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Different microscopic models exhibiting self-organized criticality are studied numerically and ana-
lytically. Numerical simulations are performed to compute critical exponents, mainly the dynamical
exponent, and to check universality classes. We find that various models lead to the same exponent,
but this universality class is sensitive to disorder. From the dynamic microscopic rules we obtain
continuum equations with different sources of noise, which we call internal and external. Different
correlations of the noise give rise to different critical behavior. A model for external noise is proposed
that makes the upper critical dimensionality equal to 4 and leads to the possible existence of a phase
transition above d = 4. Limitations of the approach of these models by a simple nonlinear equation

are discussed.
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I. INTRODUCTION

In the past few years a lot of attention has been paid to
the phenomenon known as self-organized criticality. Bak,
Tang, and Wiesenfeld [1] studied a cellular automaton
model as a paradigm for the explanation of two widely
occurring phenomena in nature: 1/f noise and fractal
structures. 1/f noise has its origin in the superposition
of a wide range of time scales, whereas fractals are linked
to spatial self-similarity. Both have in common a lack of
characteristic scales. This scale invariance suggests that
the system is critical in analogy with classical equilibrium
critical phenomena, but in self-organized criticality one
deals with dynamical nonequilibrium statistical proper-
ties. On the other hand, the system evolves naturally to
the critical state without any tuning of external param-
eters.

Different aspects of self-organized criticality have been
studied: extensive numerical simulations for discrete and
continuous models, scaling laws satisfied by the criti-
cal exponents, mean-field theory, coarse-grained versions
satisfying symmetry rules to obtain critical exponents by
means of the dynamic renormalization group, results for
exactly solvable models, experimental values for a rich
variety of systems, and applications to earthquakes (for
a complete list, see, for instance, Ref. [2]).

In this paper we are interested in two of the aspects
outlined above: numerical simulations and the analytical
description by a nonlinear equation. Numerical simula-
tions are performed on lattices with a continuously dis-
tributed variable; this model was introduced by Zhang [3]
and has been used by other authors [4-6]. This model is
expected to be in the same universality class as the origi-
nal sandpile model [1]. We want to check the universality
classes of the Zhang model by changing the microscopic
rules to see under which circumstances the macroscopic
behavior (dynamical exponent) is modified, including the
effect of disorder.

From the dynamical rules one can obtain a coarse-
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grained version where the microscopic parameters en-
ter the transport coefficients. Different models then give
rise to different macroscopic equations. From these non-
linear equations containing the threshold condition one
usually builds up simple nonlinear equations that retain
the underlying symmetries and conservation laws as well
as the characteristics of the noise sources. Our aim here
is to analyze the simplest nonlinear equations obtained
from different microscopic rules and to compare these
results with the numerical simulations. The models we
have studied have different symmetries than the mod-
els treated in other similar approaches [7-11] and, hence,
different long-time and large-scale behavior is expected.

The outline of the papers is as follows. In Sec. II we
describe the original model and introduce a model with
an additional symmetry. In Sec. III we report the re-
sults of numerical simulations with different microscopic
rules and show that disorder can be responsible for the
appearance of a phase transition. In Sec. IV we analyze
the nonlinear diffusion equation and discuss the effect of
different sources of noise; the dynamic renormalization
group is used to get the critical exponents for the sim-
plest nonlinear equation satisfying the symmetry proper-
ties; and, finally, in Sec. V we summarize the results and
present the conclusions.

II. DESCRIPTION OF THE MODEL

The model originally proposed by Zhang [3] consists of
a lattice in which any site can store some energy E con-
tinuously distributed between 0 and E.. This variable,
which we call energy, can have different physical inter-
pretations [5]. The system is perturbed by adding at a
randomly chosen site an amount of energy 6 F, which is
also a random variable. Once a site reaches a value of the
energy greater than some critical value E, this site be-
comes active and transfers isotropically the full amount
of energy to its nearest neighbors. At this point the input
of energy from the outside is turned off and the energy
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transferred to the neighboring sites can make them ac-
tive, leading to new transfers of energy, giving rise to
an activation cluster or avalanche that ends when all the
sites have reached a value of the energy smaller than E..
It is only when the avalanche has stopped that energy
is added again; otherwise the system remains quiescent.
After this procedure is repeated a large enough number of
times there exists a well-defined distribution of energies
characterizing the dynamical equilibrium state, which is
homogeneous and isotropic, on the average [5]. This dis-
tribution is equivalent to the original discrete sandpile
model of Bak, Tang, and Wiesenfeld [1], in which the
variable describing the system state is the slope. Actu-
ally both models share some of the critical exponents and
seem to belong to the same universality class [3, 5].

The microscopic rules for this model can be written in
the form of a set of algebraic equations, one for each site,

E(Gi,t+1) = [1 — O(E(,t) — E)E(,t)

+ Y O(E(,t) — EJEQ,t)/q +n.(i, 1),
NN

(1)
where O(z) is the Heaviside step function, ¢ is the lattice
coordination number, and 7.(¢,¢) is the external noise
that generates the dynamics of the system. The sum
runs over the nearest neighbors (NN)j to the lattice site
i. Energy flows out freely through the boundaries to

preserve overall energy conservation.

In Sec. IIT we will discuss in detail some of the varia-
tions one can introduce in this model in order to check
the universality classes. However, one of them deserves
some remarks. A simple change in the microscopic rules
can be done in such a way that an amount of energy equal
to E. is transferred to the set of neighboring sites when
a site becomes active instead of its total energy E > E..
This new model is closer in spirit to the original sandpile
model of Bak, Tang, and Wiesenfeld [1], where this is
necessary due to the discrete nature of the critical vari-
able, the slope. In this case the set of algebraic equations
read

E(i,t +1) = E(i,t) — O(E(i,t) — E.)E.

+ D O(EG) = E)Ec/g+ne(i,t).  (2)
NN

The importance of this model lies in the fact that it
introduces a new symmetry: the deterministic equations
are invariant under the transformation £ — E, — —(E —
E.). There are other symmetries that are common to
the original Zhang model discussed previously; both are
invariant under translation, rotation, and reflection.

It is well known from the theory of critical phenomena
[12, 13] that symmetries play a crucial role in the estab-
lishment of universality classes. This and other aspects
of the different models will be treated in detail in the
following sections.

III. COMPUTER SIMULATIONS
AND UNIVERSALITY CLASSES

We have performed computer simulations of the model
sketched in the previous section together with some vari-
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ants in order to determine the universality classes to
which they belong. Our analysis does not pretend to
be exhaustive, since our goal is to obtain mainly one of
the exponents, the dynamic exponent, which can be an-
alytically calculated from a stochastic partial differential
equation by means of the dynamic renormalization-group
(DRG) procedure [14-16], which will be the subject of
Sec. IV.

The study is not complete since it is the whole set of
critical exponents [17] that determines the universality
classes and not a subset of them. Moreover, we do not try
to obtain very good estimates of the dynamic exponent
by means of a large number of runs in a large lattice but
to get enough qualitative results to enable one to differen-
tiate the macroscopic properties of different microscopic
models.

In our simulations we define the size of an avalanche
as the number of sites that have become critical irre-
spective of the number of times it has happened for a
given site, while we define the time as the number of
steps the avalanche takes and finally the characteristic
length of the avalanche as the radius of gyration with
respect to its center of mass. There are other choices
in the literature; some of them are equivalent but other
choices can lead to wrong conclusions, as we think hap-
pens in Ref. [2], where the authors take the maximum
distance to a perimeter site from the seed as a character-
istic length of the avalanche. In our opinion this makes
the dynamic exponent (the exponent relating the dura-
tion of the avalanche to its characteristic length) closer
to unity, since avalanches in a given direction make this
choice of the length grow linearly with time. It is worth
noting that this can modify the critical dimension of this
class of systems. Following the results reported in Ref.
[2] the exponents change when going from dimension 4 to
5 but the only exponent that does not involve the char-
acteristic length of the avalanche is not changed within
numerical accuracy.

It has been shown that Zhang’s model in a hypercubic
lattice gives rise to a distribution of energies at the dy-
namical equilibrium state that has a number 2D of pro-
nounced peaks, whose width is a finite-size effect [3-5].
We have done simulations on a hexagonal lattice to gen-
eralize this statement and one can conclude that for any
type of lattice the number of peaks equals the lattice co-
ordination number.

Concerning the critical behavior, we have measured the
dynamic exponent for a 128 x 128 square lattice with a
starting configuration in which all sites are critical, tak-
ing E. = 1 without loss of generality. We make 1000 runs
for the system to get the dynamical equilibrium state and
10000 runs to get the dynamical statistical properties.
Averages are taken over the avalanches that are induced
instead of doing an ensemble average, since it is assumed
that the system is ergodic [2]. In Fig. 1 we plot the
duration of the avalanches as a function of their char-
acteristic length for the different definitions mentioned
above, each extracted from the same set of simulations.
The simulation data have been coarse grained in order to
get smoother curves. We consider time intervals of ex-
ponentially increasing amplitude 2,3-4,5-8,9-16,.. ., and
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FIG. 1. Duration of an avalanche vs its mean character-

istic length in logarithmic scales, for two different definitions
of the length: o, length is defined as the radius of gyration
with respect to the center of mass; O, the length is the maxi-
mum distance to a perimeter site from the seed. Straight lines
are best linear fits to the sets of data with slopes z = 1.40
and 1.28, respectively.

we associate this interval with the averaged lifetime and
the averaged length of the avalanches. For the definition
of the characteristic length we have chosen, we get a dy-
namic exponent z = 1.40+0.03, whereas for the definition
given in Ref. [2] one gets a smaller value z = 1.28 £ 0.03,
in agreement with our previous comments about this
choice. In order to minimize the finite-size effects, we

1.30 L 1 1 L 1 1 1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1/L
FIG. 2. Infinite-size extrapolation of the calculated dy-

namic exponent. This gives an estimation of z = 1.36 £ 0.03.
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have performed an extrapolation to infinite lattice size
from which we get an estimate for the dynamic exponent
z = 1.36+0.03, as can be seen in Fig. 2. By studying the
spatial characteristics of the avalanche clusters we have
found that they are compact objects, in agreement with
previous simulations and with the theoretical approach
of Ref. [18].

We have also checked universality by changing some of
the parameters of the dynamical rule given by Eq. (1).
Instead of transferring the full amount of energy we have
considered that only a fixed fraction is isotropically trans-
ferred from a critical site to its four nearest neighbors.
This pushes the system towards criticality, i.e., all sites
are closer to the critical value of the energy E., and
avalanches become smaller. In Fig. 3 we plot averaged
lifetimes against characteristic lengths for different values
of the energy fraction released. From there we get a set of
dynamic exponents that do not change compared to the
original model (simulations are performed on a 128 x 128
lattice and no extrapolation to infinite length has been
made) within numerical precision. Although some of the
characteristic features of the model are changed (the dis-
tribution of energies still has four peaks but now they are
closer to E, and the average energy per site is different),
the macroscopic behavior given by the dynamic exponent
is unaltered. However, the avalanche lifetime and size
distributions are modified for a value 0.5 of the fraction
of energy released. They are still power-law distributed,
but the exponents are different. The same can be con-
cluded when modifying the intensity of the noise, i.e., the
amount of energy we add to perturb the system when it
is at equilibrium. In Fig. 4 we plot how the avalanche
lifetime grows with its linear size for a random value 6 E
between 0 and different 6 F,,x. The fractal dimension
of the avalanches is not changed when introducing these
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FIG. 3. Same as Fig. 1 for different fractions of the en-
ergy released when a site becomes critical. The solid line
corresponds to the best fit for the original model in order to
be taken as reference.
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FIG. 4. Same as Fig. 3 for different values of § Fmax.

modifications of the microscopic rules.

We have also checked how randomness can modify the
behavior of this system. In Ref. [5] it has been assumed
that energy is divided in a random way between the 2D
neighbors. This local and instantaneous anisotropy rule
breaks the peaks distribution, but the average energy per
site is unchanged. In this paper we introduce random-
ness in a different way: a random fraction of the energy
is released when a site becomes critical. When this frac-
tion of the energy is close to 1 (for example, if we choose
it between 0.9 and 1), the peaks structure is clearly pre-
served, but for smaller values the peaks are broadened
until they finally disappear. For two different kinds of
disorder, annealed (the fraction of energy released is cho-
sen at random every time the site becomes critical) and
quenched (there exists a random fraction of energy asso-
ciated with each site), the transition happens at different
values. In Table I we list the set of dynamic exponents
we get from these simulations. From these results, how-
ever, it is not clear whether there is a phase transition.
The differences could be due either to a finite-size effect
or to corrections to scaling.

In the previous section we presented an alternative to
the original Zhang model that introduces an additional
symmetry. This model seems to be closer to the discrete
sandpile models that coined the term self-organized criti-
cality. Although the energy has again a continuous distri-
bution in each site, the distribution of energies is changed

TABLE I. Numerical values of the dynamical exponents
for a random fraction of the energy released when a site be-
comes critical

0.90-1.0 0.75-1.0 0.50-1.0
Annealed 1.42 147 1.49
Quenched 1.42 1.47 1.47
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FIG. 5. Distribution of energies for the microscopic dy-
namical rules described in the text: (a) original Zhang
model, (b) introducing a new symmetry.

completely. In Fig. 5 we plot this distribution and the
distribution obtained with the Zhang model in order to
compare them, and in Fig. 6 the avalanche lifetime is
plotted against the characteristic length for both models
as well. It is difficult to distinguish both sets of points,
and so one can conclude that both models belong to the
same universality class unless the right scaling regime has
not been reached. This is confirmed by inspection of the
distribution of lifetimes and sizes of the avalanches, and
although the agreement is not so good, within numerical
accuracy the curves have the same behavior. In this case
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FIG. 6. Same as Figs. 3 and 4 for the models with dif-
ferent symmetries described in the text: o, original Zhang
model; O, modified model.
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the avalanche clusters appear to be compact objects as
well.

IV. ANALYTICAL APPROACH

From the microscopic rules (1) one can construct an
effective-medium equation in terms of a rescaled energy
E — E, — F in which the microscopic scales enter the
transport coefficients, as follows:

QD _ a9 (e, ))E(, 1) + Ed)

+71e(1'»t) + T],'(l‘,t), (3)

where « is related to the lattice spacing, to the unit time
step, and to the fraction of energy released, and plays the
role of a diffusion constant. We have introduced 7;(r,t)
as an internal noise, which accounts for the removed mi-
croscopic degrees of freedom, the type of lattice, for in-
stance [19]. This internal noise would obey a fluctuation-
dissipation theorem linked to a conserved magnitude; in
this case, the energy [20]. Therefore it has a zero mean
and a correlation function given by

(mi(x, )mi (', 1)) x 2aVV'6(r — 1')8(t — t'). (4)

Since the external noise is fundamental for the dynam-
ical properties of the model, this point deserves some dis-
cussion. The input of energy to the system is a random
number between 0 and §E,.x and the noise acts only
between avalanches. In the previous section we have re-
ported numerical simulations, and the critical behavior
(dynamic exponent) is not changed when § Ey,,x is varied
by orders of magnitude. For very small § E\,ax the evolu-
tion is slowed down since many more inputs are needed
to make a site critical and to start the avalanche. More-
over, for such small intensity of the noise we have ascer-
tained that, if it is not turned off between avalanches,
i.e., the noise is constant with time, the dynamic expo-
nent is not modified and interactions between avalanches
remain negligible if the intensity of the noise is decreased
as the system size grows. Therefore we conclude that
the external noise can be modeled by a time-independent
stochastic process.

The noise character can also be analyzed from a dif-
ferent point of view. One can assume a Gaussian process
with zero mean [21] and correlation function given by

(n(r,t)n(x',1)) = ?e"""l/’éd(r -r'). (5)

This is an Ornstein-Uhlenbeck process, with 7 the cor-
relation time. This general case can describe two very
different limits. When dealing with internal noise, which
involves a microscopic time scale, 7 should be very small
and in this limit we recover the usual white noise in space
and time

(n(e, t)n(’ 1)) = 2D8(t — ¢')6%(x — x'). ®)

But in our problem the external noise has no charac-
teristic time scale. The only thing we know is that the

noise acts once the avalanche is over, so it means that
the only characteristic time would be a macroscopic time
that scales with some power of the system size [22]. Then
the limit 7 — oo is appropriate and we can write

(e, On(e’ 1) = 2284~ ), (7)

where T is a macroscopic time much larger than the unit
time step. Therefore, both points of view are linked by
the fact that there are only short-range spatial correla-
tions and an intensity of the noise that scales with 1/T
or 1/L* (u > 0). Both types of noise (6) and (7) are
nonconservative due to the way energy is added from the
outside. This nonconservative nature breaks the detailed
balance. This is believed to be one of the main ingredi-
ents of self-organized criticality [9].

Clearly, Eq. (3) is a stochastic nonlinear differential
equation from which one wants to obtain the hydrody-
namic, long-time, and large-scale behavior of the system.
In order to make it tractable we choose one of the repre-
sentations of the step function

1

O(z) = lim —(1+ tanh fBz) (8)
f—o0 2

and make a series expansion in powers of the argument.

This can be performed by keeping f finite instead of § —
0o [23]. We can then write

6E(r’t) — 2 =~ 2n
5 = aV2E(r,1) +nz=:2,\,,v E™(r,1)
+77e(1',t) + ’r),-(r, t)' (9)

By simple dimensional analysis one can show that the
internal noise with correlation function (4) makes the
contribution of the nonlinearities to be irrelevant for any
spatial dimensionality [24]. This makes the internal noise
itself irrelevant, so from now on we will ignore this noise
and discuss the effects of external noise as given by (7).
Moreover, one realizes that all coupling constants A, are
relevant when d < 4 and all are irrelevant when d > 4.
Thus we can conclude that the upper critical dimension
is 4 [25, 26], and that below it one needs the full set
of nonlinearities to study the hydrodynamic behavior of
this model, contrarily to what happens, for instance, in
surface growth, where the Kardar-Parisi-Zhang equation
[27] has only one relevant nonlinearity, allowing the criti-
cal exponents to be computed from this equation. Never-
theless let us assume for the moment that some qualita-
tive aspects of models exhibiting self-organized criticality
can be obtained from the simplest nonlinear equation

—aEg’t) = aV2E(r,t) + AV2E*(r,t) + n.(r,t),  (10)

which is consistent with conservation laws and with the
symmetries of the problem: reflection, rotation, transla-
tion, and lack of any characteristic time or length scale.
Note that some of the symmetries obeyed by other con-
tinuum models such as Galilean invariance [8, 11] or dis-
crete lattice structure [7] are lost.
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We follow a DRG [15, 16] procedure to analyze the hy-
drodynamic behavior of the system given by Eq. (10).
The infrared divergencies of momentum integration are
avoided by integrating out the fast modes with momenta
in the range Ae™! < k < A, where [ is the shell thick-
ness and A is the short-distance cutoff. In order to re-
cover the original Brillouin zone one has to perform the
following scaling transformation for the remaining short-
wavelength modes:

E(k,w) — eX+t+ p(kel e, (11)

where z and x are, respectively, the dynamic and the
roughening exponent. These modes obey Egs. (7) and
(10) with renormalized parameters that satisfy, under an
infinitesimal renormalization-group (RG) transformation
and in the hydrodynamic limit (¢ — 0, w — 0), the
following recursion relations up to one-loop order:

o 2

S =e(E--meeant),
d(D/T)(1

_-_( {il )() :%(QZ—d—QX)’ (13)
%(IQ - ((X +2-2)+ %;\:48A4Ad_4) ) (14)

where Ag = Sq/2(2m)¢, with S, being the surface area
of a unit d-dimensional sphere. One can notice that
A = (16A%"*A44DN?/Ta*)1/? is the effective dimension-
less coupling constant for which we can write the follow-
ing RG recursion relation:

dT(II) A (4—;—‘1 + 5?\2) , (15)

which enables us to evaluate fixed points and critical ex-
ponents up to the above-mentioned one-loop order. One
notices that the upper critical dimension is d,. = 4, since
for d < 4 there exists a fixed point at A = 0 that is unsta-
ble and for d > 4 there are three fixed points, A = 0 and
A = =£4/(d — 4)/10. The first one is stable, whereas the
other two are unstable. Under RG transformations the
flow in parameter space has the following behavior. For
d < 4 a small nonlinearity flows away from the mean-field
fixed point (A = 0), and a dynamic exponent z different
from 2 is expected. On the other hand, for d > 4 there is
a basin of attraction for the stable mean-field fixed point,
and purely diffusive behavior should be observed. How-
ever, for values of the effective coupling constant such
that |A| > /(d —4)/10 the behavior is dominated by
the strong-coupling unstable fixed point that gives rise
to superdiffusive behavior (z < 2).

We conclude that it should be possible to observe a
phase transition at d > 4 between a logarithmically rough
phase with mean-field exponents and a smooth phase
with a nondiffusive behavior [7, 8, 10, 11]. At this point
it is worth noting that with a correlation function for
the noise as given by (6) the upper critical dimension is

lowered down to 2 [28]. In the previous section we have
reported extensive numerical simulations on the Zhang
model for d = 2 and different effective coupling constants
(c is related to the fraction of energy released and D/T
is linked to 8§ Erax as the intensity of the noise) and no
phase transition has been observed, thus providing some
support for the assumptions about the external noise that
we have made in the present analysis.

The same line of reasoning can be applied to the model
described by microscopic rules (2). In this case, a con-
tinuum equation for a rescaled energy is written

maEé:’ t) = aV? [G(E(r,t))Ec] + ne(r,t)’ (16)

neglecting the effect of internal noise. Equation (6)
clearly shows the reflection invariance of the energy vari-
able. Now the simplest nonlinear equation in agreement
with symmetry rules is

% = aV2E(r,t) + AV2E3(x,t) + ne(r, 1), 17)

giving rise to a different hydrodynamic behavior. This
model has the same upper critical dimensionality d,,. = 4,
but some qualitative differences appear. The RG re-

cursion relation for the effective coupling constant A =
12A9-%4,4D)/Ta? is

) =A4—-d-9)). (18)
dl

Now there are two fixed points above and below d = 4.
For d < 4 the mean-field fixed point (A = 0) is unstable
and the fixed point corresponding to A = (4 — d)/9 is
stable, whereas for d > 4 stability is exchanged. This
enables us to obtain a dynamic exponent z = (14 + d)/9
below d = 4, which is, however, far from the results ob-
tained in the numerical simulations. Thus this analytical
approach would lead us to conclude that both models do
not belong to the same universality class, whereas from
the simulations the conclusion is the opposite. All this
leads us to believe that the approach based on simple
nonlinear equations is incomplete and that one should
study the full nonlinear equations (3) and (16), keeping
the threshold condition, as will be the subject of a sub-
sequent paper.

In a recent paper Hentschel and Family [29] have pro-
posed an approach to obtain the scaling behavior of
stochastic differential equations of type (9). This method
has been proven to give values of the critical exponents
for a variety of problems that are in agreement with nu-
merical simulations and renormalization-group calcula-
tions. Following this idea one can get a set of dynamical
exponents, depending on the term that is dominant in
the power-series expansion (9), z = [4 + (m — 1)d]/2m.
This assumption gives the exponent one gets in the nu-
merical simulations for m = 3. It is not clear to us why
this term gives the correct value. Moreover, one should
take into account that the value obtained in this way dif-
fers from the one we computed from (17) showing the
limitations of Hentschel-Family procedure when dealing
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with an equation where Galilean invariance is broken [27]
and hence the coupling constant is renormalized.

V. CONCLUSIONS

In this paper we have performed numerical simulations
in some models showing self-organized criticality in order
to compute one of the exponents characterizing their crit-
ical behavior, the dynamical exponent. Starting with the
dynamical microscopic rules proposed by Zhang [3] we
have checked related models with different rules. We have
emphasized that one must carefully define the avalanche
characteristic length, since this can be relevant for the
determination of the upper critical dimension.

When either the fraction of energy released at a critical
site or the intensity of the noise are changed, the same
dynamical exponent is obtained in a 2D square lattice.
The fact that the dynamical exponent is not modified
when varying the effective coupling constant is impor-
tant for the appropriate choice of the noise correlations.
However, the critical behavior is modified when disorder
is introduced in the lattice, either quenched or annealed.
A phase transition seems to happen in such a situation.
We have also checked a different model that introduces a
new symmetry, but the dynamic exponent is not changed
in this case, belonging then, in principle, to the same uni-
versality class.

We have analytically studied continuum models de-
rived from the above microscopic dynamical rules. The
stochastic differential equations satisfied by these models
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have two sources of noise: internal and external. Inter-
nal noise comes from the removed microscopic degrees
of freedom and hence it is described by a fluctuation-
dissipation theorem. On the other hand, external noise
is specified by the model. We show that the internal noise
turns out to be irrelevant and external noise with the ap-
propriate correlation makes the critical dimension equal
to 4, in agreement with numerical simulations and other
analytical approaches, and suggests that a phase transi-
tion, as a function of the bare coupling constant, above
d = 4 should be observed. However, in the analytical
approach two models with different symmetries belong
to different universality classes, in contrast with our nu-
merical simulations. This suggests the need for a more
complete analysis involving the full nonlinear equations
describing these models.
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