ), (3.4)
where
x3+x3—x3—x})tk(x;+x,—x;—x,)], (3.5)
x3—x3—x3)+k(x;+x,—x3—x4)]1}
—x$)+2k(x3+x3—x3—x3)—d(x;+x,)] . (3.6)

100

80

60

<T>

40

20

97

|
-0.5 0.0 0.5 1.0 1.5

-1.0

FIG. 1. {(T) vs k. Symbols are simulation results of the sys-
tem defined by Eq. (2.3) with a=3 and D=1 (circles, 7=0.01;
squares, 7=0.1; triangles, 7=0.5; lozenges, 7=1). Solid lines,
analytic results from Egs. (3.1)-(3.3).
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clear manifestation of the universal behavior near the
marginal point. On the other hand, the MFPT and its
variance are correctly given by Egs. (3.1) and (3.4) with
(3.7)—(3.10) in the small-7 region for both of the systems
simulated. Moreover, a physical argument can be in-
voked to extend these results to finite values of 7, which is
presented in the following section.
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FIG. 2. (a) Scaled MFPT vs 7. Dashed lines are the theoreti-
cal results of Egs. (3.1), (3.7), and (3.8); solid lines are the numer-
ical solution of Eq. (4.16). (b) Scaled standard deviation vs 7'.
Dashed lines are the theoretical results of Eq. (3.4), (3.9), and
(3.10). Symbols are simulation results of the system defined by
Eq. (2.1) with ¢=20 (+D=0.01 and XD=0.1) and the system
defined by Eq. (2.3) with a=3 and B=0 (circles, D=0.01;
squares, D=0.1; and triangles, D=1).

IV. MFPT FOR LARGE CORRELATION TIME
OF THE NOISE

Let us start first from the standard linear model for the
decay of an unstable system® ™%

X(t)=x(t)+&(1), (4.1)

where the variable x is placed at x=0 in t=0, and £(¢) is
the Ornstein-Uhlenbeck noise (2.4). For such a system,
the evolution of the second moment of x is calculated ex-
actly for all values of D and 7’

D 2 D T
~—2—+2p
1+7° 1— 72

1—7
The mean time 7T that the system takes to leave a re-
gion of size R should be related to the time needed by the
distribution of x to reach a width proportional to R

(x?),=aR*.

<x2>t= e“(l*r)t/f'

4.2)

(4.3)

The proportionality constant « is obtained by imposing
that Eq. (4.2) has as a solution, in the double limit 7=0
and D < <R?, the MFPT corresponding to the weak
white-noise case, which can be obtained from Eq. (2.6).
This MFPT is

R2

1
:O _
T(r7=0) 2ln 3

+121+1n2+0(D/R2). (4.4)

In this way, the value

a=2e? 4.5)

is found where y denotes the Euler constant. Then, Eq.
(4.2) transforms into

1

T —(1=nT/r— 2R?
1+7

1—72 D
In the limit D <<R?, one can get as a byproduct the

known result obtained from the quasideterministic theory
(QDT) (Refs. 6 and 7).

R
1=

eV . (4.6)

R? Y
TQDTZ%lnE+~+In2+§In(1+T) . 4.7)

2
Note that the substitution of Topy into the left-hand side
of Eq. (4.6) gives three terms of orders 1, 0, and
(r—1)/27 in R2/D, respectively, and thus the first one is
dominant in that limit. In Fig. 3 both results are com-
pared. They are equivalent for weak noise (D /R?<<1),
but the numerical solution of Eq. (4.6) also describes the
nonweak noise situation.

For the marginal case it is impossible to find a closed
equation for the evolution of {x?). Instead, we can re-
late this problem to the evolution of a system with a con-
stant potential, that is to say, free diffusion. Let us con-
sider the system defined by Eq. (2.2) with =0

x=ax"+E&(1), (4.8)
where n > 1. The dynamics outside of the marginal zone
is essentially deterministic, but the noise dominates in the
mentioned region of size L «(D/a)'/"*1. Let us as-
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25

FIG. 3. MFPT vs 7 for the unstable system (4.1) with D=1.
Symbols are simulation results (squares, R =20; circles, R=0.5).
The dashed line represents Eq. (4.7) (QDT theory). Solid lines
are the numerical solution of Eq. (4.6). The differences between
both results are indistinguishable for R =20.

sume that the evolution inside this region is free

x=£&@t), |x|=L . 4.9)
In this case, the width of the distribution is given by
(x2),=2D(t —7(1—e~ V7)) . (4.10)

A similar argument that the one applied to the unsta-
ble system holds here. The MFPT for Eq. (4.8) is as-
sumed to be proportional to time ¢ that {x2) becomes L2
in the free system (4.9). This implies
‘2/(n +1)

(x2), < | = , t=uT, (4.11)

where p denotes the appropriate proportionality con-
stant. Equaling Egs. (4.10) and (4.11) we obtain

'LLT__T(I_e*,u,T/T)OC(GZDnﬂl)—l/(n+1)’ (4.12)

where we notice that the last expression is proportional
to the white-noise time T,. Then we introduce a new
constant v

uT —7(1—e HT/T)=yT, . (4.13)

Now both constants u and v can be determined by the
same procedure that was applied to determine the con-
stant a of Eq. (4.3). Thus, we impose that for small 7 the
solution of the transcendental Eq. (4.13) is of the form

T=T,+7T,+0(?). (4.14)

Introducing this expression into Eq. (4.13) and develop-
ing it up to first order on 7, we obtain

= = — . 4.
u=v T, (4.15)
Then Eq. (4.13) yields
T—T,=7T, |1—ex S (4.16)
0 1 p T, .

This expression gives the passage time for the system
(4.8), provided the constants T,,7; are known. These
two quantities can be calculated by the standard methods
of Sec. III.

A problem arises in this argument if » is even, which
corresponds to an asymmetric potential. In that case, a
system that exits from the marginal zone by its left side
crossing x = —L is forced by the deterministic potential
to turn back, and it really does not exit until it reaches
x =-+L. This effect becomes important when the corre-
lation time of the noise goes to infinity. In this limit, the
noise is almost constant, and the system has to wait a
time of order of 7 to let the noise reach a positive value,
which is necessary to cross the marginal point x=0. This
linear dependence in the 7 contribution to the MFPT
hides the time given by Eq. (4.16), which is asymptotical-
ly proportional to 7!/2 in this limit.

For n=2, T, and T, are given by Egs. (3.7) and (3.8).
In Fig. 2(a) the prediction of Eq. (4.16) is compared with
the simulation results of the both systems (2.1) and (2.3),
presenting a perfect agreement up to values of 7’ as large
as 10. Above that value, a linear dependence on 7' is ob-
served, as we have commented.

V. CONCLUSIONS

We have presented an approximate theoretical scheme
to calculate the dominant contributions of the colored
noise on the first moments of the passage time for a relax-
ation process through a marginal point. This has been
possible due to the fact that Markovian formulas can be
used to obtain the non-Markovian effects coming from a
time-independent Fokker-Planck approximation [Eq.
(2.5)]. These effects are dominant in this system. Other
non-Markovian effects come from the transient dynamics
at the boundaries, but they are now irrelevant because
they are masked by the deterministic motion.

The simple idea of substituting the real process by free
diffusion in a finite interval is also profitable for large
values of 7. The computer simulations have confirmed
the suitability of the approximations in a wide range of
the parameters. Hence we conclude that the very simple
approximations presented in this paper have retained the
essential physics of the dynamical process through a sad-
dle or marginal point. They could be profitable in the
study of a real system like optical bistability in lasers.!*
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