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Relaxational processes in bistable potentials close to marginal conditions are studied under the com-
bined effect of additive and multiplicative fluctuations. Characteristic time scales associated with the
first-passage-time-distribution are analytically obtained. Multiplicative noise introduces large effects on
the characteristic decay times, which is particularly significant when relaxations are mediated by fluctua-
tions, i.e., below marginality and for small noise intensity. The relevance of our approach with respect
to realistic chemical bistable systems experimentally operated under external noise influences is men-

tioned.

I. INTRODUCTION

Bistability is a common feature of many different phys-
ical systems in nature. Well-known examples range from
optical devices [1] to chemical reactors [2]. The common
level of description appropriate to such situations is
based on one-variable models with multiple steady-state
solutions for a well-defined range of values of the corre-
sponding control parameter. At the limiting points of
such a bistable regime, the unstable and locally stable
branches of steady-state solutions coalesce into a margin-
ally stable solution. A complementary representation,
particularly useful to the discussion of dynamical pro-
cesses in bistable situations such as those we propose
here, is based on a potential whose extrema are the previ-
ously identified steady-state solutions. Marginality, and
correspondingly the state of marginal stability, is then as-
sociated with the existence of an inflection stationary
point of such a potential.

By referring to this potential picture, it is easy to un-
derstand that relaxational dynamics sufficiently close to
the marginal conditions will be singularly sensitive to
noise effects. Consider, for example, typical relaxational
experiments crossing over a barrier between metastable
states (below marginality) or passing through a saddle
point (strict marginality). In both cases, these processes
are not possible under pure deterministic conditions.
Even, slightly above marginality, when fluctuations are
not strictly necessary to make possible the relaxational
process, they will considerably influence its natural time
scale.

Relaxational dynamics under the influence of fluctua-
tions is commonly formulated in terms of Langevin equa-
tions for the single relevant variable of interest [3]. Noise
forces may enter into this equation in two different ways,
either additively, as a constant term, or multiplicatively
in a state-dependent way. It is reasonable to assume that
due to their different nature either one will contribute to
the relaxational process close to marginality in a
different, perhaps even opposite, way. The situation with
pure additive noise has been already addressed in the
literature [4], but to our knowledge no attempt has been
made yet to incorporate multiplicative noise effects in re-
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laxational processes close to marginality. Since it is well
known that multiplicative noise effectively results in a
modification of the deterministic potential governing the
decay dynamics, we expect to find distinctive and
significant effects arising from multiplicative noise contri-
butions, particularly important in situations of fluctua-
tions activated relaxations. This constitutes the main
concern of this paper.

Although formulated in this way this problem seems to
have a purely formal character, the discussion reported
here has a complementary motivation that comes from
realistic chemical experiments. Actually, there are well-
known chemical system [5], displaying bistability charac-
teristics when operated in open well-mixed reactors,
whose dynamical behavior close to marginal and critical
conditions has been experimentally studied [6]. The con-
trol parameter is usually taken as the input flow rate of
reactants K;. When formulating their corresponding
dynamical equations appropriate to relaxation experi-
ments close to marginality it turns out that they can be
reduced to a one-variable potential version with

Vix)=—B(x —cx?)—ax3+bx*. (1.1)

In Eq. (1.1) B is a convenient dimensionless parameter
directly associated with the flow rate. According to our
discussion above, 3 is also a measure of the distance to
strict marginality (which appears for #=0) and, addition-
ally, and this is a particular specificity of this model, it in-
troduces a quadratic term in the deterministic potential
(1.1). If we now realize that even under the most opti-
mized operating conditions it is practically impossible, as
recognized by the experimentalists themselves [6], to
completely suppress external disturbances affecting the
control parameter K, we immediately recognize that the
experiments mentioned above should be genuine candi-
dates for studying the combined effects of additive and
multiplicative fluctuations in relaxational dynamics close
to marginality.

Once our motivation has been clearly stated, let us
briefly comment on the techniques we will use to describe
such relaxational processes. In principle several methods
are available depending on the quantities used to describe
the dynamics. In our approach here, and since we are
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primarily interested in the modifications introduced by
multiplicative noise on the typical time scales of the re-
laxation process, we will restrict ourselves to the analysis
of relaxation times evaluated in terms of the first-
passage-time distribution (FPTD). An alternative ap-
proach, based on the transient dynamics of the statistical
moments, would be appropriate to describe transient bi-
modality phenomena. Actually, both procedures have
been separately and recently applied to relaxations close
to marginal conditions, although considering purely addi-
tive noise contributions [4,7]. Additional related ap-
proaches existing in the literature are those of Ramirez-
Piscina et al. [8] dealing with additive colored Gaussian
noise and those of Zhu, Yu, and Roy [9] who consider, as
we do here, the combined effects of additive and multipli-
cative noises but in the different context of decay process-
es from initially unstable states.

Since our primary aim concerns the discussion of gen-
eric effects that should be valid irrespective of any partic-
ular system, we will formulate the problem in terms of
the simplest model appropriate to the deterministic po-
tential (1.1). Thus, our starting Langevin equation will be
written as

=B(1—2cx)+3ax2—4abx3+(1—2dx)&(t) ,  (1.2)

where £(¢) is a Gaussian white noise prescribed of zero
mean and arbitrary intensity €. The parameters ¢ and b
are positive valued parameters, whereas ¢ will be assumed
positive or zero with restricted values (¢ <2b /3a) in or-
der to satisfy bistability requirements. The multiplicative
noise term enters into that equation through a coupling
linear function of the relevant variable x (¢). The param-
eter d may be understood as a ratio between additive and
multiplicative noise intensities. In the discussion that fol-
lows, d will be taken when necessary as a variable positive
parameter bounded from above in order to assure a posi-
tive definite diffusion throughout the whole relaxational
dynamics. The case with ¢ =d+0 would correspond to
the chemical example in Ref. [6]. By imposing ¢ =d =0
one recovers the generic model of Colet, San Miguel,
Casademunt, and Sancho in Ref. [4] dealing with additive
fluctuations.

Two main effects will turn out to be particularly

J

2285

significant in understanding the modifications, both quali-
tative and quantitative, introduced by multiplicative
noise in relaxational dynamics close to marginality.
First, and most important, is the transformation of the
deterministic potential (1.1) into an effective potential
that governs the relaxational dynamics. The second, al-
though not totally independent effect, concerns the con-
sideration of a nonconstant diffusion coefficient. Both, in
the same or opposite way, contribute to the diversity of
behavior shown by the moments of the FPTD when vary-
ing the relaxation conditions (3 and €) and the parameter
d.

In order to make our presentation as complete as possi-
ble, analytical approximated results together with exact
numerical ones will be presented. They will be obtained
within the appropriate theoretical framework in Sec. II
and discussed, respectively, in Secs. III and IV for the
first moment, the mean first-passage time (MFPT), and
the first-passage-time variance (FPTV), of the first-
passage-time distribution.

II. THEORETICAL FRAMEWORK

A. General equations

The Langevin equation (1.2) can be recasted in a more
generic way according to

Xx=f(x)+g(x)&(¢) (2.1)
where
fx)= —iI;(TX)—=B(l—2c.x)+3ax2—4bx3 ,
(2.2)
gx)=1—2dx .

Given an initial value x, the time needed for the process
to reach for the first time a prescribed scape value x is
subjected to a distribution probability, known as the
first-passage-time distribution. Its first moment, the
MFPT denoted by T; and FPTV given by
(AT y*=T,—T3, where T, is the second moment of the
FPTD, are explicitly given by the standard theory of sto-
chastic processes [10,11]:

exp[ —U(x;)+U(x,)]
f dx, [ _dx, PR , (2.3)
x x x x exp[ —U(x|)—U(x,)+U(x;)+U(x,)]
2 F 1 2 3 pl 1 2 3 4
(AT) —4fx0 dxlfwdxszdﬁf_wdx4 YERTTON , 2.4)
)
Ux)= [TanEln 2.5
(0= ["dn ) )
where a reflecting barrier is placed at x = — o and x is F(x)=f(x)+eg (x) 28 *L dg(x)
considered as an absorbing one. In the expressions dx
above, F(x) and D (x) are, respectively, the drift and the =B—2de—2(Bec —2d%€)x +3ax?—4bx>
diffusion terms associated with the stochastic process (2.6)

(2.1),

D(x)=egix)=e(1—2dx)? .
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B. Approximate methods

The remainder of this section will be devoted to the
consideration of several approximations to the exact ex-
pressions given above. Three different approximated
methods will be presented in this subsection. The first
one is based on a systematic perturbative expansion in the
parameter d. A much better representation of noise
effects is expected when they are fully incorporated
through the effective potential U(x) in (2.5). This is what
we propose in the other two procedures, the difference
between them resting in the consideration either of a con-
stant diffusion D (x) in (2.3) and (2.4) [method (ii)] or its
first-order approximation in d [method (iii)]. Finally, all
of these three methods have in common the use of a cubic
truncation of the effective potential. Actually, since we
are primarily interested in the first stages of the evolution
during which x (¢) leaves a state close to marginality, sat-
uration terms are not essential. In addition, when this
cubic truncation is used the time the system spends out-
side the region close to marginality is almost negligible,
especially for relaxations mediated by fluctuations, i.e.,
for low values of B and € [4]. Consequently, in what fol-
lows, all the approximated results will correspond to the
evolution from x,= — o to xz = o, under the considera-
tion of sufficiently small values of 8 and €.

1. Systematic small multiplicative noise expansion

The simplest way to incorporate the effect of multipli-
cative noise is considering d as a small perturbative pa-
rameter. Using a systematic expansion in that parameter
for the cubic approximation to the effective potential
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following expression to first order for the rescaled MFPT:

(a%)'3T, =T +dT{V , 2.7)
where
172
T =d(k)= g fowdxx—lﬁexp(-—kx—g.x%
(2.8)
and

T(ll):43_licq>(l)(k’k:)

172
4 © —
= :;lzc % fo dx(2x T2 —f'x 124 1x572)
Xexp(—kx —1ix3),  (2.9)
with
2
k=B [I_Bc (aEZ)—1/3’
3a
, (2.10)
k'=p|1— 2Bc (ae?)~173 .
3a

Notice that the function ®(k) is nothing but the univer-
sal function defined for the MFPT of the generic cubic
marginal model with additive noise [4]. In a similar way,
the variance is, up to first order in d,

(a26)2/3(AT)2=(AT)2(0)

2(1)

+d(a%e)3AT?, (2.11)

U (x) as well as for the diffusion term D (x) we obtain the  where
|
_ © x x x
AT =8(=4 " dx, [ " dx, [ " dxy [ dxsexpl—k (x;+x,—x3—x4)—x] —x}+x}+x}] (2.12)
and
(AT)2“’=%é(k,k',k“,k"')
=§f°° a’xlfx1 dxzfx2 dx, fxz dx,{x;+x,+x3+x,—k"(x?+x3—x3—x32)
a — o0 — o0 — —
FE2(14x7 +x3 —x3—x3)—k'(x; +,—x3—x4)])
Xexp[—k(x;+x,—x;—x,)—x3—x3+x3+x3], (2.13)
with 2. Cubic approximation to the effective potential
with constant diffusion
v _ 4Bc? 2\—1/3 The cubic approximation to the effective potential
k '—B 1 - (a6 ) ’
3 U(x) reads

(2.14)
k' = 256 (aZG)—1/3 .

In that case, the function ®(k) is the universal function
defined for the FPTV of the generic cubic marginal mod-
el with additive noise reported in Ref. [4].

U(x)z—é-(Uo+U1x+U2x2+U3x3) (2.15)
with

Ul =B—2d6 Iy

U,=p(2d —c)—2d%, (2.16)

Us=a+3%[Bd (3d —2¢)—2d’%] ,
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whereas for the diffusion term we approximate

2
_ 2Pcd

1
3a

D(x)=~eDy=¢€ (2.17)

Notice that the diffusion has been taken at a specific
point of the stochastic trajectories. The value we have
chosen is the inflection point of the cubic approximation
to the deterministic potential (1.1).

The final expressions for the mean and variance of the
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3. Cubic approximation to the effective potential
with first-order diffusion

For the third procedure presented here, we will use the
same expressions as those of the preceding subsection
with respect to the effective potential, i.e., Egs. (2.15) and
(2.16). For the diffusion term we will use the following
approximation:

first-passage-time distribution are given by 1 ~ (1 +4dx) . (2.21)
D (x) €
(V26T = -1 a(k) (2.18) ,
D, At this level of approximation, the expressions we obtain
and for the mean and variance of the first-passage-time distri-
bution read
(U§e>2/3(AT)2=—Dl—2&>(k) : (2.19)
0 (U%e)' 3T, =(T,)o+(T}), , (2.22)
where now the parameter k of the functions ®(k) and 2 .\2/3 2 2 2
®(k) is given by (U3€)*°(AT)*=(AT ) +(AT)] , (2.23)
U3
k= |U ——— [(Uye’) 13 (2.20)  where
Y7 ] 3
J
(T))y=D(k) , (2.24)
172
— 4dU, e 4dU; |7 @ —172 1172 3
(T =— 30, O (k,k')=— 30, 3 fo dx(x +k'x " )exp(—kx —ix°), (2.25)
(ATR}=®(k), (2.26)
(arp= | 2% 2&> (k,k")
17 3U3 1R
4dU, | .. x x x
= 3U32 4f_wdx1fm;dx2f_1dx3 f_;dx4[l—-k’(x3+x4)]
Xexp[ —k(x;+x,—x3—x4)—x3—x3+x3+x3] (2.27)

k being defined as in (2.20), and additionally
L 3( U% 6)1/ 3

2.28
T (2.28)

Notice that (T;), and (AT)3 would correspond respec-
tively to the results (2.18) and (2.19) if those expressions
were referred to a constant diffusion taken at the origin
x =0.

II. RESULTS FOR THE MEAN FIRST-PASSAGE TIME

A. Approximate results
1. Systematic small multiplicative noise expansion

The result for the MFPT in Eq. (2.7) deserves some
comments when comparing it with the corresponding re-
sult for the genuine cubic marginal model with pure addi-
tive noise [4]. The zeroth-order contribution already

f

shows the effect of the quadratic modification in the po-
tential (1.1) introduced through the parameter c. Howev-
er, since this term actually appears multiplied by B it
should not essentially modify the marginal characteristics
of the dynamics expressed by (1.2) with respect to the
standard case [4]. This is exactly what happens and the
well-known scaling relation of the MFPT with €™ !/3 val-
id for the cubic marginality [4,11,12] is exactly recovered.
The whole effect of the quadratic term is completely con-
tained in a convenient redefinition of the parameter k [see
Eq. (2.10)], measuring the distance to marginality: k «< 3.
Since the universal function ®(k) is a monotonically de-
creasing function of k [4], we can immediately conclude
that the MFPT will increase due to the quadratic term in
V(x) [remember that in the standard case
k =pB(ae?)"1/3], this increment being zero at strict mar-
ginality (8=0).

Additional conclusions can be raised when taking into
account the first correction originated in the multiplica-
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tive noise. Note that another independent measure of the
distance to marginality is introduced through the param-
eter k', which only coincides with k in the generic cubic
marginal case ¢ =0. The last important point we want to
mention is that the first-order correction, being propor-
tional to Bc, changes sign at strict marginality due to the
positive character of the function ®'V(k, k'), and in addi-
tion it would be zero for the standard case ¢ =0. This re-
sult admits an intuitive and approximate interpretation in
terms of the cubic form of the deterministic potential
used in this context. For ¢ =0, its antisymmetric nature
would exactly compensate the positive and negative con-
tributions to the diffusion term (2.6), respectively, for
negative and positive values of the dynamic variable x (),
introduced by the multiplicative linear noise £(¢). On the
other hand, for ¢#0 and positive as assumed here, it hap-
pens that below marginality (when B<0) a negative
modification of the potential due to the quadratic term
for x <0 (the minimum sinks) may be compensated by an
enhanced diffusion and analogously, a smaller diffusion
for x >0 would be balanced by a positive modification of
the potential (the maximum is lowered). The final result
would then appear as a negative contribution: the MFPT
decreases. On the contrary, this favorable balance cannot
be utilized to favor relaxation conditions above marginal-
ity (when B> 0) when both a steeper potential appears to-
gether with an enhanced diffusion for x <0, whereas both
effects turn out to be negative to favor passage time for
x >0 as they correspond to a flatter potential with a
smaller diffusion, resulting in this case in a positive con-
tribution to the MFPT.

2. Cubic approximation to the effective potential
with constant diffusion

Under this level of approximation the MFPT is formal-
ly expressed, analogously to what happens in the stan-
dard cubic marginal situation, in terms of the universal
function ®(k) whose redefined variable k incorporates in
two different ways the most significant multiplicative
noise effects [see Eq. (2.20)]. The first and most impor-
tant one appears through U, [defined in Eq. (2.16)], and
can be directly associated to the negative contribution
with respect to the pure additive case which was already
identified in the constant term of the drift F(x) in Eq.
(2.6). It is then easy to understand that the correction
—2de, resulting in a modification itself of the strict mar-
ginal conditions, either raises the barrier height below
marginality or flattens the potential above it. On the oth-
er hand, the contribution originated in the nonconstant
diffusion term appears explicitly in the effective potential
through U, in Eq. (2.16).

3. Cubic approximation to the effective potential
with first-order diffusion

The most general comment we want to make in rela-
tion to the result (2.22) concerns the generality of the
€173 behavior. Actually, (2.22), analogously to what was
observed within the systematic small multiplicative noise
expansion (2.7), permits us to appreciate the robustness of
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the £~ '/3 behavior characteristic of the MFPT at any or-
der of the expansion in d. In addition, note the antisym-
metric character of the first-order correction introduced
in the explicit consideration of a nonconstant diffusion
term as expressed in Eq. (2.21). It implications will be
discussed in Sec. IIIC when comparing approximated
and exact results for the MFPT.

B. Exact results

Exact results corresponding to the numerical evalua-
tion of the Eq. (2.3) for a particular set of parameters
(a=1,b=2,c=1, xq=—0.25, xz=0.25), are shown in
Figs. 1-3. Figures 1(a) and 1(b) correspond to the results
obtained with pure additive fluctuations (d =0), and re-
spectively reproduce the variations of the MFPT with the
intensity of the noise € at different B and with respect to
the marginality parameter B at different e. Figure 1(a)
clearly demonstrates the different nature of the relaxa-
tional dynamics. Above marginality (8>0) the relaxa-
tions are basically deterministic; their corresponding time
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FIG. 1. Exact results for the MFPT corresponding to the sto-
chastic dynamics given in (1.2) with pure additive noise (d =0)
for the set of parameters given in the text. (a) 7, vs € at
different B; (b) T, vs B at different €.
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FIG. 2. Relative differences for the exact MFPT between the
pure additive noise (d =0, noted T, ,) and both additive and
multiplicative fluctuations (d =1, noted Tp), plotted vs 8 at
different €. Values of the parameters as in Fig. 1.

scale softly increases with e ! until saturation is achieved
at the corresponding deterministic times Tg4,. On the
other hand, below marginality (8<0) and especially for
small values of €, the relaxation process proceeds via ac-
tivation by fluctuations and the corresponding values of
the MFPT diverges as e —~0. A complementary represen-
tation of this different behavior is shown in Fig. 1(b). In
particular, the well-known critical slowing down
phenomenon appearing as one approaches marginality
from above (8—07) is clearly manifested for determinis-
tic relaxations.

Figures 2 and 3 show the most noticeable effects intro-
duced by multiplicative fluctuations. Relative differences
between the pure additive situation (noted A) and the ad-
ditive plus multiplicative situation (noted B), the relative
intensity between both fluctuations fixed arbitrarily at

13.0 8
n @ p--002 L |® p=o02
€= 0.01 €=0.01
s ‘/ 7 —/
10.0 T 6 :
0.0 0.4 d 08 0.0 0.4 d 0.8
1\0!1010 1.5
() p-_002 4 p_o002
T T
€= 0.0001 € = 0.0001
38x10'° . 105 .
0.0 0.6 d 0.8 0.0 0.4 d 0.8

FIG. 3. Different behavior of the exact MFPT in varying the
multiplicative noise intensity parameter d, at different values of
B and €. Values of the parameters as in Fig. 1. [Notice the
largely different scale used in case (c).]
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d =1 are shown in Fig. 2 for different values of B and e.
The first important conclusion is that multiplicative fluc-
tuations, for large values of the relative intensity d, al-
ways slow down the relaxation dynamics, this effect being
particularly significant below marginality and for small
values of €. We interpret this behavior as a clear signa-
ture of what, as stated previously, is the most important
effect introduced by multiplicative noise on relaxational
dynamics close to marginality: the modification of the
potential, which is flatter above marginality and with a
larger barrier below it. In particular, this effect should be
crucially enhanced under conditions of relaxation mediat-
ed by fluctuations (8 <0) and especially when the barrier
crossing introduces larger and larger rate limiting steps
on the relaxational dynamics, i.e., as €e—0.

Quantitative effects introduced by multiplicative noise
are better analyzed when taking d as a variable parame-
ter. This is depicted in Fig. 3 for different values of 8 and
€. Again the different nature of the relaxational process,
either deterministic for 8 positive or activated by fluctua-
tions for negative values of 8 and especially small values
of €, manifests itself in the different behavior of the
MFPT as the intensity of the multiplicative fluctuations
increases. When the relaxation is essentially determinis-
tic, the MFPT increases monotonously with d, this varia-
tion being unappreciable for very small values of €. On
the other hand, when the relaxation is definitively medi-
ated by fluctuations the behavior of the MFPT with d is
not monotonous, showing a minimum at an intermediate
value of d that depends on S and € [see Fig. 3(c)]. If the
general trend of increasing MFPT as d increases is easily
interpreted in terms of the modification of the relaxation-
al potential, directly associated with the drift
modifications appearing in Eq. (2.6), the small negative
slope of T, with d as d increases from zero in Fig. 3(c)
should be explained in terms of the nonconstant effective
diffusion effect which may play a significant role when the
extremely small values of d and € result in a negligible
modification of the potential barrier.

C. Comparison between approximate and exact results

Explicit numerical results corresponding to the ap-
proximate procedures proposed in Sec. II B to compute
the MFPT were obtained for the same relaxation condi-
tions and range of values of the relative noise intensity d
as in Fig. 3. In general, the relative differences with
respect to the exact results depend on d, with maximum
discrepancies of the order of 30% within the considered
range of values of d. However, this comparison is far
more significant when fluctuations are expected to more
largely influence the behavior of the relaxation dynamics,
i.e., below marginality (8<0). So, we essentially restrict
ourselves to these situations, and explicitly to the pair of
noise intensities €=10"2 and 10~ * considered above
[cases (a) and (c) in Fig. 3]. In Fig. 4 we plot a con-
venient representation of the effect of multiplicative fluc-
tuations as described by the different procedures, either
approximate or exact, discussed in Sec. II. The
differences between T'; and T,(d =0), relative to the
exact measure of the MFPT for d =0 [noted
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FIG. 5. Exact results for the square root of the FPTV corre-
b sponding to the stochastic dynamics given in (1.2) with pure ad-
: (b) ditive noise (d =0) plotted vs 3 at different €. Values of the pa-
B=-0.02 in Fi
rameters as in Fig. 1.
€= 0.0001 4
0.2 4
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T,.exact (d

. A [ ]
A
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FIG. 4. Relative differences between T, and T',(d =0) plot-
ted vs d, at different values of 8 and ¢, for the exact and approxi-
mated methods [solid line, exact results; @, method (i); A,
method (ii); M, method (iii)]. Values of the parameters as in Fig.
1.

T\ cxact(d =0)], are plotted versus d. In both cases 4(a)
and 4(b) the systematic small multiplicative noise ex-
pansion [method (i)] leads to negative corrections con-
siderably larger for small values of e. Its linear be-
havior (as commented above in Sec. III A) can be traced
down directly to Eq. (2.7). With respect to the procedure
based on a cubic truncation to the effective potential with
constant diffusion [method (ii)] it is worth noting that the
MPFPT follows exactly the same behavior as was com-
mented upon in Sec. III B for the exact results, both in
cases of small and large values of €. This can be easily
understood if we remember that either the effect on the
potential barrier as well as on the nonconstant diffusion
are simultaneously retained through the intrinsic parame-
ter k of the scaling function ®(k). Finally, when taking
additionally a first-order explicit correction to the non-
constant diffusion [method (iii] what we obtain are deter-
minations of the MFPT that again show analogous trends
of behavior as in the preceding and exact procedures, but
with systematic lower values. This is probably due to an

overestimation of the role of the diffusion in favoring the
crossing over the potential barrier, which directly origi-
nates in the antisymmetric nature of the contribution
there introduced as 4dx /€, which respectively results in
larger (lower) values of D (x) for negative (positive) values
of the relaxational variable x.

IV. RESULTS FOR THE
FIRST-PASSAGE-TIME VARIANCE

The discussion of the results for the FPTV correspond-
ing to the approximate procedures quoted in Sec. II B
would be based on the same arguments employed above
for the MFPT. Consequently, we will concentrate in this
section on the analysis of the exact results for the FPTV.
Actually, we will refer to the square root of the FPTV,
noted AT.

Exact results corresponding to the numerical evalua-

0.6
ATg -AT,
AT,
A 04
021 €=0.01
0.0
£=0.0001
-0.2 ,

-0.025 0.000 0.025

B

FIG. 6. Relative differences for the exact squre root of the
FPTYV between the pure additive noise (d =0, noted AT ) and
both additive and multiplicative fluctuations (d =1, noted
ATjy), plotted vs B at different €. Values of the parameters as in
Fig. 1.
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tion of the Eq. (2.4) for the same particular set of parame-
ters adopted for the MFPT are shown in Figs. 5-7. Fig-
ure 5 again corresponds to the results obtained with pure
additive fluctuations (d =0). Once more it clearly shows
the different nature of the relaxations above and below
marginality. Note in particular the different behavior of
AT with € in going from positive to negative values of 3.
Figures 6 and 7 reproduce the results arising in multipli-
cative noise terms. Relative differences for AT between
the pure additive situation (noted A) and the additive
plus multiplicative situation with d =1 (noted B), are
shown in Fig. 6. Note, and this is to our understanding a
significant effect introduced by multiplicative fluctua-
tions, that both positive and negative values are found,
this behavior being clearly different with respect to what
was found for the MFPT at such large values of d.
Larger values of AT originating in multiplicative fluctua-
tions are typical of situations where the modification of
the potential is determinant for the relaxational dynam-
ics, i.e., for larger values of € and especially for negative
values of B even at small € (e=10"*). For such small
values of €, however, negative contributions to AT above
marginality should be interpreted as due to the noncon-
stant effective diffusion. Note in this respect that accord-
ing to (2.6), D (x) is smaller than in the pure additive case
for positive values of x that correspond to the more last-
ing portion of the relaxational dynamics above marginali-
ty due to the asymmetric nature of the potential (2.5).
Finally, Fig. 7 contains results for different values of d.
A monotonically positive variation of AT with d appears
to be the generic behavior, with the only exceptions ap-
plying to those cases for which the nonconstant diffusion
is the predominant effect, i.e., for small values of € and re-

2291
10 s
(a) p=-002 (b)
AT €= 0.01 AT
1 3=002
€=0.01
8 r 4 .
0.0 oy 0.8 0.0 oy 0.8
6.8:1010 2
(c) p=-0.02 (d)
At €= 0.0001 AT
=002
€=0.0001
3.8x10'° — 1 v
0.0 oy 0.8 0.0 L 0.8

FIG. 7. Different behavior of the exact square root of the
FPTV in varying the multiplicative noise intensity parameter d,
at different values of B and €. Values of the parameters as in
Fig. 1. [Notice the largely different scale used in case (c).]

laxations above marginality or below marginality for d
very small.
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