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A recent method used to optimize biased neural networks with low levels of activity is applied to
a hierarchical model. As a consequence, the performance of the system is strongly enhanced. The

steps to achieve optimization are analyzed in detail.

I. INTRODUCTION

The wide knowledge of the Hopfield model has allowed
important advances in the study of neural networks.! 3
It has been the starting point for ambitious ideas aimed
to build systems able to overcome some of its limitations.
Models dealing with correlated patterns*~® or able to en-
code and retrieve configurations following particular
structures’™!! have been, among others, different ap-
proaches made lately.

The simplest way to introduce correlations in models
with Hebbian learning rules is to assume that the patterns
are biased, i.e., with levels of activity different than 50%,
a property accepted from a neurophysiological point of
view. Initial studies of these systems made by Amit
et al.'? showed not attractive results because they were
characterized by a decrease of the storage capacity as the
bias increases. The performance of the network was not-
ably improved after the work of Buchmann et al. b3
where the V model (V=0,1) is used rather than the S
model (S = —1,1) because in their system the behavior of
the network using one prescription or the other is com-
pletely different. Tsodyks and Feigelman'* argued that
such a difference comes from a possible lack of
equivalence between both pictures.

Recently Perez and Amit,!> working on the studies
previously mentioned, have introduced a method to op-
timize biased neural networks. The point is to make cer-
tain assumptions about the local thresholds of the neu-
rons.

Let us consider the local field acting on neuron i in
terms of the ¥ model

hi=3J,V;. (1)
Jj
Since V;=(S;+1)/2 we have
hi=32JyS;+332Jy - )
J j

For unbiased neural networks we know that if we add a
local threshold U;=1 3 ;J;; then ;=373 ,J,;S; and the
storage capacity of the system doubles. For biased nets
the best performance is achieved not by adding the previ-
ous value of U; but by adding U;=(1+c¢)/2 ¥ ; J;;, where
¢ (cC[—1,1]) is a parameter to be determined. There-
fore
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hi=13J;(5—c) . 3)
J

Now, using the change S; =(2¥; —1) and introducing the
variable ¢'=(1+c¢)/2, (¢'C[0,1]), we have

hi=3J,(V,—c"). @
J

In those terms there is a complete equivalence between
the V and the S models solving the problem pointed out
by Tsodyks and Feigelman.'* For optimum c the perfor-
mance of the network is enhanced over previous studies.

The main goal of this paper is to show that the method
can be generalized to other models with local learning
rules. As an example the procedure is applied to a neural
network structured hierarchically studied by Gutfreund
(Ref. 9, hereafter referred to as HG). The steps followed
to achieve the optimization deserve special attention.

II. THE MODEL

The HG model stores a set of p patterns in k levels
(p = [1« P ) organized hierarchically. In the first level

pi patterns are encoded. Every neuron & (u=1,...,p,,
i=1,...,N) corresponding to such patterns takes values
+1 with a probability distribution given by
1+ —
P(gh=12 285~ D+ S8+ 1), (5)

where the parameter a (the bias) measures the level of ac-
tivity of the network.

The second level of the network is correlated with the
previous one by means of a parameter b, being 0<b <1.
Now, from each pattern {&#}, p, patterns are encoded
and its components £ (v=1,...,p,) follow the proba-
bility distribution given by

1+ &b

1—&8b
P(§7")=T¢S(§f“’—l)+—

S(EHY+1) . (6)

Generalization to k levels is straightforward. We consid-
er now that we have only two levels. The synaptic matrix
proposed in HG is

1 v v
Ty =y 3 (G =N 8
v

u=1...,p,, v=1,...,p, . (D
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With these ingredients we have enough information to
apply the method indicated in the Introduction. The first
step is the study of the signal-to-noise ratio from the local
field [post-synaptic potential (PSP)] acting on neurons.
Assuming that the network is in the state £77 the local
field acting on neuron i is

1 v v
h,=W22(§¢‘ —EbNEY—EHD)ET —c) U (8)
Jomv
where U is a threshold. This last expression can be split
in a signal plus a noise

1
hy=y 3 (€7 —EINEY —EIb)ET —c)—U
J

+23 S (G- g~ . O
iy
mYEN,Y
The effect of both new terms is the following. On one
side the threshold U will be an external field whose effect
is the optimization of the signal acting on neurons. On
the other side the term ¢ ¥ ; J;; is a random field which
because of its correlation with the patterns will reduce
the destabilizing noise generated in the retrieval process.
The constant ¢ is chosen such that the noise becomes a
minimum. The destabilizing noise is Gaussian with zero
mean. Its square is

(R?)=a(1—b2)*1+c2—2abc) , (10)

where a=p /N is the storage ratio. Therefore, the con-
stant c is ab, and the noise is

(R*) =a(1—b2)?[1—(ab)?] . (11)
The signal is

Sz_f"T‘l_(gpr_gpb)(l—bz)—U. (12)

U will be optimum when
U=—£&(1—b?) . (13)

Now, the signal acting on all the neurons in a given
cluster is equalized to |S|=(1—52). From this value of
U one deduces that to start the dynamics in a certain lev-
el k the system needs to know its ancestors, i.e., the set
{g4v--*~1} has to be retrieved before and then the

]

f=£‘_
2 p>
a Brg
55 [Im1=BiBCI— Tt
— g {(m2cosh |Bv/arz + €2y +2abr) -+ me g — g0~ ) ‘» ,
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external field is applied. This type of dynamics is just the
same obtained in HG. Therefore, the method to improve
the performance of the network does not change the basic
features of the system. Finally the signal-to-noise ratio is

S

R

1

Va[1—(ab)?*]

showing a divergence for ab—1. Comparing this result
with HG

opt | _ 1/Va[1—(ab)’]
(1=1b))/Va

s
R
s
R

HG

_ 1
(1—b)V1—(ab)®

(15)

This analysis indicates that the optimized model al-
ways leads to a better performance of the network than
the original model. Both terms (U and ¢ ¥;J;;) are
necessary to optimize the system. The lack of one of
them still keeps a poor behavior characterized by a low
storage capacity and an enormous amount of spurious
states pervading the dynamics of the network.

III. MEAN-FIELD EQUATIONS

The mean-field equations give the collective behavior
of the system in the N — oo limit. They can be calculated
from the study of the free energy per spin

f=—1/BN{InTrexp(—BH)) ,
where H is the Hamiltonian
H=—§_2J,-j(S,<—ab)(Sj—ab)+2U,-S,- . (16)
ij i
i#j

The replica method'® is used to average over the
quenched variables {£*¥}. Following a standard calcula-
tion'®? and assuming that the solutions have only one
macroscopic overlap with a single pattern, I have found
in the replica symmetric framework that the free energy
in the thermodynamic limit is

ab

(1=b2)[1—(ab)*]—aabx(1—b?)+a’bh +1 3 (m*")*+ —aB—(Zabr +y)

2

+“73(xy Fr([1—(ab]—[1+(ab’]q})

17
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where
Bi=B(1—bH)[1—(ab)?],
B,=B(1—b2)[1+(ab)?],
and

c= 2ab X
1+(ab)?

The double angular brackets mean the average over the

patterns {£*¥} and over a Gaussian variable z. Five order

parameters are found: m*", x, q, y, and r. Their physical
meaning comes from the saddle-point equations

miv = (£ — E4b)tanhBP ) , (18)

where

+gq .

¢=Varz +“73(y +2abr)+ (£ — £ )mP —h g .

m*” measures indirectly the overlap between the state
{S;} of the network and a stored pattern £*”

b= 5 (£~ 1) (S, —ab)) 19

where ( ) means thermal average. x gives the mean ac-
tivity of the network

x ={(tanhBe)) —ab , (20)
q defined as
g= 3 ((S,—ab)S,~ab)) 1)

is a generalized Edward-Anderson parameter

1
1+ (ab)?

y and r are the mean-square fluctuations of the magneti-
zation and of the overlaps between the thermodynamic
state of the network and the patterns which are not con-
densed, respectively,

q [ (tanh?B¢ )) —2abx —(ab)?] . (22)

y=2;Tb(l—b2)— ;1__311’2_’2‘:2 1+ 1—[523320 ,
(23)
L qU—b)[1+(ab)] 2
(1—B,+B,C)?
In the limit T— 0 these expressions reduce to
m =1(1—b%)(1+a)(erfp, +erfd,)
+L(1=b%)(1—a)(erfp;+erfd,) , (25)
x= 1:“[(1+b)erf¢,—(1~b>erf¢2]
+ 1;"[(1—b>erf¢3—(1+b>erf¢s4]—ab : 26)
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2 1" [1+a
= mar —4—[(1+b)exp(—¢%)
+(1—b)exp(—¢2)]
+ l:a[(l—b)exp(—db%)

+(1+b)exp(—¢2)1 |, @7

(1—=b2)[1—2abx —(ab)*]
r=
[1—(1—=b2%)C]P?

) (28)

where

¢1:m(l—:£)_—h_ _aba(1—b?)’C ’
V2ar V2ar [1—-(1—b3)C]

g,=m A Ab) +h aba(1—b?)C
V2ar V2ar[1—(1—-b%)C] ’

g,=mUtb)—h _aba(1—b?’C ,
V2ar V2ar[1—(1—-b%)C]

p,=mU1—b)th _aba(1—-b%7C ’
V2ar V2ar [1—(1—b%)C]

and where erf means the error function. In the limit a=1
the model simplifies and one recovers the set of equations
obtained by Perez and Amit."’

IV. RESULTS

The numerical solution of the set of transcendental
equations (25)—(28) gives the macroscopic behavior of the
network at T=0. The interest is centered in-the retrieval
phase, solutions with a0 and m #0, because they are
the only ones which have associative memory. The re-
sults can be observed in Fig. 1. The curves represent the
variation of the storage capacity versus different values of
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FIG. 1. Variation of storage capacity with respect to the pa-
rameter b for (i) a=0.8, (ii) 2=0.6, and (iii) =0.4. '
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FIG. 2. Storage capacity vs b for a=0.6. Upper curve comes 0.40
from MFT. Lower curve follows Eq. (29). j (b)
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posite range. We observe in Fig. 2 that the behavior stat- 9 T
ed in (4.1) does not hold when a,b increases. For a equal 78] E
to 1 the results are the same obtained by Ref. 15, conse- 015 3
quently, when b — 1 the capacity approaches the limit de- E
duced by Gardner'” and the content of information pro- E
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nal field U, for given a and b, depends on the product ab.
For small ab, the capacity varies slightly for a wide band
of values of U. As an example we see in Fig. 3(a) that for
ab=0.08 a change of U of 35% respect its optimum value
induces a change of only 5% in a. In contrast, when ab
is close to 1 the dependence of the capacity with the field
is so important in the neighborhood of the optimum
'value of the latter that small variations of U generate
quite different answers in a. In Fig. 3(b) we observe that
for ab=0.72 a change of 15% in U gives a change of al-
most 50% in the capacity. This effect shows the impor-
tance to constrain the dynamics of the system by means
of an external field.

V. CONCLUSIONS

In this paper I have shown that the method described
in the Introduction to optimize neural networks with low
levels of activity can be generalized to more complex sys-
tems, such as hierarchical models. The method consists
of adding an external field whose effect is the equalization
of the signal acting on neurons and to make certain as-

FIG. 3. (a) Dependence of the storage capacity on the exter-
nal field for a=0.2 and b=0.4. (b) The same for a=0.8 and
b=0.9.

sumptions about local thresholds whose effect is the
reduction of the destabilizing noise. As a consequence
the performance of the network is notably improved by
increasing the storage capacity and by decreasing the
spurious attractors. No characteristic features of the
original model are modified.
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