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Intensity correlation function of dye lasers: Short-time behavior
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We propose an equation to calculate the intensity correlation function of a dye-laser model with a
pump parameter subject to finite-bandwidth fluctuations. The equation is valid, in the weak-noise
limit, for all times. It incorporates novel non-Markovian features. Results are given for the short-
time behavior of the correlation function. It exhibits a characteristic initial plateau. Our findings
are supported by a numerical simulation of the model.

Experimental results of Kaminishi et al.! show that the
statistical properties of light from a dye laser close to its
instability point cannot be explained in terms of the usual
single-mode laser on resonance. It has been suggested that
such anomalous fluctuation phenomenon is due to the ex-
istence of stochastic fluctuations of the pump parame-
ter.!~7 From this point of view dye lasers constitute an
interesting example of the effects of external noise.® A
model with Gaussian white-noise fluctuations of the
pump parameter was used to describe the statistical prop-
erties very close to threshold.> Later experiments® have
shown that this model needs some modification when
moving away from the immediate vicinity of the instabili-
ty point. Short et al.3 attributed the discrepancy to the
white-noise assumption for the pump parameter fluctua-
tions. Following this suggestion, Dixit and Sahni* have
introduced a model in which the correlation time of the
pump parameter fluctuations is taken into account replac-
ing the Gaussian white noise by an Ornstein-Uhlenbeck
noise. A numerical simulation of this model* seems to
give a fair agreement with the experimental results. A
more microscopic approach to the problem of a single-
mode laser pumped by a stochastic field has been present-
ed recently by Fox et al.> Here we are concerned with the
phenomenological model introduced by Dixit and Sahni.*
The intensity stationary moments of this model have been
calculated analytically®” from a Fokker-Planck equation
for the probability density derived under a weak-noise as-
sumption.” The intensity stationary distribution has been
calculated for an arbitrary strength of the noise by a ma-
trix continued-fraction technique.!® An analytical calcu-
lation of the long-time behavior of the intensity steady-
state correlation function has also been reported.” The
purpose of this paper is to present a calculation of the
short-time behavior of such a correlation function. It is
precisely in the initial time decay where a white-noise
model fails to give acceptable results.*®? Our calculation
is based in the equation satisfied by the joint probability
density at different times of a non-Markovian process.!!
This equation is valid for all times. The dynamical non-
Markovian features that it incorporates become important
at initial times.!!~!3 The equation for the correlation
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function is solved for early times by a decoupling ansatz.
The correlation function shows a peculiar slow initial de-
cay characteristic of a non-white-noise model. We have
carried out a numerical simulation of the model which
substantiates the existence of an initial plateau in the
correlation function. Our results are shown to be more
consistent with the experimental ones than those obtained
under white-noise assumptions. However, the validity of
the model remains an open question because the available
experimental data® do not seem to exhibit the initial pla-
teau implied by the model. A more careful experimental
analysis would be necessary to check the detailed features
of this model.

The deterministic model which describes a single-mode
laser operating on resonance is'*

d o= 2

de @k —-pB|E |’E, (1)
where E(7) is the complex field amplitude, and & is the
pump parameter. We assume that & takes random values
around a real mean value &, @=&y+ (7). The complex
fluctuations 7(7)=n(7)+iny(7) are modeled by an
Ornstein-Uhlenbeck process*®”%10 with zero mean value
and correlation function

(*@m@"))=(D/F)exp(— |T—T"| /7). ()

D is the noise intensity and 7 its correlation time. The
white-noise limit is obtained taking the limit 7—0 with D
fixed. The variable of interest in the problem is the inten-
sity of the field |E |2 Defining new variables by
I=(B/D)|E |% t=2D%, a=&,/D, £=(1/D)y,, r=2D7,
we obtain the following stochastic differential equation
for the intensity of the field I:

d 2
S I=al —I’+I¢, (3)
where £(f) is a real Ornstein-Uhlenbeck process with
correlation time 7 and unit noise intensity. The two di-
mensionless parameters left in the theory are « and 7.

We wish to calculate the intensity stationary correlation
function defined by
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(HSI(0)y=lim (It +) (1) . @

Owing to the non-Markovian character of the process
1(2) defined by (3), the correlation function {(I(s)I(0)),,
cannot be calculated from the long-time limit of the equa-
tion satisfied by the probability density of the process
P(1,t): In order to calculate non-Markovian correlations
at different times it is also necessary to know the joint
probability distribution P(I,t +s;I',2). 1,12 The equations
satisfied by P(I,t) and P(I,t +s;I',t) in the steady state,
reached as t— oo, have been derived in a general case in
Refs. 9 and 11, respectively, under the weak-noise as-
sumption (D <<@&,) and for arbitrary values of 7. In the
case of the process defined by (3) we have, neglecting tran-
sients,

%p(z,n:UT)p(I,z) , )
3 .
gPst(Lt +s;1',t)
= LM texp(—s /213 (' —rpI'?)
aI~ ar R
X Py (It +s;I't) , (6)

where the Fokker-Planck operator L (7) is defined by
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d 2 d ., 0 2
L(T)=~—-~—aI(aI~—I )+-—aII——aI(I—TRI) 7)
and

T
T l47a

TR (8)
Equation (6) has to be solved with the initial conditions at
s =0,

P (Lt;I',t)=8(I —I')Pgy(I) , )

where P (I) is the stationary solution of (5).

The time-independent properties of the steady state like
the moments (I"), are modified with respect to their
values in the white-noise limit due to the = dependence of
L (1) in (5).

The basic feature of the non-Markovian dynamics is the
fact that the time evolution of Pg(I,t +s,I',t) is not com-
pletely determined by the operator L (7): There exists a
second term in the right-hand side (rhs) of (6) which is
particularly important for small values of s. The 7 depen-
dence of the Fokker-Planck operator L (7) and the ex-
istence of a second term in the rhs of (6) are also the two
sources of modifications of the stationary correlation
function with respect to the white-noise limit. From Eq.
(6) the equation satisfied by (I(s)I(0)) is immediately
obtained:

%(I(S)I(O))St=(a+ DI (I (0) ) — (1475 ){TH$)(0) ) +exp( —s /T[T ()I(0)) o —Tr {T (s)I*(0) )] - (10)

The last term in (10) comes from the last term in (6).
Equation (10) has to be solved with initial conditions at
s =0 given by Pg(I).

Before facing the problem of solving (10) we wish to
comment on other attempts of calculating (I(s)I(0)).
We first note that the last term in (10) is negligible for
s— . Nevertheless, the long-time behavior of
(I(s)I(0)) depends on the existence of this term
through the short-time behavior of (I(s)I(0)). Thisis a
clear non-Markovian effect. It is physically obvious that
such an effect can be taken into account in the calculation
of the long-time behavior of (I(s)I(0)), neglecting the
term proportional to e ~*/7 in (10) and solving it with an
effective initial condition at a time s =sy >>7. The effec-
tive initial condition replaces the effect of the short-time
processes in the long-time behavior. This attitude has
been adopted by Haake and Lewenstein'® in the context of
the adiabatic elimination of variables. In this context usu-
ally one is only interested in a description in a coarse-
grained time scale. These authors have coined the term
“initial slip” to describe the change in initial conditions.
From a similar point of view Schenzle and Graham’ have
calculated the long-time behavior of (I(s)I(0)). In fact,
their equation for the conditional probability density is
our Eq. (5) supplemented with effective initial conditions.

Equation (10) is an adequate starting point to study the

evolution of {I(s)I(0)) for all times. The time domain
s << 8 is also of interest in an external noise problem with
moderate values of 7. It is not trivial to obtain a solution
of (10) due to the nonlinearities of the problem.”° A solu-
tion which takes fully into account the nonlinearities ex-
ists in the white-noise limit.> The nonlinearities are also
crucial in the understanding of the long-time behavior in
the non-Markovian case.” Here we argue that the initial
decay can be described using a linearizing decoupling an-
satz due to Stratonovich.!® Assuming only weak fluctua-
tions around the macroscopic stationary state, the sim-
plest linearization scheme consists in approximating the
solution of Eq. (3) by I =a+1I,, where I, satisfies the
linear equation

1= —al, +ak(0) .

This approximation is obtained in the lowest order of a
systematic perturbation expansion in powers of a~!
around I =a. Linear processes driven by an Ornstein-
Uhlenbeck noise £(z) can be solved exactly.!? In this
linear approximation the normalized correlation function
A(s) defined by

(I(I(0))ge—(I)2
A_ —1
(s) (I)gt

(1n

becomes
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FIG. 1. Intensity correlation function A(s). (a) a=0.7, (b)
a=1.13. 0O, integral of (14); *, numerical simulations; X,
linear approximation Eq. (12).

(1—2TRa)
(1+427g)

__la+1)
(1427R)

d
g(I(S)I(O))st=

The ansatz (13) is an identity for s =0. The ansatz corre-
sponds to linearize the dynamics but making no approxi-
mation on the values of the time-independent moments
(I")g. Tt has been shown in general'® that this decou-
pling ansatz corresponds, in the white-noise limit, to the
zeroth-order approximation of a continued-fraction ex-
pansion method!” in which the exact values of the station-

1.25 - A(S)

0.75

FIG. 2. Intensity correlation function for A(0)=0.95. Solid
line, integral of (14) with a=0.7; circles, experimental data
from Ref. 3; ----- , white-noise theory with a=A(0)"!=1.05;
— — —, white-noise theory with a=0.82.

exp(—s/7) [{I()I(0)) g+
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1

M) =T ani—an

[a~Yexp(—as)—Texp(—s/7)] .

(12)

Stratonovich’s ansatz'® leads to a linearization of Eq. (10)
that goes beyond the simple linear model that we have just
discussed. The basic idea is to express the nonlinear
correlations (I™(s)I™(0));, by linear functions of
(I(5)I(0))g. The decoupling ansatz is written as

(I"™0)) e — I {T™ Dt
<[n+m>st___ (In>st<1m)st

(I()(0))y—(I)2
<12)st'—‘ (I)gt

(13)

With this approximation, (10) becomes a linear equation
for (I(s)I(0))g:

(I3

(t2rg) (H7ll+ep(=s/Dl}. (4

[

ary moments are used. This method has been successfully
used to calculate the linewidth of the standard model of a
single-mode laser.!” Such an-approximation is known to
give good results for the initial decay and sufficiently
large values of a (weak noise). In a simple perturbation
scheme in powers of a~!, statics and dynamics are ap-
proximated simultaneously in a given order in a~!. Using
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FIG. 3. Intensity correlation function for A(0)=0.54. Solid
line, integral of (14) with a=1.13; circles, experimental data
from Ref. 3; ----- , white-noise theory with a=A(0)"'=1.84;
— — —, white-noise theory with a=1.3.
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the ansatz (13), nonlinearities are in principle fully taken
into account in the static quantities that enter in (14). As
a consequence, the solution of (14) is expected to be reli-
able for moderate values of a for which a simple linear
model cannot be used. The values of (I)y and (I%)
which appear in (11), (14), and the initial condition of (14)
are calculated from the stationary solution of (5). We
have®’

T(n +a)(rg "

"y — ) 15
s C(a)T(n +75 ") s
In particular
1) — (1)}
-S—>~t—2(——>—i=7L(0)=oz‘1[1+1'(1+oz)]_1 (16)
(I)g
so that
_ —1]|_2
a=[AM0)] 147
4 127—1
1+ |1+ —"—[M0)]! . 17
o o T

This equation relates the two parameters of the theory
with the experimental value A(0).

In Fig. 1 we compare the normalized correlation func-
tion A(s) obtained from (14) with the result (12) of the
linear model and also with a numerical simulation of Eq.
(3).!® We compare the three results for the same values of
the two parameters of the model, « and 7. We take
7=0.3 (Ref. 7) and a given by (17) with experimental
values of A(0) from Short et al.>'® As expected, the
linear model and our approximation become better for

|
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larger a and our approximation is still reasonable for
moderate a. The main discrepancies between the simula-
tion and our approximation can be traced back to the dif-
ferent values of A(0) for the same a and 7. This is not a
deficiency of the ansatz (13). It rather measures the accu-
racy of the weak-noise approximate stationary solution
(15), used to determine A(0O) through (16). Correcting for
the shift in the initial value A(0), our approximation gives
good results during a few correlation times of the noise.
The most remarkable feature of A(s) is the existence of a
slow initial decay in which A(s) shows a peculiar plateau.

Once we have discussed the validity of our calculation
of A(s), we compare our results with experimental data in
Figs. 2 and 3. Our results are given in dimensionless time
and the comparison is made choosing D =0.2.2~% Our
results are consistent with the experimental data in the in-
itial decay. However, the data extracted from Ref. 3 do
not seem to exhibit an initial plateau. In the same time
interval of a few correlation times, there exist important
discrepancies of the experimental data with results given
by white-noise models: in Figs. 2 and 3 we also include
the results of two white-noise models with the same
D =0.2. In the first model @=A"1(0) as given by a con-
sistent white-noise theory.”> In the second model a is
chosen to fit the long-time behavior.*” Our results for the
Ornstein-Uhlenbeck noise model start at the correct value
of A(0) and interpolate between the two white-noise
models.
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