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Thomas-Fermi approximation for Bose-Einstein condensates in traps
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Thomas-Fermi theory for Bose-Einstein condensates in inhomogeneous traps is revisited. The phase-space
distribution function of the condensate in the Thomas-Fermi limit (\→0) is f 0(R,p)}d(m2Hcl) whereHcl is
the classical counterpart of the self-consistent Gross-Pitaevskii Hamiltonian. Starting from this distribution
function the Thomas-Fermi kinetic energy is calculated for any number of particles. Good agreement between
the Gross-Pitaevskii and Thomas-Fermi kinetic energies is found even for low and intermediate particle
numbersN. Application of this Thomas-Fermi theory to the attractive case and to the calculation of the
frequencies of the monopole and quadrupole excitations in the sum rule approach yields conclusive results as
well. The difference with the usual Thomas-Fermi approach to the Bose-Einstein condensates~large-N limit !
is discussed in detail.

PACS number~s!: 03.75.Fi, 05.30.Jp
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I. INTRODUCTION

The recent discovery of the Bose-Einstein condensa
of magnetically trapped atoms has spurred a huge amou
theoretical investigations. Most of them are based on
Gross-Pitaevskii equation~GPE! @1#, which is the mean-field
equation for the condensate wave function~order parameter!.
The experimental conditions are such that the atomic ga
at very low density and therefore the mean-field approxim
tion gives indeed excellent results@2–5#. Since the numberN
of atoms involved is generally large, it is natural that also
Thomas-Fermi~TF! approximation is applied quite exten
sively. This has the advantage of yielding in most cases
plicit analytical results of great physical transparency. T
TF limit in the context of Bose-Einstein condensation
traps has been identified with the limit as the particle num
N goes to infinity. However, in the case of Fermi statisti
for which the TF approximation has been invented first@6#,
by no means the\→0 limit ~that is what the TF approxima
tion really is! corresponds to theN→` limit. Rather the
situation is such that the TF approach becomes eventu
exact in theN→` limit but already forN moderate, i.e.,
corresponding to the masses of midsized atoms, TF g
very reasonable estimates for various quantities such
ground-state energies, etc. It is the purpose of the pre
paper to show that also for the case of bosons theN→`
limit is not equivalent to the\→0 limit. Rather the correct
\→0 limit does not neglect the kinetic energy term in t
GPE (N→`) and then the TF results are greatly improv
for rather small mass numbers like, e.g.,N'200. We delib-
erately restrict ourselves here to the TF limit of the GPE
zero temperature. Finite temperature as well as more el
rated theories like the Bogoliubov approach may be the s
ject of future work.

The paper is organized as follows. In Sec. II the theo
ical aspects of the TF approximation to the GPE are p
sented in detail. In Sec. III the numerical results obtain
with the TF method are compared with the ones com
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n
of
e

is
-

e

x-
e

r
,

lly

es
as
nt

t
o-
b-

t-
-

d
g

from the GPE. The last section is devoted to discussions
an outlook.

II. GROSS-PITAEVSKII EQUATION. THOMAS-FERMI
LIMIT

As mentioned in the Introduction, the basic equation
Bose condensed atoms confined by magnetic traps is, in
low-density limit, given by the GPE for the wave function o
the condensate

S 2
\2

2m
D1Vex1gucu2Dc5mc, ~1!

whereVex is the external potential which for simplicity w
have considered to be a spherical harmonic oscillator~for
nonspherical geometry see remarks at the end of the pa!.
The coupling constant is given byg54p\2a/m with m the
atomic mass anda the scattering length. The chemical p
tential m is identical with the lowest eigenvalue of the se
consistent potential

V5Vex1gucu2. ~2!

It is useful to note that Eq.~1! can also be rewritten as a
equation for the densityr5ucu2

\2

2m

1

4 F ~¹r!2

r2
22

Dr

r G1Vex1gr2m50. ~3!

In the largeN limit one can drop in Eq.~1! the kinetic energy
or, equivalently, in Eq.~3! the gradients terms of the densit
This leads tor5(m2Vex)/g what is known in the literature
@3–5# as the TF solution of the GPE. However, for modera
particle numbers the kinetic energy is not negligible a
there is no reason for dropping it in the proper TF limit (\
→`). Also in the attractive case the kinetic energy is
crucial importance to avoid collapse.
©2000 The American Physical Society03-1
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P. SCHUCK AND X. VIÑAS PHYSICAL REVIEW A 61 043603
As it is well known from the case of the Fermi system
@7#, the TF-approximation is based on the assumption o
slowly varying potential so that its gradients can be n
glected to lowest order. We now will show how this can
exploited in order to derive the zeroth order\ expession for
the solution of the GPE. To this end let us write Eq.~1! in
the following way:

~m2H !r̂50, ~4!

whereH5p2/2m1Vex1gr is the GPE Hamiltonian and

r̂5uc&^cu ~5!

is the density matrix corresponding to the solutionc of Eq.
~1!. We note that lhs of Eq.~4! is an operator product of two
single particle operatorsm2H and r̂. Taking the Wigner
transform @7# of Eq. ~4! we can use the fact the Wigne
transform of a product of two single-particle operatorsA and
B can be written as@7#

~AB!Wigner5AWignerexp~ i\LJ /2!BWigner, ~6!

where

LJ5“
Q

r•“
W

p2“
Q

p•“
W

r ~7!

is the Poisson bracket operator and the upper arrows ind
in which direction the differentation should act.

Explicitly to order\2 expression~6! is for example given
in Ref. @8#. Since we can symmetrize Eq.~4! we can write
with Eq. ~6!

@m2Hcl~R,p!#cos
\

2
LJ f ~R,p!50, ~8!

whereHcl is the classical counterpart of the Hamiltonian
the GPE andf (R,p) is the Wigner transform of the densit
matrix r̂ of Eq. ~5!. To lowest order in\ we obtain from Eq.
~8!

~m2Hcl! f 0~R,p!50 ~9!

what is ac-number equation. Withxd(x)50 we find for the
solution of Eq.~9!

f 0~R,p!5Ncd~m2Hcl! ~10!

where

1

c
5g~m!5E dRdp

~2p\!3
d~m2Hcl! ~11!

is the level density and thusr0 is correctly normalized to the
particle numberN. We would like to point out that Eq.~10!
is not a new result but actually textbook knowledge~see for
example the monograph by Gutzwiller@9#!. Let us mention
again the fact that Eq.~10! has been derived under the so
assumption that all the gradients of the potential can be
glected, which is the usual hypothesis of TF theory. Clea
contrary to what has become known as ‘‘TF approximatio
04360
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for trapped atomic bosons@3–5# , expression~10! does not
neglect the kinetic energy. Equation~10! also is consistent
with the usual TF theory for fermions where not only th
lowest level is filled but all levels below the Fermi energ
One therefore simply has to sum alld functions~10! over the
energies of the levels. Converting the discrete sum into
integral and introducing an extra level density, one obtai

Q~m2Hcl!52E
0

m

dEd~E2Hcl!, ~12!

where the factor 2 stands for the spin-degeneracy. The lh
Eq. ~12! is recognized as the standard TF expression for
distribution function of a degenerate Fermi gas@7#.

The main point of this paper is to show that Eq.~10! leads
to a more complex expression for the densityr(R)
5*dpf 0(R,p)/(2p\)3, which however, reduces in the lim
of large numbersN to the usual formr5(m2Vex)/g. This
will be the subject of the following paragraphs where it w
also be demostrated that Eq.~10! gives very reasonable re
sults for observables already for modest number of partic
strongly improving over the largeN limit.

Before coming to these points we would like to contra
our approach to the one published in Ref.@8# by Timmer-
manset al.The essential point in Ref.@8# is the semiclassica
treatment of scattering processes out of the condensate i
Bogoliubov approach. Though this is certainly a worthwh
generalization of the Gross-Pitaevskii approach to be con
ered semiclassically, a sensible comparison with our the
can only be performed once the Bogoliubov terms in Ref.@8#
have been switched off. In detail this means that in a gen
Bogoliubov transformation to quasiparticles, i.e.,ak

†5ukak
†

2vkak1C we have to choosevk50 anduk51, since only
vk50 corresponds to the GPE and anyvkÞ0 means that a
certain depopulation of the condensate due to correlatio
present. A careful inspection of the formalism presented
Ref. @8# shows that on the level of GPE the approach of tho
authors reduces to the ususal, i.e., to the largeN limit. We
therefore see that in the context of condensation of ato
atoms in magnetic traps expression~10! leads to results turn-
ing the TF approach to GPE into a quite reliable one even
very moderate numbers of particles. This we will demostr
in Sec. III.

A. Self-consistent solution. Repulsive case„gÌ0…

Let us first consider the solution of the self-consiste
problem at the TF level defined by Eq.~10! for the repulsive
case i.e.,g.0. From Eq.~10! we obtain for the density:

r~R!5E dp

~2p\!3
f 0~R,p!5

Ncm

2p2\3
p0~R!, ~13!

where the local momentum is given by

p0~R!5A2m~m2Vex2gr!. ~14!

The self-consistency between Eqs.~13! and ~14! is easy to
solve analytically and we obtain
3-2
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r52
KgN2

2
1AS KgN2

2
D 2

1KN2~m2Vex!, ~15!

where

K5
2m

\2 S cm

2p2\2D 2

~16!

It is to be noted thatr(R) is defined only within the classica
region limited bym2Vex(R)50. It is straightforward to ex-
pandr in the repulsive caseg.0 for large values ofN

r'
1

g
~m2Vex!2

1

Kg3N2
~m2Vex!

21•••. ~17!

It is satisfying to see that to leading order one recovers
result corresponding to the total neglect of kinetic energy
Eq. ~1! ~see Introduction!.

The normalization is directly determined from Eq.~11!

1

c
5

m

2p2\3E dRp0~R! ~18!

or equivalently

N5E dRr~R!. ~19!

Explicitly one obtains from this equation

154pS 2

mv2D 3/2H 2
5KgN

48
m3/22

K2g3N3

64
m1/2

1
AK

8 S Kg2N2

4
1m D 2

arcsinA m

Kg2N2

4
1mJ .

~20!

Using in Eq.~19! the asymptotic expansion~17! yields

154pS 2

mv2D 3/2
2

15

m5/2

gN S 12
4

7

m

Kg2N2D , ~21!

which also can directly be derived in expanding Eq.~20!.
From Eq.~20! or ~21! we can determine the normalizatio

constantc as a function ofm. From Eq.~21! we see that to
lowest order in 1/N the normalization constantc drops out
and thus in this limit the chemical potential is, as usu
determined by the particle number condition. However,
we will see, via the quantization conditionm depends onc
and thus we can consider Eq.~20! as determining the nor
malization in any case.
04360
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B. Chemical potential and quantization

The semiclassical density matrix~10! corresponds to a
single wave function. In such a case we have two indep
dent constants to be determined: the normalization ‘‘c’’ and
the chemical potentialm, i.e., the lowest eigenvalue of th
GPE. Only in the caseN→` does the chemical potentia
coincide with the bottom of the~self-consistently deter-
mined! potential well and no extra determination ofm is
necessary. For finite number of particles a requantization
the lowest order semiclassical theory, i.e., TF approximat
in this case, is necessary in order to determine~semiclassi-
cally! the finite gap separating the lowest eigenvalue of
GPE from the bottom of the potential. This procedure
similar to the Wentzel-Kramers-Brillouin~WKB! requantiza-
tion. The need for a requantization of the TF theory for
dividual states has been recognized in Ref.@10# and in fact
our procedure of requantization clearly follows what is pr
posed there. One may think that the equation for the che
cal potentialm5dE/dN yields the right quantization but in
fact is equivalent to the particle number condition~19! and
therefore of no help. The standard semiclassical quantiza
procedure is given by the WKB method. However, in ord
to have a more explicit formula, we here also apply a sligh
simpler method, applicable to the lowest state in a sing
particle potential@11#. To this end we calculate the smoo
accumulated level density~number of states! in TF approxi-
mation

NTF~E!5E dRdp

~2p\!3
Q~E2Hc!. ~22!

For a spherical harmonic oscillator~HO! this gives

NH.O.
TF 5

1

6 S E

\v D 3

. ~23!

Taking for E in Eq. ~23! the HO eigenvalues

E→EK5S K1
3

2D\v ~24!

with K52n1 l and inserting Eqs.~23! and ~24! in the left-
hand side of Eq.~22! yields a semiclassical quantization rul
which becomes exact in the three-dimensional~3D! spherical
HO case. It represents an approximate quantization rela
for an arbitrary potential where the quantized energies v
well reproduce the centroid of major shells. This has be
tested numerically on a potential of Woods-Saxon type
nuclear dimensions@11#. It is evident that in the 1D case th
same procedure leads to the exact WKB quantization r
For the 3D case this modified quantization prescription
slightly less accurate than WKB for the lowest eigenva
but has the advantage to be easier and to be readily a
cable also to the deformed case@11#. In the present problem
the eigenvaluem is then determined by
3-3
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27

8
5

1

p2\3E dRp0
3~R!

5
32

p\3 H 2
27

80S Kg2N2

4 D 1/2

m5/22
19

24S Kg2N2

4 D 3/2

m3/2

2
7

16S Kg2N2

4 D 5/2

m1/2

1
3

8

Kg2N2

4 S Kg2N2

4
1m D 2

arcsinA m

Kg2N2

4
1m

1
1

16S Kg2N2

4
1m D 3

arcsinA m

Kg2N2

4
1mJ , ~25!

where we have usedp0(R) from Eq. ~14! with Eq. ~15!. To
second order we obtain from Eq.~25!

27

8
5

4

p\3 SA2m

K

1

gND 3S 2

mv2D 3/2

3m9/2
16

315S 12
48

11

m

Kg2N2D . ~26!

To leading order in the largeN limit we obtain from Eqs.
~20! and ~21! and Eqs.~25! and ~26!

m05S 15

8p D 2/5S mv2

2 D 3/5

~gN!2/5

~27!

K05S 4096

8505p\3v3D 2/3
1

~gN!2
m0

3 .

This completes the solution in the largeN limit.
For later comparison let us also give the standard W

quantization rule@12#, which we want to evaluate to leadin
order

p

2
5A2m

\2 Er 1

r 2
drFm2V~r !2

\2

2m

1/4

r 2 G ~28!

with @see Eq.~17!#

m2V~r !5
1

Kg2N2
@m2Vex~r !#2. ~29!

The classical turning pointsr 1 and r 2 are determined from
the solution of the cubic equation

1

AKg2N2
~m2Vex!52

1

2
A \2

2m

1

r
. ~30!
04360
With Eqs.~29! and ~30!, Eq. ~28! can be solved form.

C. Kinetic energy

One of the main difficulties with the standardN→` TF
limit treated in the literature~see Introduction! consists in the
inability to calculate the kinetic energy@3#. In our approach
this does not cause any particular problem and one dire
obtains

Ekin5E dRdp

~2p\!3

p2

2m
f 0~R,p!5

Nc

4p2\3E dRp0
3~R!.

~31!

For example to lowest order we obtain from Eqs.~14! and
~17!

p05
1

AK0gN
~m02Vex!Q~m02Vex! ~32!

what yields for the kinetic energy per particle, using Eq.~27!

Ekin
(0)

0

N
5

27

32

2p2\3

m
AK0

2m
5

27

32
c0 . ~33!

This simple result must be contrasted with the usual statm
that in the N→` TF limit the kinetic energy cannot be
evaluated, since it diverges@3#.

Indeed one can write the kinetic energy as

Ekin5
\2

2mE dRu¹cu2. ~34!

In the N→` limit we have

cN→`5A1

g
~m02Vex! ~35!

and one can readily verify that with Eq.~35! Ekin of Eq. ~34!
diverges logarithmically. This result obviously is in contr
diction with Eq. ~33! and we shortly want to elucidate th
underlying reason. To this end, we first rewrite Eq.~34! in a
different but obviously equivalent way:

Ekin5
\2

2mE dRu¹cu25E dRdp

~2p\!3

p2

2m
f̃ 0~R,p! ~36!

with f̃ 0 given by the Wigner transform of the density matr
corresponding to Eq.~35!:

f̃ 0~R,p!5E dse2 ips/\cN→`S R1
s

2DcN→`S R2
s

2D .

~37!

Since f̃ 0Þ f 0 we argue that Eq.~37! is not the correct\
→0 limit of the Wigner phase space function because i
not the solution of the\→0 limit of the Schro¨dinger Eq.~1!
given by Eq.~9!. Only ~10! is the correct solution of this
equation, which yields for largeN
3-4
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f 0N→`
5NcdF 1

K0g2N2
~m02Vex!

22
p2

2mG . ~38!

One checks that Eq.~38! upon projection onto r-space give
the correct lowest order expression for the density@see Eq.
~17!#. Therefore both Wigner functions~37! and ~38! yield
the same leading order density. However, in spite of bein
very suggestive nonlocal generalization of the lowest or
local density expression, Eq.~37! has to be rejected on th
above given grounds and the divergency of Eq.~34! is an
artifact. On the contrary the lowest order contribution to t
kinetic energy is given by Eq.~33!. Via Eqs.~21! and~26! it
is straightforward to calculate the next to leading order c
rection to Eq.~33!. It should, however, be remembered th
1/N corrections do not go in parallel with powers in\ and
that 1/N corrections also can come from\2 corrections to
Eq. ~10!, which involve second-order gradients of the pote
tial. In any case, the Wigner-Kirkwood expansion of the de
sity matrix is an asymptotic expansion, which in no way c
recover the nonanalytic behavior in\ of the quantal solution.
In the present problem, the nonanalyticity in\ of the quantal
solution entails a nonanalytic behavior in 1/N @see Eq.~16!
of Ref. @3## and therefore a WK-expansion can never reco
the quantal behavior in 1/N. It is well known that an
asymptotic expansion has to be stopped at a point where
difference to the exact solution is minimal. Afterwards t
expansion starts to diverge again. In this paper, we do
intend to develop a systematic expansion simultaneousl
\ and 1/N. We rather want to give a complete solution
lowest order in\, i.e., on the TF level.

D. The attractive case„gË0…

Recently, Bose-Einstein condensation has also been
served for the case of negative scattering length (11Li atoms!
@13#. For g,0 the Gross-Pitaevskii approach leads to me
stability for particle numbersN<1400@2#. For large particle
numbers the system collapses. For the attractive casea
,0) the correct treatment of the kinetic energy is crucial
the TF limit, since otherwise no stability can be achiev
Formally the TF solution for the density is the same as in
~15! with, however, the sign of the first member reversed

r5
KuguN2

2
1AS KgN2

2
D 2

1KN2~m2Vex!. ~39!

Contrary to the repulsive case no largeN expansion is pos-
sible here. Therefore, the TF solution has to be considere
full. In the next section, comparison with quantal results w
be given.

Let us summarize our findings of this section. It has be
pointed out that what in the literature is usually called t
Thomas-Fermi approximation of the GPE, i.e., itsN→`
limit, is not equivalent to the limit\→0 of the GPE. In an
analogy with the case of fermions, where the TF approxim
tion corresponds to the limit\→0 of the quantal solution
we have also elaborated the ‘‘true’’ TF approximation
taking properly the limit\→0. Taking in addition the large
04360
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N limit makes this coincide with the ususalN→` limit of
the GPE. However, the limit\→0 of the GPE has the ad
vantage that it gives very good estimates of various qua
ties ~including kinetic energy! already for rather small num
ber of particles (N52002300) and it can be applied to th
attractive (g,0) case, as will be demostrated in the ne
section. Of course, as a rue, the (\50) TF approximation
works better for large number of particles.

III. NUMERICAL RESULTS

In this section, we proceed to a detailed numerical co
parison of the semiclassical approximations with the ex
quantum mechanical results. Along this section, energies
lengths are given in harmonic oscillator units:\v andaHO

5A\/2mv, respectively. First, in Table I we present th
chemical potential (m) and the kinetic (ekin), harmonic os-
cillator (eHO) and the self-interaction (er) energies per par-
ticle calculated quantally and in the full Thomas-Fermi a
proximation~15!, ~20! and ~25! as a function of the numbe
of atoms enclosed in the trap. We have considered Cs at
~as was done in Ref.@14#!, the frequency of the harmoni
oscillator has been chosen to bev520ps21 and the scatter-
ing length to bea53.231029m.

In Table II, we present the results for the chemical pote
tial and the kinetic energy per particle number beyo
20 000. In addition to the quantum mechanical and the
Thomas-Fermi results, we also include the results for
largeN limit ~33! and those obtained using the WKB qua
tization rule~in the largeN limit !. Notice that in the largeN
limit, the WKB chemical potential coincides with the TF on
and the kinetic energy is given also by Eq.~33! but with c0
replaced by the one calculated fromK via Eq. ~28!. Though
globally the semiclassical (\50) TF results reported in
Tables I and II are in quite satisfactory agreement with
corresponding quantal values, one nevertheless remarks
some unexpected features. For instance the kinetic energ
the TF approximation is larger than the exact values
small numbers of particles whereas it undershoots the qu
tum values quite considerably in the largeN limit. To clarify
this point we will discuss with some detail the results o
tained for a very large number of particles which are c
lected in Table II.

The numbers presented in this table indicate that the
ues of the chemical potentialm obtained quantally and usin
the (\50) TF approach~columns 1 and 2 of Table II! only
reach its asymptotic TF limit~column 3! for a very large
number of particles (N.108). Although the chemical poten
tial reported in columnn 3 is the largeN limit ~27! of our
(\50) TF theory, it coincides with the corresponding val
obtained in the standard (N→`) TF approach. For a rela
tively large number of particles the value ofm obtained with
the (\50) TF approach lies halfway in between the limitin
(N→`) TF and the quantal results. So even for a very la
number of particles the (\50) TF approximation shows a
clear superiority over itsN→` limit.

Concerning the kinetic energy we first want to point o
that with the standardN→` TF theory, as it is well known
@3#, it is impossible to calculate the kinetic energy. The re
3-5
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TABLE I. Chemical potential (m), kinetic energy (ekin), harmonic oscillator energy (eHO), and self-
interaction energy (er) per particle in harmonic oscillator units (\v) calculated quantally~QM! and in the
Thomas-Fermi approximation~TF! for several numbers of atoms in the traps. The frequency of the harm
oscillator isv520p s21 and the scattering length is a53.231029 m.

N m(QM) m(TF) ekin(QM) ekin(TF) eHO(QM) eHO(TF) er(QM) er(TF)

200 1.688 1.642 0.696 0.700 0.811 0.804 0.080 0.06
400 1.806 1.766 0.654 0.661 0.865 0.851 0.144 0.12
600 1.927 1.877 0.622 0.630 0.912 0.894 0.196 0.17
800 2.036 1.978 0.597 0.603 0.955 0.934 0.242 0.22

1000 2.134 2.071 0.575 0.581 0.944 0.970 0.282 0.26
1200 2.225 2.157 0.557 0.561 1.031 1.005 0.319 0.29
1400 2.310 2.238 0.541 0.544 1.065 1.037 0.352 0.32
1600 2.389 2.315 0.528 0.528 1.065 1.068 0.382 0.35
1800 2.464 2.388 0.515 0.514 1.097 1.097 0.411 0.38
2000 2.535 2.457 0.503 0.502 1.158 1.125 0.437 0.41
4000 3.112 3.025 0.431 0.417 1.395 1.356 0.643 0.62
6000 3.550 3.461 0.390 0.369 1.577 1.536 0.792 0.77
8000 3.914 3.825 0.363 0.336 1.729 1.687 0.911 0.90

10000 4.231 4.142 0.343 0.312 1.862 1.820 1.013 1.00
12000 4.513 4.426 0.327 0.293 1.981 1.939 1.103 1.09
14000 4.770 4.684 0.314 0.277 2.089 2.047 1.184 1.18
16000 5.007 4.921 0.303 0.265 2.189 2.147 1.258 1.25
18000 5.228 5.143 0.294 0.254 2.282 2.240 1.326 1.32
20000 5.435 5.350 0.285 0.244 2.369 2.328 1.390 1.38
II C
n-

en
i

m-

n-
d

les
son for this shortcoming has been discussed in Sec.
Since the (\50) TF theory does not neglect the kinetic e
ergy it can be perfectly calculated~column 5 of Table II!.
One can also consider the leading term for largeN of the
(\50) TF expression for the kinetic energy. This is giv
by Eq. ~33! and the corresponding values are displayed
column 6 of Table II. We see that the (\50) TF kinetic
04360
.

n

energy reaches this limiting value for a rather moderate nu
ber of particles (N.105). We also realize that the (\50)
TF kinetic energy, that is derived with our simplified qua
tization rule~25! and~26!, coincides with the value obtaine
using the WKB quantization rule~column 7 of Table II! for
a very large number of particles (N.1072108). From Table
II it is also seen that even for a very large number of partic
e

e
f
e as in
TABLE II. Chemical potential (m) and kinetic energy (ekin) per particle for large number of atoms in th
trap (N). The chemical potential is calculated quantally~QM!, with the full Thomas-Fermi approach~TF!
and with the asymptotic formula for largeN (TFN→`). The kinetic energy is obtained quantally, with th
exact TF approximation, with the asymptotic TF for largeN and using the WKB quantization in the limit o
large number of atoms. The frequency of the harmonic oscillator and the scattering lenght are the sam
Table I.

N m(QM) m(TF) m(TFN→`) ekin(QM) ekin(TF) ekin(TFN→`) ekin(WKBN→`)

20000 5.435 5.350 5.196 0.285 0.244 0.256 0.238
30000 6.322 6.242 6.111 0.255 0.210 0.218 0.202
40000 7.051 6.973 6.856 0.236 0.187 0.194 0.180
50000 7.677 7.603 7.496 0.222 0.173 0.177 0.165

100000 10.231 9.972 9.891 0.182 0.133 0.134 0.125
150000 11.763 11.701 11.633 0.162 0.113 0.114 0.106
200000 13.170 13.112 13.051 0.149 0.101 0.102 0.095
250000 14.381 14.326 14.270 0.140 0.093 0.093 0.087
500000 18.919 18.872 18.829 0.114 0.070 0.070 0.066

1000000 24.917 24.878 24.845 0.092 0.053 0.053 0.050
5000000 47.340 47.340 47.297 0.056 0.028 0.028 0.026

10000000 62.443 62.422 62.409 0.045 0.021 0.021 0.020
25000000 90.056 90.046 90.037 0.033 0.015 0.015 0.014
3-6
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(N.108) the kinetic energy (\50) TF values are still dif-
ferent ~smaller! than the corresponding quantal results. T
is due to the fact that for very largeN the quantal kinetic
energy is dominated by the quantal corrections. As w
shown by Dalfovo, Pitaevskii, and Stringari@3#, these cor-
rections are nonanalytical~logarithmic! in \. Consequently,
they cannot be accounted for by a pure TF approach an
partial resummation of all orders in\ would be necessary to
reproduce the quantal kinetic energy. Of course, when fin
N→` these quantal corrections drop to zero and one rec
ers the result of the standard TF theory where the kin
energy vanishes.

Next, let us compare in Figs. 1 and 2 the densities~nor-
malized to unity! in TF-approximation and calculated exact
for small ~200! and large~200 000! particle numbers. As ex
pected, the TF densities almost agree with the quantal o
for very large particle numbers. In view of the still qui
reasonable expectation values shown in Table I forN5200,
the strong deviation of the TF density from the quantal res
is somewhat a surprise. However, one always should rem
ber that the TF solution for the densities is to be underst
as a distribution@see Eq.~10!#, which for expectation values
of ‘‘slowly varying’’ operators can still yield very reasonab
values in spite of the fact that the detailed shape may only
a caricature of the exact one.

In Figs. 3 and 4 we show the self-consistent potent
V5Vex1gr corresponding to the densities of Figs. 1 and
Not astonishingly,V deviates from the harmonic oscillato
only slightly for N5200, both quantally and semiclassicall
On the contrary forN5200 000, the potentialV deviates
strongly fromVex being practically a constant equal tom up
to the classical turning point from where the harmonic os
lator takes over quite abruptly. Again, both the quantal a

FIG. 1. Density~normalized to unity! of 200 atoms in a spheri
cal trap~in aHO

23 units! as a function of the distance~in aHO units! in
the repulsive case calculated from the solution of the GPE~solid
line! and using the TF approach described in the text~dashed line!.
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TF-solution are in close agreement. Figure 4 also teache
why the TF approximation~10! to the quantal distribution
function is very good for largeN. The distribution function
corresponds to a wave function with very large energym. In
phase space it therefore is very much concentrated aro
the surface of the hypersphere with radiusm.

Let us now present the attractive case for the same at
and external potential with, however, the scattering len
a521.031029m. In Table III we again show chemical po
tential and kinetic, harmonic oscillator, and self-interacti
energies per particle as a function of the particle numbe
TF and quantal calculation. For small particle numbersN
<1000) the agreement of TF with the quantal case is

FIG. 2. The same as Fig. 1 but with 200 000 atoms in the tra

FIG. 3. Self-consistent potential~in \v units! corresponding to
a spherical trap containing 200 atoms as a function of the dista
(aHO units! in the repulsive case calculated from the solution of t
GPE ~solid line! and using the TF approach described in the t
~dashed line!.
3-7
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similar quality as in the repulsive case. However, forN
>1000 the agreement quickly deteriorates, indicating t
the whole mean field approximation breaks down. Inde
even quantally the solution of the GPE, Eq.~1! becomes
unstable forN.1500 forCs atoms.

In Figs. 5–8 we also show the densities~normalized to
unity! and self-consistent potentials for the particle numb
N5250 andN51500. We see that, whereas the caseN
5250 is not dissimilar to the corresponding one witha.0,
for N51500 the situation becomes quite unfavorable for
TF approximation. This is for instance manifest in looking
the graph for the densities. In the attractive case TF
quantal solutions diverge with increasingN whereas in the
repulsive case they converge.

In Figs. 9 and 10 we plot the kinetic energy density p
particle (t/N) calculated quantally and in the TF approxim
tion for N5200 000 in the repulsive case and forN5250 in
the attractive case. In these figures, the quantal kinetic
ergy density is given by

t5u¹cu22
1

4
Dr5

1

4 F ~¹r!2

r
2DrG ~40!

FIG. 4. The same as Fig. 3 but with 200 000 atoms in the tra
04360
t
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in order to compare with the TF one according to Ref.@7#.
For large number of particles, when the density profile h

a relatively flat region at the interior~see Fig. 2!, the quantal
kinetic energy density is peaked at the surface@see Eq.~40!#
whereas the TF one is rather a bulk term@see Eq.~31!#.
Inspite of the rather different form of the quantal and T
kinetic energy densities in this case, the corresponding i
grals are in good agreement~see Table II!. This fact points
again to the distribution character of the TF-kinetic ener
density. However, if the number of particles is small, t
quantal and TF kinetic energy density profiles are quite si
lar. This is due to the fact that the particle density fall o
abruptly fromR50 ~see Fig. 5! and consequently its deriva
tives contribute in all the range ofR.

Other quantities where one directly needs the kinetic
ergy are, e.g., the collective monopole and quadrupole e
tations of the condensate. Using the sum rule approach@16#
they are given by: vM5v0(52ekin /eHO)1/2 and vD

5A2v0(11ekin /eHO)1/2. Table IV collects the results ob
tained forvM and vD calculated once quantally using th
values obtained forekin andeHO from the solution of the GP

FIG. 5. The same as Fig. 1 but with 250 atoms in the trap in
attractive case.
lso

TABLE III. The same as in Table I but with a scattering length a521.031029 m. The frequencies

corresponding to the monopole (vM) and quadrupole (vD) calculated in the sum rule approach are a
given.

QM TF QM TF QM TF QM TF

N 250 250 500 500 1000 1000 1500 1500
m 1.424 1.437 1.338 1.369 1.120 1.212 0.691 1.009
ekin 0.788 0.774 0.815 0.802 0.926 0.872 1.240 0.974
eHO 0.723 0.726 0.691 0.702 0.613 0.646 0.472 0.579
er -0.039 -0.032 -0.084 -0.070 -0.209 -0.153 -0.511 -0.272
vM 1.977 1.983 1.955 1.964 1.868 1.911 1.540 1.821
vD 2.044 2.033 2.088 2.070 2.240 2.168 2.693 2.316
3-8
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THOMAS-FERMI APPROXIMATION FOR BOSE- . . . PHYSICAL REVIEW A 61 043603
equation and also from the TF approach. The quantal res
obtained by solving the time-dependent Gross-Pitaev
equation@17# are also given for comparison. From this tab
one can see that the quantal results are very well reprod
for any number of atoms in the trap by the TF approximat
presented in this paper. Table III also collects the quantal
TF frequencies for the monopole and quadrupole excitati
obtained in the sum rule approach for the attractive ca
From these results it can be seen that the TF values re
duce well the quantal ones in the region where the semic
sical approximation can be confidently applied (N,1000).

FIG. 6. The same as Fig. 1 but with 1500 atoms in the trap in
attractive case.

FIG. 7. The same as Fig. 3 but with 250 atoms in the trap in
attractive case.
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IV. DISCUSSION AND OUTLOOK

In the preceding sections we have derived the Thom
Fermi approximation, i.e., the\→0 limit of the density ma-
trix corresponding to the wave function of the GPE for t
Bose condensate of atoms confined by magnetic traps.
have pointed out some misconceptions on this point that
peared in the past in the literature which for instance p
vented the direct calculation of the kinetic energy in the la
N limit. On the contrary with our Thomas-Fermi approa
the evaluation of the kinetic energy causes no problem
the results are globally in quite satisfactory agreement w
the quantal solution of the Gross-Pitaevskii equation. F
particle numbers where the kinetic energy represents a

e

e

FIG. 8. The same as Fig. 3 but with 1500 atoms in the trap in
attractive case.

FIG. 9. Kinetic energy density per particle of a spherical trap~in
\vaHO

23 units! containing 200 000 atoms as a function of the d
tance~in aHO units! in the repulsive case calculated from the so
tion of the GPE~solid line! and using the TF approach described
the text~dashed line!.
3-9
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nificant fraction of the total energy the (\50) TF expression
yields very satisfying results as compared with the cor
sponding quantal values. As it has been discussed pr
ously, for largeN values, nonanalytical quantal effects dom
nate the ~small! kinetic energy and consequently th
quantity cannot be well reproduced in a pure TF approxim
tion in the largeN regime. The semiclassical theory of co
densed inhomogeneous Bose gases has also been cons
in some detail in Ref.@8#. There, however, the main emph
sis was laid on the scattering terms out of the condens
~the Bogoliuvov approach!. On the other hand no attemp
was made to improve the kinetic energy in the pure\→0
limit, i.e., in Thomas-Fermi approximation. However som
estimates of the kinetic energy coming from gradients, i.e\
corrections are given in the largeN limit. On the contrary in
the present work no quantal corrections to the lowest or
Thomas-Fermi result have been worked out. Finally,
want to make some comments why for very largeN the (\
50) TF values for the kinetic energy are very differe
~smaller! than the corresponding quantal values~see Table
III !. This simply means that the\50 part of the kinetic
energy goes to zero much faster for largeN than for the full
quantal solution. In other words, for very largeN the kinetic
energy is dominated by the quantal corrections. Of cou
finally for N→`, the latter ones also drop to zero.

The above discussion shows again that the semiclas
approximations are a powerful tool but not devoid of subt
ties and pitfalls. As a matter of fact also in this paper we,
simplicity, avoided developing the full complexity of th
theory. One major simplification resides in the fact that
assume a spherical trap. This results in an isotropic mom
tum distributionf 0}d(m2Hc) whereHc5p2/2m1V is the
classical Hamiltonian. Deforming the trap leads to a no

FIG. 10. The same as Fig. 9 but with 250 atoms in the trap in
attractive case.
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trivial modification of the theory, since squeezing the co
densate wave function in one direction and relaxing it in
other entails in turn a deformation of the momentum dis
bution which is opposite to the spatial one, i.e., momenta
strongest in the squeezed direction and lowest in the l
direction of the deformation@15#. Our TF approach has als
been useful for the evaluation of collective excitations
droplets of small or intermediate sizes. For this purpose,
have used the sum rule approach where the kinetic en
enters and for which we have used the TF values. In
deformed case the momentum becomes anisotropic. This
also been determined experimentally. The detailed dete
nation of the anisotropy of the momenta~which may be po-
sition dependent! is theoretically not a completely trivial tas
in the general case and we will elaborate on this in fut
work. In the present case, however, there exists an evid
first guess of the momentum deformation that results from
scaling argument of the harmonic oscillator coordinates.
suming a prolate quadrupole deformation in thez direction
we have to replace the classical Hamiltonian in Eq.~10! by

H̃c5
1

2mF v0
2

v'
2 ~px

21py
2!1

v0
2

vz
2

pz
2G1VS v'

v0
x,

v'

v0
y,

vz

v0
zD ,

~41!

where the ratiosvz /v0 and v' /v0 are the frequency rela

TABLE IV. Monopole (L50) and quadrupole (L52) frequen-
cies v calculated from the sum rule estimate using the Gro
Pitaevskii and Thomas-Fermi results for the kinetic energy. T
results obtained by solving the time-dependent Gross-Pitaev
equation are also given~TDGP label!.

L N v(QM) v(TF) v(TDGP)

0 1000 2.095 2.098 2.114
2 1.794 1.788 1.734
0 2000 2.137 2.137 2.145
2 1.694 1.701 1.650
0 4000 2.166 2.166 2.172
2 1.617 1.617 1.579
0 6000 2.180 2.180 2.185
2 1.579 1.579 1.545
0 8000 2.189 2.191 2.192
2 1.556 1.549 1.525
0 10000 2.194 2.197 2.198
2 1.539 1.531 1.511
0 12000 2.199 2.202 2.202
2 1.526 1.517 1.500
0 14000 2.202 2.206 2.205
2 1.517 1.507 1.493
0 16000 2.205 2.208 2.207
2 1.509 1.499 1.486
0 18000 2.207 2.211 2.209
2 1.503 1.492 1.481
0 20000 2.209 2.213 2.211
2 1.497 1.486 1.477

e
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tions in z and x,y with respect to the spherical case (v0).
From Eq.~41! one easily calculates the so-called aspect ra
in the TF-approximation

Apz
2

px
2
5

v'

vz
~42!

a result that has been given previously@3#. One other impor-
tant consequence of the momentum deformation is that w
Eq. ~41! the moment of inertia of the condensate becom
equal to the irrotational flow value@16#. On the contrary
using Eq.~10! with the isotropic momentum distribution th
rigid momentum of inertia results. Consequently, the
formed case needs more detailed studies, which we res
for future work. It is also evident that the present TF a
proach can be extended to finite temperature and to the
goliubov theory.
st

ri,

. A
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Another interesting subject of a more formal aspect is
evaluation of the\-correction to the present lowest ord
theory. In principle this can easily be performed in posing
Eq. ~3! r5r01\2r2 and m5m01\2m2 and properly sort-
ing out different powers in\. However, the proper elimina
tion of divergencies and handling the normalization~19! and
quantization~25! are slightly subtle problems. Investigation
on the above mentioned directions are in progress.
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