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The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L =1) and
quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density
approximation of density-functional theory. We predict the existence of low-energy spin modes of
surface type, which are identified from the strength function. Their collectivity and evolution with

size are discussed.
PACS number(s): 36.40.+d, 31.50.4+w

There is a large class of many-body systems that re-
spond elastically to a sudden perturbation and plastically
over long periods of time. Among them, one can mention
the atomic nucleus. It displays giant resonances lying at
energies considerably higher than the original particle-
hole (p-h) excitations, and low-lying modes at energies
much below the corresponding unperturbed p-h energies.

During the past years the study of simple metal clus-
ters has received much attention. In particular, much
effort has been devoted to their optical response proper-
ties. The existence of a giant dipole resonance (surface
plasmon) in these systems, lying about 2-3 eV higher in
energy than the original p-h excitations and carrying a
large fraction of the energy-weighted sum rule (EWSR),
has been clearly established [1-4]. A central subject in
the systematic exploration of the collective properties of
simple metal clusters is the search for low-energy vibra-
tions, lying below the unperturbed p-h excitations. At
variance with the plasmon, these vibrations are not ex-
pected to be directly observed in the infinite system. This
is because they are expected to have, for all values of the
linear momentum, excitation energies lying within the
continuum of p-h excitations and thus be strongly Lan-
dau damped.

In the present paper we study the spin excitations of
metal clusters, for which the residual interaction acting
among the p-h excitations is attractive. It will be con-
cluded that these modes are, for closed-shell clusters,
likely to be the lowest collective modes of the system,
appearing at energies well below 1.5 eV.

A rather detailed theoretical description of plasmon
states in metal clusters can be obtained from the density-
density response function within the framework of the
time-dependent local-density approximation. The corre-
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sponding solutions can be worked out either in coordinate
space [1], as well as in configuration space [2]. In both
cases this is done in a basis that is built up of p-h ex-
citations involving the single-particle orbitals where the
electrons move. Below we shall follow a similar approach
in dealing with the spin excitations of closed-shell clus-
ters. In fact, we shall calculate, in coordinate space and
within the time-dependent local-spin-density approxima-
tion (TDLSDA), the response of the system to an exter-
nal multipole field that depends on the z component of
the electron spin,

Q,=Qo%=rr Y50(6,0)0% . 1)

This field simulates the effect on the electronic spins of
an appropriate external probe, as could be a photon or
electron beam. The coupling of this external probe with
the orbital angular momentum of the electrons, leading
to orbital magnetism [5], is not considered in the present
formulation.

The linear-response theory of a field with a uniform
direction of magnetization has been derived by Williams
and Von Barth [6]. In the following, we will briefly recall
the main points of the theory.

The variation in the electron spin density n, induced
by a spin-dependent field Q,, with a time variation fre-
quency w, is expressed in terms of the field by means of
the spin-density correlation function x, . as

ong = Z/dar’ Xo,o' (15 w) Qo (1) (2)

In the case of noninteracting particles, the correlation
function is obtained from first-order perturbation theory
as
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where the ¢’s and €’s are the single-particle wave func-
tions and energies, respectively, and the label p (h) refers
to unoccupied (occupied) single-particle levels.

For a nonpolarized ground state, the theory is more
easily formulated in terms of the magnetization density
m = n; —n, and the corresponding spin-spin correlation
function

Xm,m = X11 + X1L — XTL — X117 > (4)

in terms of which the variation of the magnetization den-
sity is written as

sm(r) = /d3,’./ Xm,m(,r";0) Q(r”) . Q)

It can be easily verified that for free particles the cor-
relation function in both spin-spin and density-density
responses coincide (x5, , = x5, = x°) and thus one
can use well-known methods to obtain it. In particular,
we choose to obtain x° by means of the single-particle
Green’s function calculated in coordinate space, and the
set of Kohn-Sham ground-state orbits

') = = ) () [Clr,x'sen +w)
h

+G(r,r';ep —w)], (6)
where the Green’s function is defined as

G(r,r’;w)=<r T—0 r’> . )

Within the TDLSDA theory, we assume that the elec-
trons respond as free particles to the perturbing effective
field, which consists of the external one plus the induced
variation of the ground-state effective field. This condi-
tion defines a new Xxm,,m in terms of the noninteracting
one by means of the Dyson-type integral equation

Xmm(t,1'5w) = x5, (T, 1r'50)
+ / dsrl d3T2 X‘yon,m(ry ry, (.4))

X K(r1,r2) Xm,m(r2,r';w) , 8)
which is solved as a matrix equation in coordinate space,
after performing an angular decomposition. The kernel
K(r,r’) is the residual two-body interaction, which in
our case is exactly given by

2
K(r,x') = (M) , )
ém(r)om(r’) / .0 mo
where Eyc[n,m] is the exchange and correlation energy
functional for arbitrary density and magnetization, ng
and mg being the ground-state ones. In the present case
we assume mg = 0.
We approximate Fy. within the local-spin-density ap-
proximation (LSDA), i.e.,

Eyc[n,m] = /dsr n(r) exe(n, m) ,

where ey is the exchange-correlation energy density of

(10)

Ep—Ep —w — 1N

) 1) dnr’) | 3)

Ep —Ep+w—1n

the homogeneous system. For the correlation energy, we
use the parametrization of Vosko, Wilk, and Nusair [7)].
Thus, we have

1/3
K(r,r') = <_f];- (%) n_2/3+29%)—) 8(r—r'),
(11)

where a.(r,) is the correlation contribution named a. fit
in Ref. [7].

The LSDA amounts to approximating the residual in-
teraction by a contact one. This does not seem unreason-
able, in view of the short range of the exchange and cor-
relation interactions and, in fact, the LSDA has proved
to be successful in the calculation of spin susceptibilities
in bulk alkali metals [8]. Thus, one may be confident that
it will provide a reasonable description of the spin states
in metal clusters, in the same way as the LDA has given
a good description of the plasmon states [1, 2].

The response function R to the multipole field (1) can
be easily obtained from the L component of the spin-spin
correlation function xz as

R(w) = /drldrz r%r% rf’ xL(r1,r2;w) rrf; .

Its imaginary part is related to the strength function
S(w) = 1Im[R(w)]. In the actual calculation we have
added a small imaginary part (§ = 8 meV) to the energy
w. This makes an average of the strength function by
transforming the delta peaks in Lorentzians of width 2§
and thus simplifies the analysis of the results.

As a test on the numerical accuracy of our calculations,
we have checked that the EWSR, which can be indepen-
dently calculated by sum-rule methods [9], is satisfied
with less than a 3% error in all the cases. Another test
is provided by the Kramers-Kronig relation

2/dw£—5(w)=Re[R(w=0)] :

(12)

(13)

This is satisfied by our calculations within, typically a
2% error.

In the unpolarized ground state the spin-up and -down
densities cancel exactly, and the effect of a small external
perturbation @, is to change them, creating a local mag-
netization. However, it does not induce a net magnetic
moment in the whole cluster. The induced magnetization
is a spin wave, which, when spatially integrated, vanishes.
Figure 1 shows the radial part of the induced magneti-
zation for the static case (w = 0) in the Nagy cluster
for L = 1 and 2 (the angular part in each L mode is
YLo). One can observe that the magnetization is peaked
at the surface and this allows us to identify the modes
as surface spin excitations, which, by analogy with the
spin-wave excitations in the bulk system, we call surface
paramagnons.

Figure 2 displays the dipole strength function of the
magic Nay clusters with NV = 8, 20, 40, and 92. Solid
and dashed lines correspond to the TDLSDA and non-
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FIG. 1. Induced magnetization densities, in the static re-

sponse, for the L = 1 (solid) and L = 2 (dashed) spin modes
in the N = 20 Na cluster. We have used r; = 4 for this
metal. The radius of the jellium sphere, for this cluster, is
R = 10.86 a.u.
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FIG. 2. Spin-dipole strength functions in magic Na clus-

ters N = 8, 20, 40, and 92. Solid and dashed lines are the
TDLSDA and noninteracting results, respectively.
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interacting results, respectively. The noninteracting re-
sponse has peaks at the energies of the allowed p-h exci-
tations, whose strength in general decreases for increas-
ing energy. In the case of Nag these p-h excitations are
well separated. However, for bigger sizes there are sev-
eral low-energy transitions that lie very close, two in the
cases of Nagg and Nayg and three for Nags.

The residual interaction has a conspicuous effect on
the previous picture. It shifts the strength to lower en-
ergies and leads to essentially one peak, a collective spin
excitation (paramagnon), which exhausts a large frac-
tion of the EWSR (from approximately 90% in Nag to
80% in Nagp). This collective state washes out, almost
completely, the low-energy p-h transitions (below 1.5 eV
in Nagg and 1 eV in Nagy). The higher-lying ones are
not so strongly affected by the interaction. They are
only slightly shifted in energy, still keeping approximately
their original strength.

Regarding the evolution with size, the short-range in-
teraction causes the energy of the collective state to de-
crease with increasing size, in a way that resembles the
behavior of the analogous nuclear collective excitations
(in fact, a rough N~1/3 behavior can be guessed) and
that is opposite that exhibited by the surface plasmon
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FIG. 3. Same as Fig. 2, but for the quadrupole (L = 2)
spin mode.
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in alkali-metal clusters. For increasing sizes, the resid-
ual interaction is less and less effective in separating the
collective spin state from the p-h excitations. Thus, for
large clusters, we expect to approach the bulk picture in
which the spin-wave excitations are strongly damped by
surrounding p-h excitations (Landau damping).

The surface paramagnons are below the unperturbed
p-h excitations due to the fact that the residual interac-
tion (11) is attractive. This, in turn, has its origin in the
exchange part of the interaction. In fact, the correlation
contribution is positive and, in the inner part of the clus-
ter, is about half of the exchange one in absolute value.
Towards the surface, the correlation becomes more im-
portant and cancels a much bigger part of the attractive
exchange contribution.

The rapid development of the tunable laser sources
(Ti:sapphire lasers, for example), operating in the wave-
length of 1 um (energy range =~ 1 eV), makes possi-
ble the use of photodepletion techniques (cf., e.g., Ref.
[3]) for the study of the low-energy part of the spec-
trum relevant to the predictions displayed in Fig. 2.
Moreover, preliminary experimental investigations may
already be performed using the 1056-nm (=1.16-eV) line
of the Nd:Yag (neodymium doped yttrium aluminum gar-
net) laser. This is almost exactly the energy of the dipole
spin excitation in Nag.

In Fig. 3 we show the results corresponding to L = 2.
In contrast to the dipole case, now the residual inter-
action is not strong enough to collect almost all the
strength, in a single state, especially for the smaller clus-
ters. There is a clear fragmentation of the TDLSDA
strength, which is reminiscent of the p-h excitations.
However, the changes induced by the interaction in the p-
h spectrum go in the same direction as that for the dipole,
the quadrupole strength being preferentially transferred
to a low-energy excitation that carries a large part of the
EWSR, ranging from 53% in Nag to 65% in Nagy. Thus,
this quadrupole spin state is becoming more collective as
the size increases.
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In small clusters, the main source of damping of the
plasmon can be traced back to its coupling to thermal
fluctuations of the surface. The most important among
these fluctuations are those of quadrupole character [10],
which lead to a damping width I' = /T/C hw. In this
expression T is the temperature of the cluster (and thus
associated with the fluctuations of the ions). The quan-
tity C is the restoring force associated with quadrupole
distortions of the system and thus is controlled by the
electrons. A simple estimate of this quantity is provided
by the expression C ~ er N, where £ is the Fermi energy
of the metal cluster and N is the number of electrons. Fi-
nally, iiw is the energy of the dipole mode. In the case of
Na and for clusters at T ~ 600 K (= 0.052 eV) one can
write I' = (0.67/v/N)hw. In the case of Nagy one thus
expects I' = 0.4 eV for the dipole plasmon (hw = 2.6 eV)
andI' = 0.1 eV for the dipole paramagnon (hw = 0.8 eV).
Consequently, we expect the dipole surface paramagnons
to show up as rather sharp peaks.

Summarizing, we have presented a detailed calculation
of the dipole and quadrupole spin excitations in selected
sodium clusters, modeled as jellium spheres. We found
that the dipole spin response is almost entirely dominated
by a single collective state that lies in the low-energy part
of the spectrum (< 1.5 eV), below the p-h excitations,
and that decreases for increasing sizes. This collective
spin excitation may be regarded as the counterpart, in
the spin channel, of the dipole surface plasmon and, by
analogy with the bulk system, we call it the dipole surface
paramagnon. However, because it lies at a considerably
lower excitation energy, it is expected to display a much
narrower width. We have also found that the quadrupole
spin response is more fragmented than the dipole mode,
because Landau damping is more important in that case.
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