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We have shown that finite-size effects in the correlation functions away from equilibrium may be
introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of
the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics,
we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the di-
mensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and
describe some physical situations in which finite-size effects may be relevant.

I. INTRODUCTION

It is well known that nonequilibrium correlation func-
tions exhibit a number of properties that are not present
at equilibrium, such as, for example, long-range behavior,
time-reversal symmetry breaking, or the lack of transla-
tional invariance.! The analysis of correlation functions
involves two characteristic lengths, namely, the penetra-
tion depth of fluctuations and the size of the system. One
may show that when dealing with diffusion modes it is
possible to avoid boundary effects by choosing con-
veniently the orientation between the external gradients
and the wave vectors.? Light-scattering (Rayleigh) exper-
iments support this assumption.*® The situation is not the
same for sound modes. Consequently, to reproduce the
Brillouin spectrum boundary effects should be considered
in the derivation of the correlation functions.

Our aim in this paper is to show that finite-size effects
in the correlation functions are not only due to the fact
that the penetration depth for the perturbations is at least
of the same order as the size of the system, but to the na-
ture of the boundaries themselves. Then the stationary
solutions may be modified by this fact and the overall
transport coefficients may depend on parameters related
to the boundaries. As a consequence, the correlation
functions will be also affected by this feature. We will
show that boundary effects enter the analysis through
Nusselt numbers comparing the nature of the boundaries,
the size of the system, and the thermal properties of the
bulk.

Crucial in our analysis will be the calculation of mean-
square fluctuations. As we will see later on, these quanti-
ties are obtained after averaging the corresponding corre-
lation functions and provide all the information about the
relevance of both boundary and nonequilibrium effects.
In the absence of external gradients they reduce to the
well-known equilibrium result which follows from the
study of fluctuations of thermodynamical variables.
These quantities will therefore constitute the nonequili-

4

brium version of the thermodynamical result.

The paper is organized as follows. In Sec. IT we discuss
the stationary solutions for diffusion processes with
Neumann-Dirichlet boundary conditions in the presence
of external gradients. The nature of the steady states de-
pends on Nusselt numbers, the steady profiles also being
linear. In Sec. IIT and IV we shall be concerned with the
explicit calculation of the correlation functions for two
particular diffusion processes, namely heat conduction
and mass diffusion. In both cases, we consider that in ad-
dition to the stochastic bulk sources, used when dealing
with fluctuations away from equilibrium, there exists sto-
chastic surface sources which also satisfy fluctuation-
dissipation theorems. The correlation functions are then
influenced by both bulk and surface sources of noise. It is
interesting to realize that in the absence of external gra-
dients the surface terms are not present. From the gen-
eral expression of the correlation functions we then calcu-
late averaged correlations. These quantities satisfy scal-
ing laws since they only depend on reduced variables and
dimensionless functions of the Nusselt numbers. We ana-
lyze in detail the correlations in some particular limiting
cases. In Sec. V we stress our main results.

II. STATIONARY STATES FOR
NEUMANN-DIRICHLET BOUNDARY CONDITIONS

In this section we will analyze the nature of the station-
ary states for the most general boundary conditions,
namely the Neumann-Dirichlet ones. As a first example
we will consider a fluid between two parallel plates locat-
ed at y=0 and L, which are in contact with thermal
reservoirs at temperatures T, and T, respectively. In
the case in which the product of the Reynolds and
Prandtl numbers is very small, the convective term of the
temperature evolution equation can be neglected, there-
fore that equation simply reads

o7 (r,t)

=" =gV?T(r,1) ,

EY: 2.1
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where T(r,t) is the temperature and a the thermal
diffusivity. As a consequence, thermal modes are not
coupled to viscous modes and can be treated indepen-
dently.

The boundary conditions come from the fact that the
heat fluxes given through Fourier law and the Newton
law of cooling® should be equal at the surfaces. We then
obtain

}\.ﬁ'VT:S()(T_To) aty:O s (2.2)

AM-VT =€, (T—T,) aty=L, (2.3)
Here A is the heat conductivity of the fluid, # the unit
vector normal to the boundaries, pointing inward to the
system, and €, and €; heat transfer coefficients. The par-
ticular cases €y,€; — o and 0 will correspond to perfectly
conducting and perfectly insulating boundaries, respec-
tively. Both limits can be also reproduced if one intro-
duces the Nusselt numbers

by =k

A A
Then perfectly conducting boundaries will correspond to
the limits Ny, N; — o, whereas perfectly insulating boun-
daries to Ny, N; —O0.

The diffusion equation (2.1) can be solved using the
general boundary conditions (2.2) and (2.3) and the
definitions (2.4). One arrives at

Ny= 2.4)

T.(r)= NolVy VT
s NG+ N, NN,
NoTo+N, T, +NoN, T,

, (2.5)
No+Np+NyN,

where the external the external gradient is
VT =¥(T,—T,)/L,  being the unit vector along the y
coordinate. The following cases will be under considera-
tion.

(i) Both Nusselt numbers are equal to N. In this case
(2.5) becomes

N (1+N)T,+ T,
T 24N 2+N
Therefore the temperature gradient in the system does

not coincide with the imposed external gradient. One
then arrives at the relation

T,(r)

(2.6)

N
T,==——"—VT,
VIL=2NY

showing that the temperature gradient clearly depends on
the Nusselt number. If the plates are perfectly conduct-
ing (N, N; — ), the stationary temperature reduces to

(2.8)

(2.7)

T(r)=r-VT +T,,

which corresponds to the reference state that is habitual-
ly taken as the reference state in many analyses of none-
quilibrium fluctuations. In the case in which both plates
are perfectly insulating (N,,N;—0), (2.5) yields the
homogeneous temperature

T,=(Ty+T.)/2 . (2.9)

(i) The Nusselt numbers are very different (say
No<<N,, with Ny<<1 and N, >>1). The stationary
solution gives, in this case,

T,(r)=Nor-VT+N,To+ T , (2.10)

which in the extreme situation Ny— 0 tends to the homo-
geneous temperature profile

I,=T, . (2.11)

According to the former analysis we can conclude that
transport coefficients are modified by the presence of the
boundaries. In fact, we can define the overall heat con-
ductivity A through

J=AVT, (2.12)

where J is the heat flow. In view of (2.5) one then obtains
=~ NN,

A= A 2.13

Ny+N;+NyN, ( )

This expression indicates that the system behaves as if
heat conduction took place between perfectly conducting
boundaries but with a different transport coefficient.
Therefore A plays the role of an effective or renormalized
heat conductivity.

To end this section we will discuss the stationary solu-
tions in the case of mass diffusion. The problem could be
formulated in the following way. Let us assume the
diffusion of a contaminant in a fluid between two parallel
plates. Both plates are chemically active in the sense that
chemical reactions producing or absorbing the contam-
inant take place. Our analysis could also be applied to
describe a situation in which adsorption phenomena may
occur at the boundaries. The basic equations are quite
similar to the ones defining the heat conduction problem
introduced above. In fact, when the Péclet number is
very small, the number density MN(r,?) evolves according
to the diffusion equation

MZDVZN(LI) ,
ot )
where D is the diffusion coefficient. On the other hand,
the boundary conditions are now®

ﬁ'VN=ﬁ0,L.N aty=0,L .

(2.14)

(2.15)

These equations come from the fact that diffusion and re-
action fluxes counterbalance each other at the boundary.
Now the Nusselt numbers are defined as
koL
O,L — D ’

(2.16)

where K, ; are the reaction rates at y =0, L, respectively.
Therefore the limit A, O,N . —0 corresponds to the case in
which chemical reactions at the boundaries are very slow,
whereas very fast reactions will take place for

0»N; — . Because of the similarity to the former
case, the stationary solution obtained in (2.5) will now be
formally the same, taking into account the characteristic
variables of this second problem.
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III. CORRELATION FUNCTIONS
IN THE CASE OF HEAT CONDUCTION

Our purpose in this section is to study the propagation
of thermal fluctuations in the system. In accordance with
the Onsager regression hypothesis, fluctuation evolution
equations are precisely the differential equations of none-
quilibrium thermodynamics. Their stochastic character
is due to the presence of random currents satisfying ap-
propriate fluctuation-dissipation theorems. In our case,
we are only considering thermal modes, therefore the
corresponding stochastic differential equation is

98T (r,¢) _
at

where p is the density, ¢ the specific heat, and J* the sto-
chastic current. To solve for 87 we must specify the
boundary conditions. In view of (2.2) and (2.3) one has’?

—MA-V8T =—¢,8T +J, aty=0, (3.2)
—AA-V8T =—¢, 8T +J, aty=L , (3.3)

aV3T(r,t)—(pc) VIR | 3.1

where we have assumed that the temperatures of the
baths do not fluctuate. In (3.2) and (3.3) J, and J; act as
stochastic currents at the boundaries; hence both equa-
tions become stochastic boundary conditions.

To analyze the fluctuations it is convenient to Fourier
transform (3.1) in time and in the coordinates x and z.
Then, one may define the following boundary-value prob-
lem:

(im+ad})8T =(pc)~'V-IX, y€(0,L) (3.4)
(—A3, +€)8T=Jy, y=0 (3.5)
(A3, +€,)8T=J;, y=L (3.6)

where use has been made of the definition @=w-+i akﬁ,
with k,=(k,,k,).

The former boundary value problem defines the Green
problem for Neumann-Dirichlet boundary conditions.’
The Green function G (y,y’;®) is the solution of the equa-
tion

(i&“)-f-aaﬁ)G(y,y’;&')):S(y —y'), y€(O,L) (3.7

and is subject to boundary conditions similar to (3.5) and
(3.6)

(—A3, +€)G (y,y";@)=0, y=0 (3.8)

(A3, +€.,)G(y,y";®)=0, y=L . (3.9)

Moreover, the adjoint Green function G satisfies the
time-reversed equation

(—ia*+ad})G(y,y;@)=8(y —y'), y€(O,L)  (3.10)
where the symbol * denotes complex conjugation.

Hence the reciprocity relation consistent with (3.7) and
(3.10) reads
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G*(y,y;2)=G(y",y;®) . (3.11)
The solution of (3.7)-(3.9) is found to be
7 K3y )KHL-—y.)
Guyip=—L 22X m Yl gy,
a Ky (L)+(A/Pey)K{(L)
where y., =max{y,y'} and y . =min{y,y'}. Moreover,
we have also used the definitions
y=(ia/@)?*, (3.13)
K9 (x)=cosh(x /7)+(A/¥€y )sinh(x /7) , (3.14)
K9 (x)=sinh(x /7)+(A/7€y  Jcosh(x /7). (3.15)

Notice that the quantity ¥ can be interpreted as a
penetration depth for thermal fluctuations, consequently
7 €o,1. /A is the Nusselt number related to that length.

The formal solution for the temperature fluctuations
follows from the Green theorem and is given by

8T (y,k;0)= —% foLdT G(y,T;E))VT-JR(f,k”;w)

—G(y,L;a) (ko)

This expression clearly exhibits the different contribu-
tions due to the surface J, ; and bulk IR sources of noise.
Such stochastic currents are assumed to satisfy the fol-
lowing fluctuation-dissipation theorems:

(TR kW Ry k) 0")
=2027’kpATH(»)8(y —y")8(0+0")8(k,+K|)8; ,

(3.17)
(J{,‘(k,,;w)]é‘(k,’,;w' ))
=220k, THOS(w+0)B(k, +K)) ,  (3.18)
(TR Rk 00'))
=227 kpo, THL)S(0+ 08k +K]) ,  (3.19)

where the quantities oy and o, will be specified later on.
In addition to these theorems, the random currents are
chosen in such a way that their cross correlations vanish
since surface J, ; and bulk JR sources of noise are as-
sumed to be statistically independent. The temperature
correlation function then follows from the formal solu-
tion (3.16) by means of reiterative application of the
Green theorem. Taking into account the fluctuation-
dissipation theorems (3.17)—(3.19) one obtains
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(8T (3, kj; )BT (", ki) =2(2m) %k 5 8@+ )8(k; +k )
X | =3[Gy@) THY )+ G (y'y;0)T)]
+i S [RTHDG (3,y'38) =G (y',y33)]
— I8, THNIG 1, 73)G (v, 733} 15§

a ~ ’ ~1
+I[(UT—ET)TSZ(T)G(y,T;w)G (y', 78" )],—0L (3.20)
The last term in this expression must vanish due to the time-reversal symmetry requirement of the correlation function
for a system at equilibrium, therefore we have to impose o ; =€, - 819 Expression (3.20) constitutes the explicit ex-
pression of the correlation function. From it we conclude that the temperature correlation function depends on the

external gradient and on the Nusselt numbers.

To analyze the nonequilibrium and finite-size contributions we have defined the following quantity:

1
(2wL)?

(8T»)=

which is the average of the equal-time correlation func-
tion for the case k;=0. Its corresponding expression for
wave vectors different from zero has been analyzed in de-
tail in the Appendix. The main conclusion is that when
k,L <1, the consideration of nonvanishing wave vectors
only introduces small corrections in the correlation func-
tion (3.21).

The main usefulness of {(87)*) comes from the fact
that it provides information about the averaged behavior
of the system in a clear and scaling way, analogous to its

equilibrium  counterpart. Inserting  (3.20), with
k‘|=k|'|=0, into (3.21) one arrives at

2 kg Té 2
((8T)*) = oL [1+ A(Ny,N.)B+B(Ny, N, )B?] ,(3.22)

where the quantity ky T3 /pcL corresponds to the aver-
aged equilibrium temperature correlation function
((8T)? )eq» Which coincides with the thermodynamical re-
sult.!! This limiting value holds when the nonequilibri-
um parameter or reduced temperature

TL - TO
TO

I

B (3.23)

vanishes, irrespective of the values of Ny and N,. This
fact must be emphasized, since it indicates that at equilibl—

I.=

fOLdy dy' [ dodo’(8T(y,k,=0;0)8T (y',kj=0;0)) ,

17~ [1—cosh()—N .. sinh(7)]

(3.21)

rium the presence of the imperfectly conducting boun-
daries only affects the spectrum of the correlation func-
tion, but not its averaged intensity. Clearly, this behavior
fails out of equilibrium, due to the lack of translational
invariance produced by the external gradients. On the
other hand, the dimensionless functions A4 (Ny,N;, and
B(Ny,N; ), introduced in (3.22), are defined by

2 2
A(Ny,N;)=a 1+N—0+;(IO_IL) , (3.24)
2 1 1 1 1
B(Ng,Np)=a* | S +—+—+ -
(No,Np)=a ERTRA a[NoNL n
2
+ 7TN0 (IO_IL _NOIL) . (3.25)
Here a is the combination of the Nusselt numbers
NoN,
= . 3.26
T No+N_+N,N, (3.26)

which is simply the ratio between the overall heat con-
ductivity and the actual heat conductivity of the fluid:
A/A. Moreover, I, and I, are functions of the Nusselt
numbers defined by the integrals

2

1 0
N2 fo dx

where 7=0,L and n=(x /i)!/2

Expression (3.22) constitutes our main result. It has an
interesting interpretation, since it enables us to clearly
identify the roles on the correlation function of the none-
quilibrium and boundary effects. The former enter

sinh(n)+(Ng '+ N )y cosh(n)+Ng'!

— (3.27)

N; 'n’sinh(7)

through 3, whereas the latter are related to the functions
A and B.

Now we will proceed to study the averaged tempera-
ture correlation for the cases introduced in Sec. II.

(i) Both Nusselt numbers are equal to N. In this case



44 FINITE-SIZE EFFECTS IN NONEQUILIBRIUM . .. 1081

I,=1I; and 4 (N)=1, whereas B remains Nusselt depen-
dent. For perfectly conducting and perfectly insulating
boundaries one has, respectively,

B(N>1)=3 ,
1

) .,
27

(3.28)

B(N «<1)= Ny=1. (3.29)
This second limit has been computed numerically and the
value of NI, has been represented in Fig. 1 as a function
of N. Consequently, the averaged temperature correla-

tion is given in both limits by
(BT)) yso1 =BT ) (1 +B+ 3B,
(BT y i1 =(BT)P)(1+B+ 1Y),

(3.30)
(3.31)

Therefore the difference between both correlations, nor-
malized to the equilibrium value, will be equal to 32/6.
In Fig. 2 we have plotted the quantity
F(N) <(8T)2>N>>1_<(8T)2)

2 2 2 =5 —B(N)

B B (8T)?)

versus the Nusselt number. Such a function gives us glo-
bal information about the influence of the boundary con-

ditions on the correlation function. In fact, from (3.28)
and (3.29) one has

F(IN>1)=0,
7(N<<1)=%ﬁ2.

i

(3.32)

(3.33)
(3.34)

From our analysis we then conclude that the correction
introduced by the presence of identical walls in the sys-
tem will be maximum for N <<1 and its value is 3%/6.

1.0
5 4
~
b4
0.5 H
0.0 ' T T
-5 0 5

10810(N)

FIG. 1. We represent the product NI (N) as a function of the
log,, of the Nusselt number, for Ny=N; =N. In this case
I,=I,=I

0.2
~

§ 1/6
Z
-

0.1 +

0.0 . 7

—4 0 4

10810(N)

FIG. 2. The function F#(N)/f?, accounting for the influence
of the finite size of the system in the correlation function, is
plotted vs logo(N). In this case No=N; =N.

On the other hand, the limiting case (3.33) corresponds to
the case treated in Refs. 12 and 13, using perfectly con-
ducting boundaries.

(ii) The Nusselt numbers are very different. First of all
we will analyze the case Ny <<1, N; >>1. In this case
a=Nyand I,>>I;. We then obtain

2 2
A=N, |=—+=1,|=2, 3.35
0|y T o (3.35)

1 2
B=~NZ|—+—"-1,|~1. 3.36
N3 N2 T, o (3.36)

In these expressions use has been made of the fact that
the quantity NI, is negligible, which is illustrated in Fig.
3. Asin the former case, we can now define the quantity

<(8T)2>NT<<1'NV>>1—<(8T)2>NT'NV>>1
(BT
T%V, 7,v=0,L

9(N.,N,)=

>

(3.37)

accounting for the finite-size effects on the correlation
function due to the presence of an insulating boundary at
y =7. In view of (3.30), (3.35), and (3.36) one obtains

Q(No,Np)=B+ LB . (3.38)

This quantity contains a linear term in the reduced tem-
perature 3 and therefore the correction to the correlation
function due to the finite size of the system may be larger
than in the former case. One may also discuss the oppo-
site case in which Ng>>1 and N; << 1. This implies that
a~N; and I,<<I;. Hence A ~N,; and B~N}. Conse-
quently,
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N = 102

log;o(Io)

-2 : T =
-5 0

10810(1\70)

w

FIG. 3. Typical behavior of the integral I4(Ny, N, ) as a func-
tion of Ny, for different values of N,. The integral I; behaves
similarly.

9N, ,Ny)=—B—3p*, (3.39)

which also exhibits a linear term in 3. Notice that the
function $(N;,N,) is not a symmetric function of its ar-
guments due to the presence, in the general expression
(3.22), of a quadratic term in the reduced temperature. It
is worth pointing out that the functions $(N_,N,) com-
pare the averaged correlations corresponding to two
different stationary states, namely (2.8) and 7,=T,,

3
- — ~[Fg=10"]
—
S
Z,
= \
= N
) \
4
£
<
\ B N\
~ N
0 T = — r
—4 0 4
log10(No)
FIG. 4. The dimensionless functions A4(Ny,N;) and

B(Ny, N, ) have been plotted vs N, for N, =10% and 1072,

v=0,L. For this reason they become linear in /3.

Finally, to make it clear that the finite-size effects enter
the mean-square fluctuation mainly due to the
modification of the stationary state with respect to'(2.8),
we have computed that quantity in the case of “stick”
boundary conditions for 87, but assuming (2.5) instead of
(2.8). This is, of course, a nonconsistent approach, but it
allows us to clearly illustrate the relevance of the
modified reference state. Using the expression for the
temperature correlation function”!'>!® and taking the
average (3.21), one obtains an expression similar to (3.22)
but with

A'(Ny,Np)=a 1+i , (3.40)
No
5 1 1
B'(No,Np)=a* | —=—+—+—| . 3.41
(Ng,Ny)=a 12 TN, N%] (3.41)
These functions differ from the expressions for

A(Ny,N;) and B(N,y,N; ), given by (3.24) and (3.25), in
some terms which are very small for N >>1 and N <<1.
For intermediate Nusselt numbers, however, these terms
become relevant. In Fig. 4 we have represented the func-
tions A(Ny,N;) and B(N,, N, ) appearing in the general
expressions (3.24) and (3.25) for N, =10% and N, =102

IV. CORRELATION FUNCTIONS
IN THE CASE OF MASS DIFFUSION

The formalism developed in Sec. III can be extended to
the case of mass diffusion. Due to the similarity with the
case of heat diffusion, we do not repeat here the whole
analysis but only indicate its main steps. We can also for-
mulate the corresponding boundary value problem, as we
did in (3.4)-(3.6) and solve for the number density fluc-
tuations which depend also on the Green function and on
the stochastic currents at both boundaries. To compute
the correlation function, we should keep in mind the
different nature of this second problem. In fact, we must
now formulate the fluctuation-dissipation theorems

(TR k)T Ry ks0')
=2(27)’DN,(3)8(y —y")8(w+aw")8(k,+k|S;; ,

(4.1)

(T§(kj;0)T8 (Kj;0"))
=2(27)’kpN(0)8(0+0")8(k +k|) ,  (4.2)
=202m)k N, (L)8(w+ 0" )8k, +k|) , (4.3)

where &= +iDkj, and JR and T é .. are the stochastic
currents corresponding to the diffusion and chemical re-
action processes. The form of (4.2) and (4.3) also follows
to guarantee the time-reversal symmetry of the number-
density correlation function for a system at equilibrium.

The formal solution for the number density together
with the fluctuation-dissipation theorems (4.1)—(4.3) lead
to the correlation function
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(BN (p,k;@)8My' kj;0')) =2(27)°8(0+0")8(k, + k)

X | =[G (y,y @N(y")+G(y',y;& W (p)]

—%[[aTNs(T)]G(y,T;cT))G(y’,r;a')}:ig ,

where the Green function is analogous to the one given in
(3.12). The first term on the right-hand side of (4.4)
comes from the bulk noise, whereas the second is due to
surface noise. Due to the linear character of the station-
ary profile, the surface term in (4.4) will be proportional
to the density gradient VAN,. We will now compute the
quantity {(8/)?), defined through an expression similar
to (3.21). One arrives at

(BN =((BN)?) g [1+ A(No, N, )B] 4.5)
in which ((SJ\/)z)quno/L.“ Here the nonequilibrium

parameter ﬁ is also the reduced number density

p=lr o 4.6)

AN Np=a |+ 4Lyt |
2 o T

4.7)

where fo, fL, and @ are defined as they were in (3.26) and
(3.27). It is worth pointing out that in this case the aver-
aged correlation is linear in the reduced concentration B.
When both Nusselt numbers are equal (No=N_ =N),
onehas@=N/(2+N), I,=1;, and

ANy, Np)=1; 4.8)
consequently {(8N)?) does not depend on the Nusselt
number N. On the contrary, when the Nusselt numbers
are very different we arrive at

é(ﬁo,ﬁL)'—\—’%B\, (49)
9N, Ny=~—18, (4.10)

where §(1’\\’L,f\\70) is defined as it was in (3.37). Notice
that in this case the relevance of the finite-size effects is
directly related to the different nature of the boundaries.

V. DISCUSSION

In the light of the results obtained in the preceding sec-
tions the following comments are in order.

We have computed and analyzed the correlation func-
tions in systems away from equilibrium, due to the pres-
ence of external gradients. Instead of assuming “stick”
boundary conditions for the hydrodynamic and fluctuat-
ing fields, as usually done in previous analyses, we have
considered general Neumann-Dirichlet boundary condi-
tions. These boundary conditions introduce Nusselt
numbers which are also present in the final form of the
correlation functions. This fact allows us to include the

(4.4)

[

nature of the surfaces and the size of the system in the
whole analysis. We conclude that the boundary effects
will be important for N <<1, whereas bulk noise dom-
inates for N >>1.

We have analyzed diffusion processes, in particular
thermal conduction and mass diffusion. Both problems
are quite similar, and the associated averaged correla-
tions depend on the reduced temperature and concentra-
tion, respectively. For thermal modes one obtains correc-
tions due to the presence of the boundaries which are
quadratic in the reduced temperature, in the case in
which the Nusselt numbers relative to the boundaries are
equal, whereas for different Nusselt numbers the correc-
tions become linear. Therefore finite-size effects are more
important when the boundaries are different or, in other
words, for very different Nusselt numbers. Essentially,
this feature is due to the modification of the stationary
temperature profile with respect to the case Ny, N; >>1.
Notice also that the Nusselt number defined through (2.4)
or (2.16) can be interpreted as the ratio between the size
of the system and the effective thickness A /€. This would
explain the saturation effect of the function F(AN), which
occurs for N << 1, as showed in Fig. 2.

In experiments with fluids under large temperature
gradients at room temperature, VT is typically of the or-
der 10’K/cm, L~10""! cm, and T,~10% K, therefore
B=10"'. This introduces small corrections in case (i),
whereas the corrections in case (ii) are of the order of
10%. Moreover, the smaller the reference temperature,
the larger the correction.

Our formalism may be applied to a wide variety of real
situations. For instance, we could study the case in
which thermal contacts are not perfect due to the pres-
ence of impurities or small skins of poor conductors. To
be precise, when the fluid is water or toluene and there
exists a layer of air or oxide between the fluid and the
thermal reservoir, one may use the equality between the
fluxes

oT _ A
y  d (T—Ty),
where A’ is the heat conductivity of the layer and d its
thickness. According to (2.2) and (2.4) the heat transfer
coefficient is A’ /d and the Nusselt number is
AL
N Ad’

(5.1)

(5.2)

therefore boundary effects depend on the ratio between
both conductivities and the aspect ratio.

Numerical simulations of the temperature and concen-
tration correlation functions!* or light-scattering experi-
ments>!® could be performed to check the validity of our
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results. In particular it is possible to compute the struc-
ture factor S(k,,t=0) for wave vectors perpendicular to
the plates, kK, =2wn /L, n EZ. We have shown that this
quantity is quite insensitive to variations of n. Therefore
the intensity I under the Rayleigh peak

I=S(n,t=0)=8(n=0,t=0)=((8T)*) (5.3)
is basically proportional to {(8T)*), which follows from
(3.22) and in principle could be measured.

Our analysis could also be extended to more general
and interesting situations in which viscous or sound
modes are present. For instance, a similar treatment
could be carried out to arrive at scaling laws for the den-
sity correlation function following the expression given
by Satten and Ronis in Ref. 4. We ultimately predict

1
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modifications in the critical behavior of nonequilibrium
systems when boundary effects are taken into account. !®
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APPENDIX

Our aim in this appendix is to analyze the averaged
equal time correlation function (3.21) for nonzero wave
vectors k. To this end we start from the generalized ver-
sion of (3.21)

(BT1)y, = ————2f dydy' [© dodo'(8T(y,k;@)8T (y', k")) . (A1)
Substituting (3.20) into expression (A1) yields
(BT = Np;8)B+B(No,N.; OB, (A2)
where use has been made of the definitions
AN, N6 =a |1+ -2 +2(T,—T,) (A3)
0 NL36)= N, w0
BN No=a? |+ L+ Ly 2 77 —NT) [+ BN, 30 (A4)
04V LsS/— 3 NO NO 1TN 0 L ofL 0°4VL>» ’
the function H being
(N, Ny ;6)=a? 1 1 (1—a)¢sinh(§)+2a[cosh(§)—1] (A5)

& & a(1+Ny N 1E%)sinh(&)+(1—a) cosh(E)

In these expressions { =k L and the integrals I, and I correspond to (3.27) with n=(&*—ix)'/%.
We will analyze the behavior of H, T,,, and I in the cases £ <1 and £>1. When £ <1 we can expand the function H

in powers of £. One arrives at

2

15

1 1 +1—

HNo. N6 <D=\ Nov, + 7 3a

3+§2

In the case Ny >>1, Ny >>1 (perfectly conducting boun-
daries), this expression gives

H(Ng>>1,N, > 1;6< 1)~ —1 6+

D (A7)

Furthermore it is possible to show by numerical analysis
that T, L(§<<1)~Io L(&=0)=I, . Then one concludes
that A(t<<1)=A(t=0)= 4 and B(c«<1)
~B(£{=0)=B N

On the other hand, when £ >>1 the function H behaves
as

5 a2 112 1 7 2 a 2
—-—a——=— —a‘—— | la“+ - .
24 12 N(Z)NI% NoN; | 12 2
(A6)
|
H(Ny,Np;E>>1)~ (A8)

and the integrals 70 (&>>1) are negligible. This result
may be interpreted as follows. Notice that the functions
H, T,, and I, come from the long- range terms of the
correlation function (3.20). In particular, H corresponds
to the second term on the right-hand side of this expres-
sion, whereas Toy . are related to the third term, which
contains the Green functions evaluated at y =0,L.
Therefore, when §>>1 the leading terms in the correla-
tion function (A1) are the local ones, related to the first
term in the large parentheses of (3.20), and long-range
correlations are negligible.!” Then, finite-size effects are
only due to the modification of the stationary tempera-
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ture profile. However, one has A({>>1)=4' [Eq.
(3.40)], but B(£>>1)+B' [Eq. (3.41)], the reason being
the fact that B’ contains a long-range contribution that
disappears in the situation {>>1.

On the contrary, when £ <1, 4 and B are practically
insensible to the value of §, consequently, the long-range
contributions become important. Our analysis over the
relevance of finite-size effects clearly applies to this case.

1A.-M. S. Tremblay, in Recent Developments in Nonequilibrium
Thermodynamics, edited by J. Casas-Vazquez et al.
(Springer, Berlin, 1984), p. 267.

2D. Ronis and 1. Procaccia, Phys. Rev. A 26, 1812 (1982).

3B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers,
Phys. Rev. A 41, 816 (1990).

4G. Satten and D. Ronis, Phys. Rev. A 26, 940 (1982).

5H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, Oxford, England 1959), Chap. IV.

6V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall,
London, 1962).

7J. M. Rubi, A. Dfaz-Guilera, and L. Torner, Physica A 141,
220 (1987).

8L. Torner, J. M. Rubi{, and A. Diaz-Guilera, Physica A 157,
1018 (1989).

9P. M. Morse and H. Feshback, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), Chap. VII.

10G, Satten and D. Ronis, Physica A 125, 281 (1984).

111, D. Landau and E. M. Lifshitz, Statistical Mechanics (Per-
gamon, New York, 1980).

12G. Nicolis and M. Malek-Mansour, Phys. Rev. A 29, 2845
(1984).

13§, M. Rubf, in Recent Developments in Nonequilibrium Ther-
modynamics, edited by J. Casas-Vazquez et al. (Springer, Ber-
lin, 1986), p. 23.

14M. Mareschal and E. Kestemont, Phys. Rev. A 30, 1158
(1984); A. Garcia, M. Malek Mansour, G. Lie, M. Mareschal,
and E. Clementi, ibid. 36, 4348 (1987).

15A.-M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A
23, 1451 (1981).

161, Goldhirsch and I. Procaccia, Phys. Rev. A 24, 580 (1981).

17See, for instance, Eqgs. (2.6) and (2.7) of Ref. 7, which corre-
spond to the case No, Ny — .



