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Phase transition in diffusion-limited aggregation with two immiscible components
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A diffusion-limited-aggregation (DLA) model with two immiscible components (4 and B atoms) is
presented to investigate a phase transition in morphological changes. A segregation occurs where the
DLA pattern is constructed by a mixture of trees consisting of only 4 atoms and trees consisting of only
B atoms. Above a critical concentration p., trees with only 4 atoms exceed trees with only B atoms, and
the DLA with only 4 atoms dominates. It is found that a phase transiton between 4-DLA and B-DLA
occurs at the critical concentration p., where 4-DLA and B-DLA represent, respectively, DLA with
only A4 atoms and DLA with only B atoms. The phase transition is analyzed by making use of the real-
space renormalization-group method. The correlation length & scales as £=(p —p.)” ", where p,=0.5

and v=1.85 on the square lattice.

PACS number(s): 68.70.+w, 05.70.Jk, 05.40.+j

I. INTRODUCTION

Recently there has been increasing interest in a variety
of nonequilibrium aggregation and deposition models
[1-11]. Fractal growth phenomena in pattern formation
have attracted considerable attention. The simplest
growth models are ballistic deposition and diffusion-
limited aggregation (DLA). The ballistic-deposition
model provides a basis for understanding deposition pro-
cesses used to prepare a wide variety of thin-film devices.
The DLA model presents a prototype of the pattern for-
mation of diffusive systems including the electrochemical
deposition, crystal growth, viscous fingering, dielectric
breakdown, chemical dissolution, and bacterial colonies
[12]. A variety of computer simulations have been car-
ried out to investigate the relationships between the clus-
ter geometry and growth mechanisms. The structure of
the aggregates strongly depends on the dynamics of the
growth process. The crossover phenomena and the
geometrical phase transition between the DLA fractal
and the nonfractals have been found by computational
and experimental methods. The crossover and the phase
transition have been analyzed by the real-space
renormalization-group method [13-16]. Lee, Coniglio,
and Stanley [13] succeeded in analyzing the crossover
from the DLA fractal to the dense structure in viscous
fingering at the finite viscosity ratio by using the two-
parameter position-space renormalization-group method.
Nagatani [14] analyzed the effect of the sticking probabil-
ity on the fractal nature of the DLA. Furthermore, the
combined effect of the sticking probability and the finite
viscosity ratio was analyzed by using the three-parameter
position-space renormalization method [15]. The real-
space renormalization-group method will be a powerful
tool in analyzing the morphological changes.

Until now, a variety of studies have been done for the
pattern formation in the DLA only with a single com-
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ponent [1-24]. However, few investigations for the DLA
with two components have been done. There is an open
question about whether or not the morphological change
occurs. It will be interesting to study the morphological
changes in the DLA with two components.

In this paper, we investigate the morphological change
in the DLA with two immiscible components (4 and B
atoms) by using a computer simulation and a real-space
renormalization-group method. We restrict ourselves to
the limiting case where a connection between A and B
atoms is inhibited. An A atom sticks only on the surface
consisting of 4 atoms and a B atom sticks only on the
surface consisting of B atoms. In the limiting case, a
segregation occurs where the DLA pattern is constructed
by a mixture of the trees consisting of only 4 atoms and
the trees consisting of only B atoms. We define the con-
centration of A atoms as p. One expects that a morpho-
logical phase transition occurs between the DLA with
only A4 atoms and the DLA with only B atoms at a criti-
cal concentration. We carry out the computer simulation
and find the phase transition. We analyze the phase tran-
sition by using the real-space renormalization-group
method. We give the evidence of the phase transition.

The organization of the paper is as follows. In Sec. IT
we present the model and the simulation result. In Sec.
IIT we analyze the phase transition by using a small-cell
renormalization method. In Sec. IV we derive the critical
concentration p, and the scaling exponent v of the corre-
lation length by using a Monte Carlo renormalization
method. In Sec. V we present the summary.

II. MODEL AND SIMULATION

We consider the DLA with two components (4 and B
species). We present the two-component DLA model. A4
and B species diffuse independently. The concentrations
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C 4 and Cy of the diffusion components satisfy, respec-
tively, the Laplace equations under the quasistationary
approximation

v2C =0, (1a)
V2Cy =0. (1b)

We consider the deposition process on the plate. At the
position far from the plate, the concentrations C, and
Cp are, respectively, constants. We consider the bound-
ary condition on the surface of deposit. We define the
sticking probabilities P, ,, Pgg, P45, and Pg,. P, ,
(Pgp) indicates the sticking probability at which an 4
(B) atom sticks on the surface of 4 (B) atoms when an 4
(B) atom lands on the surface of A (B) atoms. P g
(Pg,) indicates the sticking probability at which an 4
(B) atom sticks on the surface of B ( 4) atoms when an 4
(B) atom lands on the surface of B (4) atoms. We re-
strict ourselves to the limiting case P, =1, Pgp=1,
P 5 =0, and Pz ,=0. Atoms can stick only on the sur-
face consisting of the same atoms. Different atoms can-
not stick to each other. Then the boundary conditions
are given by

(1—p) 24 —PC =0, (2a)
on
where
P=P, (=1)
if an A atom lands on an A surface and
P=P 5(=0)
ifan A4 atom lands on a B surface.
1-p 2 _pc, =0, (2b)
on
where
P=Pgp(=1)

if a B atom lands on a B surface, and
P=Py,(=0)

if a B atom lands on an A4 surface. Here, dC /9n is the
derivative normal to the interface.

Now we consider the simulation of the aggregation
process following Eq. (1) with the boundary condition (2).
The diffusing particles can be simulated by using the ran-
dom walker. The probability that the random walker
visits the site satisfies the discrete version of the Laplace
equation. The boundary condition (2) can be simulated
by introducing the sticking probability into the random
walker. When a particle reaches the surface of the depos-
it consisting of the same particles, it sticks on the deposit
with the probability 1. Otherwise, the particle is reflected
on the deposit with the probability 1. We summarize the
algorithm of the simulation process. The simulation of
the two-component Laplacian growth with the boundary
condition (2) is carried out with the use of a simple square
lattice. We consider a subset of the square lattice en-
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closed by a square with 200200 (units). We start out
with an occupied plate on the bottom of the square. The
lateral boundary is periodic. An A4 or B particle is intro-
duced one at a time at a randomly chosen point on the
upper boundary. An A particle is introduced with the
probability p =C , /(C ,+Cp) and a B particle with the
probability 1—p. Each particle performs a Brownian
motion. The particle continues to move until it either
reaches a point adjacent to a site already occupied by a
particle or until it reaches the upper boundary. When
the particle reaches a point adjacent to a site already oc-
cupied by a particle and if the already occupied site is the
same kind of particles, it sticks on the aggregate with
probability 1. Otherwise, the particle is reflected at the
aggregate with probability 1 and continues to move.
When the particle reaches the upper boundary, the ran-
dom walker is annihilated. We repeat the above pro-
cedure. The deposits are grown until the height reaches
150 units. Figures 1(a)-1(e) show, respectively, the re-
sults for p =0.1, 0.3, 0.5, 0.7, and 0.9, obtained by using
the procedures outlined above. A segregation occurs
where the DLA pattern is constructed by a mixture of
the trees consisting of only A4 atoms and the trees consist-
ing of only B atoms. The upper, middle, and bottom pat-
terns in each figure indicate, respectively, the deposits
consisting of 4 + B atoms, the trees of A atoms within
the deposit, and the trees of B atoms within the deposit.
For p =0.1 and 0.3, the trees of B atoms exceed the trees
of 4 atoms. The tree of B atoms spans from the plate to
the top. The tree of B atoms dominates at larger length
scales than the characteristic length until both the A4 and
B trees coexist. On the other hand, for p =0.7 and 0.9,
the trees of 4 atoms exceed the trees of B atoms. The
tree of 4 atoms spans from the plate to the top. The tree
of A atoms dominates at larger length scales than the
characteristic length until both the 4 and B trees coexist.
At p =0.5, both the 4 and B trees span from the plate to
the top. The characteristic length, until which both the
A and B trees coexist, ranges over all the space. In the
limit of p =0, the DLA fractal with only B atoms is
reproduced. In the limit p =1, the DLA fractal with
only A4 atoms is reproduced. One expects that a phase
transition occurs between the A-DLA and the B-DLA at
the critical concentration p =0.5, where 4A-DLA and B-
DLA represent the DLA with only 4 atoms and DLA
with only B atoms, respectively.

We apply the real-space renormalization-group method
to this problem in the following sections to give evidence
of the phase transition.

III. SMALL-CELL RENORMALIZATION

We analyze the phase transition by making use of the
real-space renormalization-group method. For simplici-
ty, we apply the small-cell renormalization first. In Sec.
IV, we shall consider the large-cell renormalization. We
assume that at the critical concentration p, a mixture of
A and B trees is self-similarly distributed. Above or
below the critical concentration, the deposit crosses over
from the self-similar mixture to the A-DLA or B-DLA at
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the characteristic length £. We define the characteristic
length as the correlation length. We perform the renor-
malization in a similar way to the percolation [25]. Here
we consider the bond model. The A and B species occu-
py the bonds on the lattice. The deposit is constructed
from the occupied 4 and B bonds. We replace a cell of
bonds by a single superbond. We define the superbond
representing the cell of length b (scale factor) as an A4
bond if the cell contains a spanning cluster connecting
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opposite lines by 4 bonds. The superbond is defined as a
B bond if the cell contains a spanning cluster connecting
opposite lines by B bonds. We renormalize the concen-
tration p in a similar way to the bond percolation. Only
right at the critical point, where self-similarity of the
mixture is valid, do we have p'=p =p.. The correlation
length & limits the validity of similarity of the mixture;
thus this limit £ is the same in both the original lattice
and the renormalized lattice of superbonds, £=¢&’. If in

Py, ] .
e

Al fi5
(b)

FIG. 1. Typical patterns with two immiscible components ( 4 and B species) grown by varying the concentration p of A species.
The upper, middle, and bottom patterns in each figure indicate, respectively, the deposits consisting of A + B species, the trees of 4
species within the deposit, and the trees of B species within the deposit. (a) p =0.1, (b) p =0.3, (c) p =0.5, (d) p =0.7, (e) p =0.9.
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the original lattice we have £=const|p —p.| ", then in
the renormalized lattice, with lattice constant b, we have
& =constb|p’ —p.| ", with the same proportionality con-
stant and the same critical exponent v:

blp'—p|7"=Ip —p.|7" . (3)

This is the basic equation of real-space renormalization.
Taking the logarithm of both sides we arrive at

1/v=1n[(p'—p.)/(p —p.)]/ In(b) @)

for the exponent of the correlation length.

E
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FIG. 1.
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We consider the renormalization procedure for deriv-
ing the renormalization-group equation for the concen-
tration: p'=R(p). We partition all the space of the
square lattice into cells of size b =2 (b is the scale factor).
After a renormalization transformation these cells play
the role of ‘“renormalized” bonds. The renormalized
bonds are then classified into the two types of bonds. If
the cell is spanned with the occupied A4 bonds, the renor-
malized bond is then considered to be the 4 bond. If the
cell is spanned with the occupied B bonds, then the cell is
renormalized as the B bond. After renormalization, the
concentration p is transformed to p’. For the square lat-

T .\o ¢l |!‘-‘\)}
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(Continued).
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tice, Fig. 2 shows all the configurations of the cell for
which it is possible to renormalize as the 4 bond. The
bonds occupied by A4 species are indicated by the bold
lines. The bonds occupied by B species are represented
by the dotted lines. Let us consider the configurational
probability C, with which a particular configuration «a
appears. The distinct configurations are labeled by «
(a=a,b,c,d) in Fig. 2. The configurational probabilities
C, can be calculated by considering the growth process
within the cell. The growth process within the cell is
shown in Fig. 3. The configurations (a) or (b) in Fig. 3 are
constructed by adding A or B species on the lower bonds.

. ? bV el e
(e)

FIG. 1.

(Continued).
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FIG. 2. All the configurations of the cell for which it is possi-
ble to renormalize as the A bond for b=2. The distinct
configurations are labeled by a (a=a,b,c,d). The bonds occu-
pied by A species and B species are indicated by the bold and
dotted lines, respectively.

The configurational probabilities C, and C, are given by
C,=p and C,=1—p. ()

The configurations (c) and (d) in Fig. 3 are constructed by

adding A4 species on the configuration (a). The
configurational probabilities C, and C, are given by
C.=p’p, and C,=3p’p,, 6)

where p; and p, are the growth probabilities of the bonds
within the configuration (a). The growth probability of
the bond is proportional to the current or electric field on
the bond. The constant voltage is applied between the

(a) (b_)_

7N |

&:Hi -

(C (d) (e) ®

(8 (h) M 0

(k)

FIG. 3. The growth process within the cell for b =2. The
configurational probability C, for the distinct configurations
can be calculated by considering the growth process. The bonds
occupied by A and B species are represented by the bold and
dotted lines, respectively.
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top and the bottom within the cell. The lateral boundary
condition is periodic in the cell. The growth probabilities
p, and p, are given by

4

p1=% and p,=1 (7

The configuration (e) is constructed by adding B species
on the configuration (a). The configurational probability
C, is given by

C,=p(l1—p). (8

Similarly, we can obtain the configurational probabilities
Cf’ Cg’ Ch’ Ci’ C]’ and Ck:

C,=(1—p)p,

C,=3p’p,,

Cy=p*(1—p)p,, o)
C;=2p*(1 —P)Ps>

C;=(1—p)p?,

C.=2p*(1—p)p,,

where p, and p, are the growth probabilities of the bonds
in the configuration (e) and are given by

P.=% and p,=1. (10)

The configurations (c), (g), (h), (), and (k) give the
configuration spanned by A species. Thus, we obtain the
configurational probabilities of the spanning clusters of 4
species in Fig. 2. The renormalized concentration p’ is
given by

p'=R(p)
=—2p,p*+(3p,—p,+2p,— 1)p*+(p, +p, +1)p2
11

Figure 4 shows the renormalization function p'=R (p).
The renormalization equation has three fixed points:

R(P)
05—

FIG. 4. The renormalization function p’=R(p) obtained
from the small-cell renormalization for b =2. There is a non-
trivial fixed point p, =0.691.
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p*=0, 0.691, and 1. (12)

The first (zero) and the last (unity) fixed points are stable.
The middle (0.691) fixed point is unstable. After many
repeated renormalizations, the concentration p sucks into
the unity fixed point above the unstable fixed point.
Below the unstable fixed point, the concentration p sucks
into the zero fixed point. At the unstable fixed point, the
phase transition occurs. The fixed point p*=0.691 is
identified with the critical point p. in the phase transi-
tion. The real-space renormalization group gives the evi-
dence of the phase transition. The correlation length ex-
ponent v is given by

v=1In(2)/1n =2.212. (13)

P=p,

dR (p)
dp

The values of p. and v are not accurate in the small-cell
renormalization. We perform the Monte Carlo renormal-
ization of the larger cell in Sec. IV.

IV. MONTE CARLO RENORMALIZATION

We present a Monte Carlo renormalization method to
derive the critical concentration p, and the correlation
length exponent v more accurately. We restrict ourselves
to the DLA problem on the square lattice. We extend the
small-cell renormalization method to larger-cell renor-
malization because small-cell renormalization gives some-
what inaccurate values. In general, it is difficult to renor-
malize a square cell with numerous bonds analytically.
Thus we simulate the spanning cells with 4 bonds by the
well-known Monte Carlo method, and then renormalize
them. Similar to the bond percolation, we check whether
the large cell percolates with 4 bonds, that is, whether it
is spanned by a cluster connecting the top and bottom.
We see that the renormalized cell occupation probability
p' of A bonds is nothing but the spanning probability
R (p) with A4 bonds. A cell of the type used here is the
same as the simulation model with bXb square. We
make a Monte Carlo realization for the spanning cluster
with A or B bonds similarly to the simulation in Sec. II.
We count the spanning clusters with 4 bonds. We calcu-

R(P) |
05—
- b=5
- b=10
- //// b=20
§ |
0 === | |
0 0.5 1

FIG. 5. The renormalization functions p’=R (p) obtained
from the Monte Carlo renormalization for b =5, 10, and 20.
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late the spanning probability R (p) with varying the con-
centration p. We obtain the spanning probability R (p)
from 100 Monte Carlo realizations. Figure 5 shows the
spanning probabilities for b =5, 10, and 20. The ob-
tained values of the critical concentration p, and the
correlation length exponent v are given by

p.=0.532+0.03 and v=2.321+0.4 for b =35,
p.,=0.502+£0.02 and v=1.84+0.1 for b =10, (14)
p.=0.498+0.02 and v=1.86%0.1 for b =20.

With increasing cell size, the spanning probability R (p)
has a trend to approach the step function ©(p —p,),
where p,=0.5. Our method converges very rapidly with
an increase in the size of the cell. We obtain the critical
probability p, =0.5 and the correlation length exponent
v=1.85. By comparing these values with those of the
bond percolation on the square lattice, we find that the
critical concentration is consistent with the value of the
bond percolation and the correlation length exponent is
different from the value of the bond percolation. The
phase transition between 4-DLA and B-DLA belongs to
a different universality class with the percolation.

Here we comment on why the small-cell renormaliza-
tion result p.=0.691 is so different from the values
p.=0.5 obtained by the Monte Carlo renormalization.
Until now, the small-cell renormalization method has fre-
quently been applied to the percolation problem. The
critical probability p, obtained from the small-cell renor-
malization strongly depends on the renormalization rules.
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Especially, the result is dependent upon the type of the
cells. In this paper, we used the same type of cells as the
bond percolation. In the bond percolation, the critical
probability p, obtained from the cell gives the exact value
0.5. However, in the DILA with two immiscible com-
ponents, the critical concentration obtained from the
same cell does not give an accurate value. This is due to
the nonlocal character of the growth probability in the
DLA. The bond percolation is determined by the local
rule but the DLA is governed by the Laplacian field
around the aggregate. The Laplacian field strongly de-
pends on the shape of the aggregate. The growth proba-
bility on the perimeter of the aggregate is given by the
harmonic measure. The phase transition in the two-
component DLA is governed by this nonlocality of the
growth probability. For this reason, the small-cell renor-
malization result does not give an accurate value.

V. SUMMARY

We investigated the diffusion-limited aggregation with
two immiscible components (A4 and B species). We found
that a phase transition occurs from the DLA consisting
of the B species to the DLA consisting of the A4 species
with an increasing concentration of the A4 species. We
analyzed the phase transition by using the real-space
renormalization-group method. We obtained the evi-
dence of the phase transition. We obtained the critical
concentration p,=0.5 and the correlation length ex-
ponent v=1.85.
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