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Morphological changes in convection-diffusion-limited deposition
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The effect of hydrodynamic flow upon diffusion-limited deposition on a line is investigated using a
Monte Carlo model. The growth process is governed by the convection and diffusion field. The
convective diffusion field is simulated by the biased-random walker resulting from a superimposed
drift that represents the convective flow. The development of distinct morphologies is found with
varying direction and strength of drift. By introducing a horizontal drift parallel to the deposition
plate, the diffusion-limited deposit changes into a single needle inclined to the plate. The width of
the needle decreases with increasing strength of drift. The angle between the needle and the plate is
about 45° at high flow rate. In the presence of an inclined drift to the plate, the convection-
diffusion-limited deposit leads to the formation of a characteristic columnar morphology. In the
limiting case where the convection dominates, the deposition process is equivalent to ballistic depo-

sition onto an inclined surface.

I. INTRODUCTION

Recently there has been increasing interest in a variety
of nonequilibrium aggregation and deposition models
such as the diffusion-limited aggregation (DLA) model
and ballistic deposition.! ™!! A variety of computer simu-
lations have been carried out to investigate the relation-
ships between the cluster geometry and growth mecha-
nisms. The structure of the aggregates strongly depends
on the dynamics of the growth process. The most simple
growth models are ballistic deposition and diffusion-
limited aggregation.!'! The ballistic deposition model
provides a basis for understanding deposition processes
used to prepare a wide variety of thin-film devices. The
diffusion-limited-aggregation model presents a prototype
of the pattern formation of diffusive systems including
the electrochemical deposition, crystal growth, viscous
fingering, and dielectric breakdown.!! Several simple
generalizations of the DLA model have been carried out
to take into account particle drift, >~ !# sticking probabil-
ity,1>1¢ surface tension,'’™1° finite viscosity ratio,?°~%3
multiparticle effect,?*?% and lifetime effects.?® Meakin'?
investigated the effect of particle drift on DLA with the
use of a biased-random walker and found a crossover
phenomenon from the DLA fractal to the dense aggrega-
tion. Furthermore, the structural phase transition be-
tween the needle structure and the dense aggregate was
found by inverting the direction of the radial drift.'* The
morphological changes from the dense deposit to the
columnar structure was shown by simulations of ballistic
deposition onto an inclined surface.?’ Xiao, Alexander,
and Rosenberger?® simulated the morphological evolu-
tion of crystals growing under the influence of a uniform
drift. It has been found that the drift has an important
effect on the morphology of the deposit. Also, in the
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electrochemical deposition experiments, it has been sug-
gested that the convection may have an important effect
on the morphology.?*3° However, there is an open ques-
tion whether or not the direction of drift has an effective
effect on the morphology of the deposit.

In this paper we study the morphological evolution of
the convection-diffusion-limited aggregation deposited on
a line by changing direction of the hydrodynamic flow.
The growth process is governed by the convection and
diffusion fields. We simulate the convective diffusion field
by using a biased-random walker resulting from a super-
imposed drift which represents the convective flow. The
distinct morphologies are found with varying direction
and strength of flow. Especially the introduction of a
horizontal flow parallel to the deposition plate changes
the morphologies of diffusion-limited deposits into a sin-
gle needle inclined to the plate. We find that the width of
the needle decreases with increasing strength of flow and
the angle between the needle and the plate is about 45° at
high flow rate. Furthermore, it is found that the intro-
duction of an inclined flow to the plane also leads in this
case to the formation of a columnar morphology. In the
limiting case in which the convection dominates, it is
shown that the deposition process approaches the ballis-
tic deposition onto an inclined surface.?’”3132 We also
calculate the growth probability distributions on the nee-
dles and study the effect of the flow on the growth proba-
bility distribution.

The organization of the paper is as follows. In Sec. IT
we present the basic equation of the convective-diffusion
field. We give the discrete version of the convective-
diffusion equation for simulation. In Sec. III we present
the computational results. The development of the dis-
tinct morphologies is shown in the figures. In Sec. IV we
show the growth probability distributions of the needles
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under various flow conditions. The relationship between
the tip velocity and the inclined angle of the needle is dis-
cussed. Section V presents the summary.

II. BASIC EQUATION AND MODEL

We consider the deposition process growing on a sur-
face in two dimensions. The pattern formation is
governed by the convective-diffusion field of a component
outside the growing deposit without surface kinetics.
Figure 1 shows a schematic representation of the prob-
lem. The concentration C of the diffusing component
with convection satisfies the convective diffusion equation
under the quasistationary approximation

2 2
ux—a£+uya—C=Da—C+Da—C— , (1)
ax ay dx? ay2

where u, and u, are the x and y components of the veloc-
ity, D is the diffusion constant. The velocity is assumed
to be constant. We consider the convective-diffusion field
within a square of dimension L XL. The deposit grows
from the lower boundary towards the upper boundary.
The boundary conditions in the horizontal direction are
periodic in order to simulate an infinite half-plane. The
concentration on the surface of the deposit is zero, and
the concentration at the upper boundary is constant C,.
To cast the convective-diffusion equation in dimension-
less form, we use the following units: C, for the concen-
tration, a for distance. Then Eq. (1) becomes

Yax Yoy aw? p?’
where O, (or y) = Ux (or p@ /D, C=cC/Cy, 2=x/a, and
9=y /a. Careted variables are all dimensionless. The di-
mensionless velocity 0 represents the Peclet number.
The boundary conditions are given by €=0 on the sur-

face of the deposit, and C=1 on the upper boundary.
Now we consider the simulation of the aggregation pro-
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FIG. 1. Schematic representation of the diffusion-limited ag-
gregation in the presence of the hydrodynamic flow. Particles
are introduced one at a time at a randomly chosen point on the
upper boundary. The particle performs a biased-random walk
following the hydrodynamic flow. The lateral boundary is
periodic. (BC represents boundary condition.)
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cess following Eq. (2). The convective diffusing particles
undergo random walks except for a bias resulting from
the convection. The probability p(i,j) that the biased
random walker visit the site (i, j) satisfies the equation

.. I_PX—P)’ . .
p(i,j)= 1 pli+1,j)
1—P_—P
+ | Pt ——— [p(i = 1,))
1—P_—P
+ |——2 |pli,j+1)
4
1-P,—P,
+ Pyt ——— pli,j—1), (3a)
where
P = 0, P = 0, (3b)
*+0,+0,7 7 140,40,

We choose the reference length a to be the lattice spac-
ing. P, and P, represent the horizontal and the vertical
drifts resulting from the convective flow. The horizontal
and vertical drifts are obtained from the velocity of the
convection via Eq. (3b). The drift is defined by Eq. (3b).
The convective diffusion field can be simulated by using a
biased-random walker resulting from a superimposed
drift which represents the convective flow.

One can also use the other method proposed by Xiao,
Alexander, and Rosenberger. 22 In their simulation
method, the drift is superimposed on each step of random
walk. The results of their simulation are almost the same
as our results. However, in their case, the drift 0): (or )
must always be used as an integer. Instead, the simula-
tion with use of Eq. (3) is possible for any drifts. The
simulation by Eq. (3) is thus more general than that by
Xiao, Alexander, and Rosenberger.?> We use Eq. (3) for
our simulation here.

III. SIMULATION RESULT

We summarize the algorithm of the simulation process
(see Fig. 1). We consider the diffusive system with both
horizontal and vertical drift. The simulation of the DLA
cluster formation in the presence of the horizontal and
vertical drift of particles is carried out with the use of a
simple square lattice. We consider a subset of the square
lattice enclosed by square with 300X 300 (units). We
start out with an occupied plate (shown by the shaded
line in Fig. 1) on the bottom of the square. The lateral
boundary is periodic. Particles are introduced one at a
time at a randomly chosen point on the upper boundary.
We allow particles to follow horizontal and vertical
biased random trajectories in the vicinity of the original
occupied plate. For a horizontal drift, particles perform
a horizontally biased random walk with drift probability
P, toward the horizontal direction. For both horizontal
and vertical drift, particles perform a biased Brownian
motion with drift probability P, along the vertical direc-
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tion (taken arbitrarily positive when directed towards the
plate) and with drift probability P, along the horizontal
direction (positive to the right). The particle continues to
move until it either reaches a point adjacent to a site al-
ready occupied by a particle or until it reaches the upper
boundary. When the particle reaches a point adjacent to
a site already occupied by a particle, it sticks on the ag-
gregate. When the particle reaches the upper boundary,
the random walker is annihilated. We repeat the pro-
cedure. The clusters are grown until the height reaches
150 units. We have carried out calculations for a range
of P, values (0 <P, <1) under the pure horizontal drift.
We have also performed calculations for a range of P,
and P, values (0 <P, +P, <1) in the presence of the hor-
izontal and the vertical drift. Figure 2 shows the results
obtained for pure horizontal drifts by using the pro-
cedures outlined above. Figures 2(a)-2(d) show, respec-
tively, the clusters for P, =0.05, 0.1, 0.2, and 0.5. By in-
troducing the horizontal drift, the overall shape of the de-
posit changes into a single tree. As the horizontal drift
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FIG. 2. Typical patterns grown under pure horizontal drifts.
By introducing the horizontal drift, the DLA changes into a sin-
gle needle structure. (a) P, =0.05. (b) P,=0.1. (c) P,=0.2. (d)
P, =0.5.
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increases, the shape of the cluster becomes a less ramified
structure and changes finally into a single needle inclined
against the drift. In the limit of P, —O0, the cluster ap-
proaches to the DLA fractal. The introduction of the
horizontal drift has a strong effect upon the structure of
the cluster. The horizontal drift induces a strong screen-
ing. The screening effect prevents particles to go in the
inner part of the deposit. The tip of the cluster grows
mainly. The single needle forming under the horizontal
drift should be compared with the dense structure form-
ing in the presence of an attractive vertical drift.33 As a
second step, we study the combined effect of the horizon-
tal drift and the vertical drift upon the DLA deposition.
First, we vary the horizontal drift under the condition of
constant vertical drift. Figures 3(a)-3(d) show, respec-
tively, the patterns obtained from P,=0.1:P,=0.1,
P,=0.3:P,=0.1, P,=0.5:P,=0.1, and P, =0.7:P,=0.1.

3»”! e \?\' I S 1 I A

FIG. 3. Typical patterns grown by varying the horizontal
drift under the condition of constant vertical drift. With in-
creasing horizontal drift, the pattern of the deposits changes
into the columnar morphology. (a) P,=0.1:P,=0.1. (b)
P,=0.3:P,=0.1. (c) P,=0.5:P,=0.1. (d) P,=0.7:P,=0.1.
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With increasing horizontal drift, the pattern of the depos-
its changes into the columnar morphology. The width
and the number of the columns decrease with increasing
horizontal drift. In the limit of no horizontal drift, the
pattern of the deposits is similar to the dense structure in
the DLA with pure vertical drift.>> On the other hand,
approaching the limit of P, +P,=1, the pattern adopts
the columnar morphology in the ballistic model onto an
inclined surface.?”*! For further use we call the ballistic
model onto an inclined surface the inclined ballistic mod-
el. Second, we vary the vertical drift under the condition
of the constant horizontal drift. Figures 4(a)—4(d) show,
respectively, the patterns obtained under the follow-
ing conditions: P,=0.5:P,=0.5, P,=0.5:P,=0.3,
P,=05:P,=0.2, and P,=0.5:P,=0.1. With decreasing
vertical drift, the pattern of the deposits changes again
into the columnar structure. The number of the columns

FIG. 4. Typical patterns grown by varying the vertical drift
under the condition of constant horizontal drift. With decreas-
ing vertical drift, the pattern of the deposits changes into
the columnar morphology. (a) P,=0.5:P,=0.5. (b)
P,=0.5:P,=03. (c) P, =0.5:P,=0.2. (d) P,=0.5:P,=0.1.
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FIG. 5. Typical patterns grown by the inclined ballistic
model. (a) P,=0.5:P,=0.5. (b) P,=0.75:P,=0.25. (c)
P,=0.9:P,=0.1.
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decreases with the vertical drift. For comparison, we
show the patterns obtained from the pure ballistic model
in Fig. 5. Figures 5(a)-5(c) show, respectively, the pat-
terns for Px=0.5:Py=0.5, P, =0.75:Py=0.25, and
P, =0.9:P,=0.1. In the limit where the convection dom-
inates the diffusion, the inclined ballistic model is ob-
tained. In summary, by adding the vertical drift to the
horizontal drift, the structure of the pattern with the sin-
gle needle changes into the columnar morphology. The

upper boundary

flow

TS
deposition plate

FIG. 6. Model of the needle for calculating the growth prob-
ability distribution under various drift conditions. The needle is
modeled by the line with the inclined angle 45°. The growth
probability distributions on the line are calculated with varying
strength and direction of the drift.



2974

direction of the drift has an important effect upon the
deposition process.

IV. GROWTH PROBABILITY DISTRIBUTION

We study the growth probability distributions on the
inclined needle under various drift conditions. We dis-
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FIG. 7. Growth probability distributions under pure hor-
izontal drifts. (a) P, =0.3. (b) P,=0.5. (c) P, =0.7.
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cuss the morphology changes between the single needle
and the columnar structure. Furthermore, we discuss the
relationship between the tip velocity and the inclined an-
gle of the needle. For simplicity, we consider a line with
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FIG. 8. Growth probability distributions obtained by adding
the vertical drift P,=0.1 to the horizontal drifts. The growth
probability distributions in Figs. 7(a)-7(c) change, respectively,
into 8(a)-8(c).
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TABLE I. Growth probabilities at the tips of the needles for Figs. 7(a)-7(c) and 8(a)-8(c). The com-
parison of the inclined angle obtained from Eq. (6) with that from the simulation.

Px Py tan"'(p, /p,) ¢ (simulation)
Fig. 7(a) 0.098+0.01 0.072+0.01 36.3°+7° 43°
Fig. 7(b) 0.115+0.01 0.094+0.01 39.3°£7° 41°
Fig. 7(c) 0.139+0.01 0.137%0.01 44.6°+7° 47°
Fig. 8(a) 0.0234+0.01 0.014+0.01 31.3°x7° 45°
Fig. 8(b) 0.027+0.01 0.023%0.01 40.4°+7° 46°
Fig. 8(c) 0.030+0.01 0.02740.01 42.0°+7° 43°

an inclined angle 45° for modeling the inclined needle.
Figure 6 shows the model of the needle. The model line
is the height 150 with the inclined angle 45° within the
square 300X300. We calculate the growth probability
distributions on the line with varying strength and direc-
tion of the drift. Furthermore, we calculate the tip veloc-
ity. The growth probability distribution on the model
line is calculated as follows. First, particles are intro-
duced one at a time at a randomly chosen point on the
upper boundary. The particle performs a biased-random
walk following Eq. (3). The particle continues to move
until it reaches a point adjacent to the model line, until it
lands on the plate, or until it reaches the upper boundary.
The sites on the model line have the counter associated to
its vertical ordinate. The sites on the plate correspond to
h=1. The number of times that the particle hits the site
is counted. As soon as the particle hits the model line,
the particle is removed. When the particle reaches the
upper boundary, it is also annihilated. A new particle is
introduced at randomly chosen point on the upper
boundary. The procedure is repeated up to 10000 times.
Thus one can obtain the growth probability distribution
on the model line. Figure 7 shows the growth probability
distributions for some horizontal drifts. The growth
probability distributions in Figs. 7(a)-7(c) give, respec-
tively, those for horizontal drift P, =0.3, 0.5, and 0.7.
With the increasing strength of the horizontal drift, the
growth probability distribution rapidly accumulates near
the tip of the needle. Only the tip of the needle grows.
The inner part of the needle is screened strongly. The
structure of the single needle forming under the pure hor-
izontal drift is thus due to the strong screening effect.
Furthermore, we study how the growth probability distri-
bution varies by adding the vertical drift to the horizon-
tal drift. Figures 8(a)-8(c) show, respectively, the growth
probability distributions for both vertical and horizon-
tal  drifts P,=0.3:P,=01, P,=0.5:P,=0.1, and
P,=0.7:P,=0.1. By adding the vertical drift P,=0.1 to
the horizontal drifts, the growth probability distributions
in Figs. 7(a)-(7c) change into those in Figs. 8(a)-8(c). The
screening effects of the horizontal drift are strongly weak-
ened by adding the vertical drift. In the condition of Fig.
8(a), particles can reach the plate. A peak in the growth
probability distribution appearing for A=1 shows the
probability that particles can reach the plate. Actually, a
steep change is observed regarding the probability of
landing on the plate when increasing the horizontal drift
[compare Figs. 8(b) and 8(c) with 8(a)]. This somewhat
unrealistic feature of the simulations is probably related

to the practical utilization of the model line as it is used
here. The introduction of the vertical drift breaks the
screening effect. Thus, by adding the vertical drift to the
horizontal drift, the pattern changes from the single nee-
dle into the columnar morphology. We can explain the
morphological changes in terms of the growth probability
distribution.

We consider the tip velocity and the inclined angle of
the needle. The tip velocity is proportional to the growth
probability of the tip. The horizontal velocity u, and the
vertical velocity u, at the tip are respectively proportion-
al to the horizontal growth probability p, and the vertical
growth probability p, at the tip:

Uy =Px > 4)

u,~p, . (5)
The inclined angle of the needle is given by

¢=tan_1(uy/ux)=tan_‘(py/px) . (6)

We show the growth probabilities of the tips for Figs.
7(a)-7(c) and 8(a)-8(c) in Table I. We also compare the
inclined angle calculated from Eq. (7) with that from the
simulation. The value of the inclined angle derived from
Eq. (7) has a slightly smaller value than that from the
simulation. The difference may be due to approximating
the needle by the inclined line. The fluctuation of the in-
clined angle may be due to small size of system as it is
used here. Meakin?’ obtained ¢=33° for the inclined
ballistic model with the inclined angle 90°. This value
corresponds to the limit of pure horizontal drift. Our
simulation result is not as small as that by Meakin.?’
This inconsistency is due to small system sizes as it is
used here.

V. SUMMARY

We investigate the effect of hydrodynamic flow upon
the diffusion-limited deposition using a Monte Carlo
model. We simulate the pattern formation governed by
the convection and diffusion by making use of the
biased-random walker. We find that distinct morpholo-
gies develop with varying direction and strength of flow.
We show that the diffusion-limited deposit changes into a
single needle inclined to the plate by introducing a hor-
izontal flow parallel to the deposition plate. The width of
the needle decreases with increasing strength of flow. We
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also find that deposits with the typical columnar mor-
phology form in the presence of both horizontal and vert-
ical flow. We calculate the growth probability distribu-
tion on the inclined needle. We show that the morpho-
logical changes can be explained in terms of the growth
probability distribution.
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