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Thomas-Fermi approximation for Bose-Einstein condensates in traps
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Thomas-Fermi theory for Bose-Einstein condensates in inhomogeneous traps is revisited. The phase-space
distribution function of the condensate in the Thomas-Fermi lifit0) is fo(R,p) = 6(w—H¢;) whereH is
the classical counterpart of the self-consistent Gross-Pitaevskii Hamiltonian. Starting from this distribution
function the Thomas-Fermi kinetic energy is calculated for any number of particles. Good agreement between
the Gross-Pitaevskii and Thomas-Fermi kinetic energies is found even for low and intermediate particle
numbersN. Application of this Thomas-Fermi theory to the attractive case and to the calculation of the
frequencies of the monopole and quadrupole excitations in the sum rule approach yields conclusive results as
well. The difference with the usual Thomas-Fermi approach to the Bose-Einstein condélasgeas limit)
is discussed in detail.

PACS numbd(s): 03.75.Fi, 05.30.Jp

I. INTRODUCTION from the GPE. The last section is devoted to discussions and
an outlook.
The recent discovery of the Bose-Einstein condensation

of magnetically trapped atoms has spurred a huge amount ofjj. GROSS-PITAEVSKII EQUATION. THOMAS-FERMI

theoretical investigations. Most of them are based on the LIMIT
Gross-Pitaevskii equatioiGPE [1], which is the mean-field . ) ) . )
equation for the condensate wave functiorder parametgr As mentioned in the Introduction, the basic equation for

The experimental conditions are such that the atomic gas i8°S€ condensed atoms confined by magnetic traps is, in the

at very low density and therefore the mean-field approximalCW-density limit, given by the GPE for the wave function of

tion gives indeed excellent resuf-5]. Since the numbe the condensate

of atoms involved is generally large, it is natural that also the 52

T_homas-F_ermi(TF) approximation i§ a_ppligd quite exten- _2_A+Vex+ al || y= i, )
sively. This has the advantage of yielding in most cases ex- m

plicit analytical results of great physical transparency. The i . ) o

TF limit in the context of Bose-Einstein condensation in WhereVey is the external potential which for simplicity we
traps has been identified with the limit as the particle numbef'@ve considered to be a spherical harmonic oscilldior

N goes to infinity. However, in the case of Fermi statistics,nonSphem.:alI geometry_seg remarks at t2he end.of the paper
for which the TF approximation has been invented fi6gt The qoupllng constant is given tg=4mha/m with m the

by no means thé— 0 limit (that is what the TF approxima- atomic mass ana the scattering length. The chemical po-

tion really is corresponds to thél—co limit. Rather the tential u is identical with the lowest eigenvalue of the self-

o consistent potential
situation is such that the TF approach becomes eventually P

exact in theN—o limit but already forN moderate, i.e., V=V, + 9|92 @)
corresponding to the masses of midsized atoms, TF gives

very reasonable estimates for various quantities such §g s yseful to note that Eql) can also be rewritten as an
ground-state energies, etc. It is the purpose of the prese@huaﬂon for the density=|y|?

paper to show that also for the case of bosonsNhex

limit is not equivalent to thét— 0 limit. Rather the correct £2 1[(Vp)2 A
n—0 limit does not neglect the kinetic energy term in the — _p_z_p +Veytgp—pu=0. (3
GPE (N—<) and then the TF results are greatly improved 2m4| p2 p

for rather small mass numbers like, e §5=200. We delib-
erately restrict ourselves here to the TF limit of the GPE atn the largeN limit one can drop in Eq(1) the kinetic energy
zero temperature. Finite temperature as well as more elabor, equivalently, in Eq(3) the gradients terms of the density.
rated theories like the Bogoliubov approach may be the subfhis leads tp=(u—Ve,)/g what is known in the literature
ject of future work. [3-5] as the TF solution of the GPE. However, for moderate
The paper is organized as follows. In Sec. Il the theoretparticle numbers the kinetic energy is not negligible and
ical aspects of the TF approximation to the GPE are prethere is no reason for dropping it in the proper TF linfit (
sented in detail. In Sec. Ill the numerical results obtained—«). Also in the attractive case the kinetic energy is of
with the TF method are compared with the ones comingcrucial importance to avoid collapse.
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As it is well known from the case of the Fermi systemsfor trapped atomic bosor{8-5] , expression10) does not
[7], the TF-approximation is based on the assumption of aeglect the kinetic energy. Equati@hO) also is consistent
slowly varying potential so that its gradients can be ne-with the usual TF theory for fermions where not only the
glected to lowest order. We now will show how this can belowest level is filled but all levels below the Fermi energy.
exploited in order to derive the zeroth ordeexpession for One therefore simply has to sum alfunctions(10) over the
the solution of the GPE. To this end let us write Ef). in energies of the levels. Converting the discrete sum into an
the following way: integral and introducing an extra level density, one obtains

(u—H)p=0, (4)

s
O(u-Ha=2[ dESE-H.). (12
whereH = p?/2m+ V4, + gp is the GPE Hamiltonian and 0

- where the factor 2 stands for the spin-degeneracy. The |hs of
p=1){y] ®) Eq. (12) is recognized as the standard TF expression for the
distribution function of a degenerate Fermi &%

The main point of this paper is to show that Ef0) leads
to a more complex expression for the densifR)
= [dpfo(R,p)/(27#)3, which however, reduces in the limit
of large numbersN to the usual fornp=(u—Vey/g. This
will be the subject of the following paragraphs where it will
also be demostrated that E4.0) gives very reasonable re-

is the density matrix corresponding to the solutigrof Eq.
(1). We note that Ihs of Eq4) is an operator product of two

single particle operatorg.—H and[). Taking the Wigner
transform[7] of Eq. (4) we can use the fact the Wigner
transform of a product of two single-particle operatdrand

B can be written a§7]

(AB)wigner=Awigner XA % K12)Byigner (6)  sults for observables already for modest number of particles,
strongly improving over the largh limit.
where Before coming to these points we would like to contrast
S, our approach to the one published in Rd] by Timmer-
A=V .V, -V,.V, (7)  manset al. The essential point in Reff8] is the semiclassical

) ) ~ treatment of scattering processes out of the condensate in the
is the Poisson bracket operator and the upper arrows indicagsgoliubov approach. Though this is certainly a worthwhile
in which direction the differentation should act. _ generalization of the Gross-Pitaevskii approach to be consid-
~ Explicitly to orders? expressior(6) is for example given  gred semiclassically, a sensible comparison with our theory
in Ref. [8]. Since we can symmetrize EG1) we can write  can only be performed once the Bogoliubov terms in Re.
with Eq. (6) have been switched off. In detail this means that in a general
A Bogoliubov transformation to quasiparticles, i.aﬂg:ukaﬁ
[,u,—Hcl(R,p)]COSEXf(R,p):Q (8)  —vkaxt+C we have to choose,=0 anduy,=1, since only
v,=0 corresponds to the GPE and any#*0 means that a
certain depopulation of the condensate due to correlation is
: . .. present. A careful inspection of the formalism presented in
the GPAE and(R,p) is the Wigner t.ransform OT the density Ref.[8] shows that on the level of GPE the approach of those
matrix p of Eq. (5). To lowest order it we obtain from EqQ.  gthors reduces to the ususal, i.e., to the Ia¥gémit. We
(8 therefore see that in the context of condensation of atomic
_ _ atoms in magnetic traps expressidf) leads to results turn-
(n=Ha)To(R,p)=0 © ing the TF approach to GPE into a quite reliable one even for

what is ac-number equation. Witk 8(x) =0 we find for the ~ very moderate numbers of particles. This we will demostrate

whereH,, is the classical counterpart of the Hamiltonian in

solution of Eq.(9) in Sec. ll.
fo(Rp)=Nco(u—Hg) (10) A. Self-consistent solution. Repulsive casgy>0)
where Let us first consider the solution of the self-consistent
problem at the TF level defined by E{.0) for the repulsive
1 dRdp case i.e.g>0. From Eq.(10) we obtain for the density:
c=a= [ s Ha) 1
c (27h)

dp Ncm
is the level density and thys, is correctly normalized to the (R J' (27h)3 fo(R.P) 2m°h3 Po(R). (13
particle numbeN. We would like to point out that Eq10)

is not a new result but actually textbook knowledgee for ~ where the local momentum is given by

example the monograph by GutzwillE9]). Let us mention
again the fact that Eq10) has been derived under the sole Po(R)=V2mM(—Veyx—9p). (14)
assumption that all the gradients of the potential can be ne-

glected, which is the usual hypothesis of TF theory. ClearlyThe self-consistency between E@$3) and (14) is easy to

contrary to what has become known as “TF approximation” solve analytically and we obtain
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2

KgN?
+ KNZ(M_Vex),

N

KgN?
2

(19

2m/| cm 2
e Pere (10

It is to be noted thap(R) is defined only within the classical

region limited byu —V(R)=0. It is straightforward to ex-
pandp in the repulsive casg>0 for large values oN

1 1
p (Vo) = S (Vo). (D)

Kg3N?
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B. Chemical potential and quantization

The semiclassical density matrid0) corresponds to a
single wave function. In such a case we have two indepen-
dent constants to be determined: the normalizatiot dnd
the chemical potentiglk, i.e., the lowest eigenvalue of the
GPE. Only in the cas&—c does the chemical potential
coincide with the bottom of thgself-consistently deter-
mined potential well and no extra determination gf is
necessary. For finite number of particles a requantization of
the lowest order semiclassical theory, i.e., TF approximation
in this case, is necessary in order to deternm(gemiclassi-
cally) the finite gap separating the lowest eigenvalue of the
GPE from the bottom of the potential. This procedure is
similar to the Wentzel-Kramers-Brillouif(WKB) requantiza-
tion. The need for a requantization of the TF theory for in-
dividual states has been recognized in R&€] and in fact
our procedure of requantization clearly follows what is pro-

It is satisfying to see that to leading order one recovers th@osed there. One may think that the equation for the chemi-
result corresponding to the total neglect of kinetic energy incal potentialu=dE/dN yields the right quantization but in

Eq. (1) (see Introduction
The normalization is directly determined from E41)

Pl f dRpo(R) (18)
or equivalently
sz dRp(R). (19
Explicitly one obtains from this equation
1=41 i _5KgNM3/2_ K°g°N M1/2
M2 48 64
K [KkgN2 |2 u
45 e
(20)

Using in Eqg.(19) the asymptotic expansioid?) yields

3/2
2 2 u2 4
1=47‘r( —) 22 £

TTkene)

me?) 15 gN

which also can directly be derived in expanding Ez).

From Eq.(20) or (21) we can determine the normalization

constantc as a function ofu. From Eq.(21) we see that to
lowest order in IN the normalization constartt drops out

fact is equivalent to the particle number conditid®) and
therefore of no help. The standard semiclassical quantization
procedure is given by the WKB method. However, in order
to have a more explicit formula, we here also apply a slightly
simpler method, applicable to the lowest state in a single-
particle potentia[11]. To this end we calculate the smooth
accumulated level densitynumber of statgsin TF approxi-
mation

NTF(E):f (::';@(E—HC). (22
For a spherical harmonic oscillat@dO) this gives
L'.:o.:%(%)?)- (23)
Taking for E in Eqg. (23) the HO eigenvalues
E—Ex= K+g ho (24)

with K=2n+1 and inserting Eqs(23) and(24) in the left-
hand side of Eq(22) yields a semiclassical quantization rule,
which becomes exact in the three-dimensidB&l) spherical

HO case. It represents an approximate quantization relation
for an arbitrary potential where the quantized energies very
well reproduce the centroid of major shells. This has been
tested numerically on a potential of Woods-Saxon type of
nuclear dimensiongl1]. It is evident that in the 1D case the
same procedure leads to the exact WKB quantization rule.

and thus in this limit the chemical potential is, as usual,For the 3D case this modified quantization prescription is
determined by the particle number condition. However, aslightly less accurate than WKB for the lowest eigenvalue

we will see, via the quantization conditiqnm depends ort

and thus we can consider E@QO) as determining the nor-

malization in any case.

but has the advantage to be easier and to be readily appli-
cable also to the deformed cddd]. In the present problem,
the eigenvalueu is then determined by

043603-3



P. SCHUCK AND X. VINAS

27 1 ,
8~ w2ﬁ3j dRpo(R)

2N12\ 1/2 2N]2)\ 3/2
Kg N 5/2__9 Kg°N ,u3/2
24\ 4
2 2\ 5/2
_1 N L
6 4
+§K92N2 Kg2N2+ 2arcsin K
8 4 5 H Kg2N2+
i TH
— K92N2+ 3arcsin ” (25
6 4 ' # Kg2N? :
4 M

where we have usepy(R) from Eq. (14) with Eq. (15). To
second order we obtain from ER5)
2 )3/2

21 4 fom 1 \°
8 a3l V KgN

Mma?
16 48 pu
912 e
K 315( 11 Kg?N?) (26)

To leading order in the larg8l limit we obtain from Eqgs.
(20) and (21) and Eqgs.(25) and(26)

15 2/5 me 3/5
= —— _ 2/5
(27)
o [ 4096 ®1
"\ 850570 (gn)2""

This completes the solution in the largklimit.
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With Egs.(29) and(30), Eq. (28) can be solved foju.

C. Kinetic energy

One of the main difficulties with the standakl—o TF
limit treated in the literaturésee Introductiopconsists in the
inability to calculate the kinetic enerdg]. In our approach
this does not cause any particular problem and one directly
obtains

dRdp p?

Ekin:f (277—ﬁ)3 %fo(R,D)Z

Nc 3
mf dRpo(R).
(3D

For example to lowest order we obtain from E¢s4) and

7

1
=——— (10~ Vex)O(uo—Vey (32
Po \/K_og N Mo Mo

what yields for the kinetic energy per particle, using E)

0
E(m%o

ino 27 2m°h3 /K0_27
N 32 m Va2m 32
This simple result must be contrasted with the usual statment
that in theN—oo TF limit the kinetic energy cannot be

evaluated, since it diverg¢8].
Indeed one can write the kinetic energy as

(33

h2
Ekin:ﬁf dR[Vy|?. (34)

In the N—oo [imit we have
PUN—oe= \/3(Mo—Vex) (35

and one can readily verify that with E@5) E,;, of Eq. (34)
diverges logarithmically. This result obviously is in contra-
diction with Eqg.(33) and we shortly want to elucidate the

For later comparison let us also give the standard WKBunderlying reason. To this end, we first rewrite E2¢) in a
quantization rulg 12], which we want to evaluate to leading different but obviously equivalent way:

order

2m
A

with [see Eq(17)]

/
= V( )———1 (28)

[w—Vex(r) ]2 (29

—V(r)=
m=V(r) KQ?N?

The classical turning points; andr, are determined from
the solution of the cubic equation

(30

1 vyt he 1
kg MV "2 N amr

Ewin=

72 dRdp p2.
2_
—me dRIVy| —f( fo(Rp) (36

27#)3 2m

with T, given by the Wigner transform of the density matrix
corresponding to Eq.35):

s ( s)
R+ E '7//N_>30 R_ E .
(37)

TO(RIp):f dseiipgﬁ"r//N—»oo

Sincef,#f, we argue that Eq(37) is not the corrects
—0 limit of the Wigner phase space function because it is
not the solution of thét — 0 limit of the Schralinger Eq.(1)
given by Eq.(9). Only (10) is the correct solution of this
equation, which yields for larghl
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1 p2 N limit makes this coincide with the usushl—c limit of
fo, .=Ncé T(MO—VeX)Z— oml (38)  the GPE. However, the limit —0 of the GPE has the ad-
Kog°N m vantage that it gives very good estimates of various quanti-
ties (including kinetic energyalready for rather small num-
One checks that Eq38) upon projection onto r-space gives per of particles Kl=200-300) and it can be applied to the
the correct lowest order expression for the denfsge Eq.  attractive §<0) case, as will be demostrated in the next
(17)]. Therefore both Wigner function87) and (38) yield  section. Of course, as a rue, the=0) TF approximation
the same leading order density. However, in spite of being @,orks better for large number of particles.
very suggestive nonlocal generalization of the lowest order
local density expression, E¢37) has to be rejected on the
above given grounds and the divergency of E2) is an
artifact. On the contrary the lowest order contribution to the In this section, we proceed to a detailed numerical com-
kinetic energy is given by Eq33). Via Egs.(21) and(26) it ~ parison of the semiclassical approximations with the exact
is straightforward to calculate the next to leading order corquantum mechanical results. Along this section, energies and
rection to Eq.(33). It should, however, be remembered thatlengths are given in harmonic oscillator unitss andayq
1/N corrections do not go in parallel with powersfinand = ./4/2mw, respectively. First, in Table | we present the
that 1N corrections also can come frofi? corrections to  chemical potential ) and the kinetic €,;,), harmonic os-
Eq. (10), which involve second-order gradients of the poten-cillator (ey;o) and the self-interactionef,) energies per par-
tial. In any case, the Wigner-Kirkwood expansion of the den+jcle calculated quantally and in the full Thomas-Fermi ap-
sity matrix is an asymptotic expansion, which in no way canproximation(15), (20) and(25) as a function of the number
recover the nonanalytic behaviorfinof the quantal solution.  of atoms enclosed in the trap. We have considered Cs atoms
In the present problem, the nonanalyticity/irof the quantal  (as was done in Ref14]), the frequency of the harmonic
solution entails a nonanalytic behavior irNlfsee Eq.(16)  oscillator has been chosen to be- 207s~ and the scatter-
of Ref.[3]] and therefore a WK-expansion can never recoveling length to bea=3.2x 10" °m.
the quantal behavior in M. It is well known that an In Table II, we present the results for the chemical poten-
asymptotic expansion has to be stopped at a point where thg| and the kinetic energy per particle number beyond
difference to the exact solution is minimal. Afterwards the20 000. In addition to the quantum mechanical and the full
expansion starts to diverge again. In this paper, we do nofhomas-Fermi results, we also include the results for the
intend to develop a systematic expansion simultaneously ifarge N limit (33) and those obtained using the WKB quan-
i and 1N. We rather want to give a complete solution to tization rule(in the largeN limit). Notice that in the largél

Ill. NUMERICAL RESULTS

lowest order infi, i.e., on the TF level. limit, the WKB chemical potential coincides with the TF one
and the kinetic energy is given also by E&3) but with ¢,
D. The attractive case(g<0) replaced by the one calculated frdfnvia Eq.(28). Though

lobally the semiclassicalfi(=0) TF results reported in
ables | and Il are in quite satisfactory agreement with the
corresponding quantal values, one nevertheless remarks upon

Recently, Bose-Einstein condensation has also been o
served for the case of negative scattering lengthi @toms

[13]'. Forg<0 the Gross-Pitaevskii approach leads {0 Metagome unexpected features. For instance the kinetic energy in
stability for particle numberdl<1400[2]. For Iarge.partlcle the TF approximation is larger than the exact values for
numbers the system collapses. F_or _the attractive case (small numbers of particles whereas it undershoots the quan-
<0) the correct treatment of the kinetic energy is crucial iny,m yajyes quite considerably in the lanydimit. To clarify
the TF limit, since otherwise no stability can be achievedqnis point we will discuss with some detail the results ob-
Formally the TF solution for the density is the same as in EGained for a very large number of particles which are col-
(15) with, however, the sign of the first member reversed |octed in Table L.
K|g|N? KONZ 2 The numbers presented in this table indicate that the val-
p= 9 + \/( 9 FKNZ(— Vo) (39) ues of the chemical potential obtained quantally and using
2 2 e the (:=0) TF approacicolumns 1 and 2 of Table)llonly
reach its asymptotic TF limifcolumn 3 for a very large
Contrary to the repulsive case no lalyeexpansion is pos- number of particles=10?). Although the chemical poten-
sible here. Therefore, the TF solution has to be considered itial reported in columnn 3 is the large limit (27) of our
full. In the next section, comparison with quantal results will (#=0) TF theory, it coincides with the corresponding value
be given. obtained in the standard\(—«) TF approach. For a rela-
Let us summarize our findings of this section. It has beeriively large number of particles the value pfobtained with
pointed out that what in the literature is usually called thethe (# =0) TF approach lies halfway in between the limiting
Thomas-Fermi approximation of the GPE, i.e., Ns—o (N—«) TF and the quantal results. So even for a very large
limit, is not equivalent to the limiti—0 of the GPE. In an number of particles thei(=0) TF approximation shows a
analogy with the case of fermions, where the TF approximaelear superiority over itfhN—oo limit.
tion corresponds to the limit—0 of the quantal solution, Concerning the kinetic energy we first want to point out
we have also elaborated the “true” TF approximation inthat with the standartN—o TF theory, as it is well known
taking properly the limith— 0. Taking in addition the large [3], it is impossible to calculate the kinetic energy. The rea-
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TABLE I. Chemical potential &), kinetic energy €i,), harmonic oscillator energye(;,o), and self-
interaction energy€,) per particle in harmonic oscillator unité {) calculated quantallyQM) and in the
Thomas-Fermi approximatioff F) for several numbers of atoms in the traps. The frequency of the harmonic
oscillator isw=207 s~ ! and the scattering length i=8.2x10"° m.

N w(QM)  u(TF)  ein(QM)  &in(TF)  euo(QM)  eyo(TF)  €,(QM)  e,(TF)

200 1.688 1.642 0.696 0.700 0.811 0.804 0.080 0.069
400 1.806 1.766 0.654 0.661 0.865 0.851 0.144 0.127
600 1.927 1.877 0.622 0.630 0.912 0.894 0.196 0.177
800 2.036 1.978 0.597 0.603 0.955 0.934 0.242 0.220
1000 2.134 2.071 0.575 0.581 0.944 0.970 0.282 0.260
1200 2.225 2.157 0.557 0.561 1.031 1.005 0.319 0.296
1400 2.310 2.238 0.541 0.544 1.065 1.037 0.352 0.329
1600 2.389 2.315 0.528 0.528 1.065 1.068 0.382 0.359
1800 2.464 2.388 0.515 0.514 1.097 1.097 0.411 0.388
2000 2.535 2.457 0.503 0.502 1.158 1.125 0.437 0.415
4000 3.112 3.025 0.431 0.417 1.395 1.356 0.643 0.626
6000 3.550 3.461 0.390 0.369 1.577 1.536 0.792 0.778
8000 3.914 3.825 0.363 0.336 1.729 1.687 0.911 0.901
10000 4.231 4.142 0.343 0.312 1.862 1.820 1.013 1.005
12000 4.513 4.426 0.327 0.293 1.981 1.939 1.103 1.097
14000 4.770 4.684 0.314 0.277 2.089 2.047 1.184 1.180
16000 5.007 4.921 0.303 0.265 2.189 2.147 1.258 1.255
18000 5.228 5.143 0.294 0.254 2.282 2.240 1.326 1.324
20000 5.435 5.350 0.285 0.244 2.369 2.328 1.390 1.389

son for this shortcoming has been discussed in Sec. Il Genergy reaches this limiting value for a rather moderate num-
Since the £=0) TF theory does not neglect the kinetic en- ber of particles K=10°). We also realize that thei0)
ergy it can be perfectly calculatedolumn 5 of Table Il. ~ TF kinetic energy, that is derived with our simplified quan-
One can also consider the leading term for laNy®f the tization rule(25) and(26), coincides with the value obtained
(h=0) TF expression for the kinetic energy. This is givenusing the WKB quantization rulecolumn 7 of Table IJ for

by Eq. (33 and the corresponding values are displayed ina very large number of particled& 10" — 10%). From Table
column 6 of Table Il. We see that thé.£0) TF kinetic Il itis also seen that even for a very large number of particles

TABLE Il. Chemical potential &) and kinetic energysdy;,) per particle for large number of atoms in the
trap (N). The chemical potential is calculated quantdlyM), with the full Thomas-Fermi approadfi’F)
and with the asymptotic formula for largé (TFy_...). The kinetic energy is obtained quantally, with the
exact TF approximation, with the asymptotic TF for lald@nd using the WKB quantization in the limit of
large number of atoms. The frequency of the harmonic oscillator and the scattering lenght are the same as in

Table I.
N w(QM) (TR w(TRy=)  en(QM)  ein(TF)  edn(TFn—=)  €xin(WKB_.)
20000 5.435 5.350 5.196 0.285 0.244 0.256 0.238
30000 6.322 6.242 6.111 0.255 0.210 0.218 0.202
40000 7.051 6.973 6.856 0.236 0.187 0.194 0.180
50000 7.677 7.603 7.496 0.222 0.173 0.177 0.165
100000 10.231 9.972 9.891 0.182 0.133 0.134 0.125
150000 11.763 11.701 11.633 0.162 0.113 0.114 0.106
200000 13.170 13.112 13.051 0.149 0.101 0.102 0.095
250000 14.381 14.326 14.270 0.140 0.093 0.093 0.087
500000 18.919 18.872 18.829 0.114 0.070 0.070 0.066
1000000 24.917 24.878 24.845 0.092 0.053 0.053 0.050
5000000 47.340 47.340 47.297 0.056 0.028 0.028 0.026
10000000 62.443 62.422 62.409 0.045 0.021 0.021 0.020
25000000 90.056 90.046 90.037 0.033 0.015 0.015 0.014
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0 — r{units of ayg)
4
r{units of ayg) FIG. 2. The same as Fig. 1 but with 200 000 atoms in the trap.

FIG. 1. Density(normalized to unity of 200 atoms in a spheri-
cal trap(in a3 units) as a function of the distand@ ay units) in
the repulsive case calculated from the solution of the G&id
line) and using the TF approach described in the {dashed ling

TF-solution are in close agreement. Figure 4 also teaches us
why the TF approximatior{10) to the quantal distribution
function is very good for larg&l. The distribution function
corresponds to a wave function with very large eneugyn
phase space it therefore is very much concentrated around
(N=10P) the kinetic energy#=0) TF values are still dif- the surface of the hypersphere with radjus

ferent(smalley than the corresponding quantal results. This Let us now present the attractive case for the same atoms
is due to the fact that for very largd the quantal kinetic and external potential with, however, the scattering length
energy is dominated by the quantal corrections. As was=—1.0x10 °m. In Table Ill we again show chemical po-
shown by Dalfovo, Pitaevskii, and Stringd8], these cor- tential and kinetic, harmonic oscillator, and self-interaction
rections are nonanalyticalogarithmid in 7. Consequently, energies per particle as a function of the particle number in
they cannot be accounted for by a pure TF approach and BF and quantal calculation. For small particle numbeXs (
partial resummation of all orders #h would be necessary to =<1000) the agreement of TF with the quantal case is of
reproduce the quantal kinetic energy. Of course, when finally

N— o these quantal corrections drop to zero and one recov- 8 1
ers the result of the standard TF theory where the kinetic
energy vanishes. 71

Next, let us compare in Figs. 1 and 2 the densifiex-
malized to unity in TF-approximation and calculated exactly
for small (200 and large(200 000Q particle numbers. As ex-
pected, the TF densities almost agree with the quantal ones
for very large particle numbers. In view of the still quite
reasonable expectation values shown in Table INer200,
the strong deviation of the TF density from the quantal result
is somewhat a surprise. However, one always should remem-
ber that the TF solution for the densities is to be understood
as a distributiorjsee Eq(10)], which for expectation values
of “slowly varying” operators can still yield very reasonable
values in spite of the fact that the detailed shape may only be
a caricature of the exact one.

In Figs. 3 and 4 we show the self-consistent potentials
V=V,,+gp corresponding to the densities of Figs. 1 and 2.
Not astonishingly,V deviates from the harmonic oscillator
only slightly for N=200, both quantally and semiclassically.  F|G. 3. Self-consistent potentiéih % units) corresponding to
On the contrary forN=200000, the potential/ deviates 3 spherical trap containing 200 atoms as a function of the distance
strongly fromV,, being practically a constant equal foup  (ay,q, units) in the repulsive case calculated from the solution of the
to the classical turning point from where the harmonic oscil-GPE (solid line) and using the TF approach described in the text
lator takes over quite abruptly. Again, both the quantal anddashed ling

V {units of hw)

0 1 2 3 4 5
r (units of ayg)
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40 8x10” 1
35 1
301 6x107
3 25 1 e
f 'a
w 201 5 2
:}2 v 10)(10_ 7
E =
> 151 3
....... et -
10 2
N= 200000 2x107 1
5 4
0 T T — T T T T T T T A 1
0 2 4 6 8 10 12 0 . . . \
r {units of aug) 0 1 2 3 4

. ) ) r (units of ayg)
FIG. 4. The same as Fig. 3 but with 200 000 atoms in the trap.

FIG. 5. The same as Fig. 1 but with 250 atoms in the trap in the

similar quality as in the repulsive case. However, f¢r attractive case.
=1000 the agreement quickly deteriorates, indicating that ) )
the whole mean field approximation breaks down. Indeed" order to compare with the TF one according to Ré.
even quantally the solution of the GPE, Ed) becomes For large number of particles, when the density profile has
unstable folN> 1500 forCs atoms. a relatively flat region at the interidsee Fig. 2, the quantal

In Figs. 5-8 we also show the densitigmrmalized to  Kinetic energy density is peaked at the surfpsre Eq(40)]
unity) and self-consistent potentials for the particle numberdvhereas the TF one is rather a bulk tefsee Eq.(31)].
N=250 andN=1500. We see that, whereas the caée Inspite of the rather different form of the quantal and TF
=250 is not dissimilar to the corresponding one wéth 0 kinetic energy densities in this case, the corresponding inte-
for N=1500 the situation becomes quite unfavorable for thégral_S are in go_od_agr_eeme(ﬂee Taple Il. This ff'iCt points
TF approximation. This is for instance manifest in looking atagan to the d|str|bgt|on character of the.TF—k!nenc energy
the graph for the densities. In the attractive case TF angensity. However, if the number of particles is small, the
quantal solutions diverge with increasibywhereas in the quantal and TF kinetic energy density profiles are quite simi-
repulsive case they converge. lar. This is due to the fact that the particle density fall off

In Figs. 9 and 10 we plot the kinetic energy density perdruptly fromR=0 (see Fig. and consequently its deriva-
particle (/N) calculated quantally and in the TF approxima- ives contribute in all the range &t

tion for N=200 000 in the repulsive case and o= 250 in Other quantities where one directly needs the kinetic en-
the attractive case. In these figures, the quantal kinetic erf'9Y are. €.9., the collective monopole and quadrupole exci-
ergy density is given by tations of the condensate. Using the sum rule apprfa6h

they are given by: wy=wo(5—ein/eno)Y?> and wp

=\2wo(1+ey,/eyo) 2 Table IV collects the results ob-
(40) tained forwy and wp calculated once quantally using the

values obtained foey;, andeyg from the solution of the GP

(Vp)?

—~Ap

L1 1
T=|Vyl = 7 Ap=7

TABLE lIl. The same as in Table | but with a scattering length -a1.0x10"° m. The frequencies
corresponding to the monopoley(;) and quadrupole ¢p) calculated in the sum rule approach are also

given.
QM TF QM TF QM TF QM TF

N 250 250 500 500 1000 1000 1500 1500
o 1.424 1.437 1.338 1.369 1.120 1.212 0.691 1.009
€kin 0.788 0.774 0.815 0.802 0.926 0.872 1.240 0.974
€Ho 0.723 0.726 0.691 0.702 0.613 0.646 0.472 0.579
€, -0.039 -0.032 -0.084 -0.070 -0.209 -0.153 -0.511 -0.272
wp 1.977 1.983 1.955 1.964 1.868 1911 1.540 1.821
wp 2.044 2.033 2.088 2.070 2.240 2.168 2.693 2.316
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2x107 1 7
g
1.5x10 -
3
- +&
mg k3
o (4]
o 1x10" 5
= >
3
[= 3
-1
0.5x10 1
-5 . T T . ~
0 1 2 3 4 5
r (units of ayg)
0 )
0 4 5

(onits. of aue) FIG. 8. The same as Fig. 3 but with 1500 atoms in the trap in the
_ riunits of ano attractive case.

FIG. 6. The same as Fig. 1 but with 1500 atoms in the trap in the

’ IV. DISCUSSION AND OUTLOOK
attractive case.

In the preceding sections we have derived the Thomas-

equation and also from the TF approach. The quantal resulg?erm' approximation, i.e., thie—0 limit of the density ma-

obtained by solving the time-dependent Gross-Pitaevski Ix corresponding to the wave fqncnon of the G.PE for the

. . : : ose condensate of atoms confined by magnetic traps. We
equation[17] are also given for comparison. From this tableh ve pointed out some misconceptions on this point that ap-
one can see that the quantal results are very well reproduc

f ber of in th by the TE S ared in the past in the literature which for instance pre-
or any number of atoms In the trap by the TF approximation oy the direct calculation of the kinetic energy in the large

presented in this paper. Table Ill also collects the quantal angy |imit. On the contrary with our Thomas-Fermi approach

TF frequencies for the monopole and quadrupole excitationg,e evaluation of the kinetic energy causes no problem and
obtained in the sum rule approach for the attractive casgpe results are globally in quite satisfactory agreement with
From these results it can be seen that the TF values reprghe quantal solution of the Gross-Pitaevskii equation. For

duce well the quantal ones in the region where the semiclagarticle numbers where the kinetic energy represents a sig-
sical approximation can be confidently applied<(1000).

5x10™
57 o
Ax107 1
\\
\\
N
~_ . \\
2Eh&3x0*
5 \
L
oy ‘e \
2 2 2x10™ \
.~ P[Z \
o \\
hY
£ N=200000 \
2 1x107
>
0

r(units of aug)

-4 . T

0 1 2 3 FIG. 9. Kinetic energy density per particle of a spherical tiap
r {units of apg) hwand units containing 200000 atoms as a function of the dis-
tance(in aygo units in the repulsive case calculated from the solu-
FIG. 7. The same as Fig. 3 but with 250 atoms in the trap in thetion of the GPEsolid line) and using the TF approach described in
attractive case. the text(dashed ling

~J
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2 TABLE IV. Monopole (L=0) and quadrupolel(=2) frequen-
6x10 " 1 cies w calculated from the sum rule estimate using the Gross-
Pitaevskii and Thomas-Fermi results for the kinetic energy. The
results obtained by solving the time-dependent Gross-Pitaevskii
51072 equation are also give(TDGP labe).
L N w(QM) o(TF) «(TDGP)
4x1072
3’I‘g,: 0 1000 2.095 2.098 2.114
+C|T 2 1.794 1.788 1.734
] 5 0 2000 2.137 2.137 2.145
2 3x10 2 1.694 1.701 1.650
3 0 4000 2.166 2.166 2.172
-z 2 2 1.617 1.617 1.579
2x10 0 6000 2.180 2.180 2.185
2 1.579 1.579 1.545
2 0 8000 2.189 2.191 2.192
1x10 2 1.556 1.549 1.525
0 10000 2.194 2.197 2.198
2 1.539 1.531 1.511
0 4 0 12000 2.199 2.202 2.202
r (units of ayo) 2 1.526 1517 1.500
0 14000 2.202 2.206 2.205
FIG. 10. The same as Fig. 9 but with 250 atoms in the trap in the2 1.517 1.507 1.493
attractive case. 0 16000 2.205 2.208 2.207
2 1.509 1.499 1.486
nificant fraction of the total energy thé €0) TF expression 0 18000 2.207 2211 2.209
yields very satisfying results as compared with the corre2 1.503 1.492 1.481
sponding quantal values. As it has been discussed previ 20000 2.209 2.213 2.211
ously, for largeN values, nonanalytical quantal effects domi- 2 1.497 1.486 1.477

nate the (smal) kinetic energy and consequently this
guantity cannot be well reproduced in a pure TF approxima-
tion in the largeN regime. The semiclassical theory of con- trivial modification of the theory, since squeezing the con-
densed inhomogeneous Bose gases has also been considetedsate wave function in one direction and relaxing it in the
in some detail in Refl8]. There, however, the main empha- other entails in turn a deformation of the momentum distri-
sis was laid on the scattering terms out of the condensateaution which is opposite to the spatial one, i.e., momenta are
(the Bogoliuvov approagh On the other hand no attempt strongest in the squeezed direction and lowest in the long
was made to improve the kinetic energy in the pire0  direction of the deformatiofil5]. Our TF approach has also
limit, i.e., in Thomas-Fermi approximation. However somebeen useful for the evaluation of collective excitations of
estimates of the kinetic energy coming from gradients,%.e., droplets of small or intermediate sizes. For this purpose, we
corrections are given in the largelimit. On the contrary in  have used the sum rule approach where the kinetic energy
the present work no quantal corrections to the lowest ordeenters and for which we have used the TF values. In the
Thomas-Fermi result have been worked out. Finally, wedeformed case the momentum becomes anisotropic. This has
want to make some comments why for very lafgehe (% also been determined experimentally. The detailed determi-
=0) TF values for the kinetic energy are very different nation of the anisotropy of the momertighich may be po-
(smalle) than the corresponding quantal valusse Table sition dependents theoretically not a completely trivial task
). This simply means that th#=0 part of the kinetic in the general case and we will elaborate on this in future
energy goes to zero much faster for lafge¢han for the full  work. In the present case, however, there exists an evident
quantal solution. In other words, for very lartjethe kinetic ~ first guess of the momentum deformation that results from a
energy is dominated by the quantal corrections. Of coursegcaling argument of the harmonic oscillator coordinates. As-
finally for N— <, the latter ones also drop to zero. suming a prolate quadrupole deformation in thdirection

The above discussion shows again that the semiclassic#le have to replace the classical Hamiltonian in Ed) by
approximations are a powerful tool but not devoid of subtle-
ties and pitfalls. As a matter of fact also in this paper we, for
simplicity, avoided developing the full complexity of the H.=-—
theory. One major simplification resides in the fact that we 2m
assume a spherical trap. This results in an isotropic momen- (41)
tum distributionf g 5(u— H.) whereH.=p?/2m+V is the
classical Hamiltonian. Deforming the trap leads to a nonwhere the ratiosv,/wy and w, /wq are the frequency rela-

2 2

Wo o o %o 5
_Z(px+ py)+_2pz
o W,

W, @ Wy
+V| —Xx,—y,—1z],
w (O] wqo
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tions in z and X,y with respect to the spherical case. Another interesting subject of a more formal aspect is the
From Eq.(41) one easily calculates the so-called aspect ratievaluation of thef-correction to the present lowest order
in the TF-approximation theory. In principle this can easily be performed in posing in
Eq. (3) p=po+h2p, and u=pue+#A%u, and properly sort-
P w, ing out different powers ik. However, the proper elimina-
Ez w_z (42 tion of divergencies and handling the normalizat{@8) and
X

quantization(25) are slightly subtle problems. Investigations

a result that has been given previougdy. One other impor-  ©N the above mentioned directions are in progress.
tant consequence of the momentum deformation is that with
Eqg. (41) the moment of inertia of the condensate becomes
equal to the irrotational flow valugl6]. On the contrary
using Eq.(10) with the isotropic momentum distribution the ~ We want to thank S. Stringari for very useful discussions,
rigid momentum of inertia results. Consequently, the ded. P. Pitaevskii for his interest in this work, and M. Guilleu-
formed case needs more detailed studies, which we reserveas for supplying us with the TDGP results. One of us
for future work. It is also evident that the present TF ap-(X.V.) also acknowledges financial support from DGCYT
proach can be extended to finite temperature and to the BqSpain under Grant No. PB95-1249 and from the DGR
goliubov theory. (Catalonia under Grant No. 1998SGR-00011.
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