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Optimal generalized quantum measurements for arbitrary spin systems
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Positive-operator-valued measurements on a finite number ofN identically prepared systems of arbitrary
spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J11)
covariant constraint. This representation allows for a simple description of the equations to be fulfilled by
optimal measurements. We explicitly find the minimal positive-operator-valued measurement for theN52
case, a rigorous bound forN53, and set up the analysis for arbitraryN.

PACS number~s!: 03.65.Bz, 03.67.2a
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I. INTRODUCTION

A measurement on a quantum-mechanical system o
provides partial information on the measured state. Eve
the case whereN identical copies of the system are availab
the information which can be retrieved remains bound
This fact can be quantified using the averaged fidelity ba
on the following general idea. GivenN identical copies of a
system, we may consider a two-step procedure to rate
fidelity of a measuring apparatus. First, we set up a gene
ized quantum-mechanical measurement@or positive-
operator-valued measurement~POVM! @1,2##. Upon per-
forming a measurement, its outcome provides the basis f
best guess about the incoming state. The averaged fid
quantifies how close the final guess is from the original s
averaging over the latter. For any finite numberN of copies
of a spinJ pure state system, the average fidelity is proven
be bounded by@3#

f̄ ~N,J!5
N11

N12J11
. ~1!

The issue at stake remains to devise the optimal and min
measuring strategy for any quantum system.

Explicit constructions of optimal and minimal generaliz
quantum-mechanical measurements of spin-1

2 systems have
been presented recently in Refs.@4–8#. The detailed con-
struction is subtle and depends on whether the original
tem is in a pure or mixed state. The simplest case co
sponds to measuring a spin-1

2 system known to be in a pur
state. A generalized measurement can be constructed
resolution of the identity made with rank-1 Hermitian ope
tors, which are in turn built from the direct product of
given state,

I 5(
r 51

n

cr
2uC r&

N N^C r u, ~2!

where I is then the identity in the maximal spin subspac
The important—and of possible future practical relevance
result is that the maximum averaged fidelity is attained w
a finite number of operators@6#. Upon a case-by-case anal
1050-2947/2000/61~2!/022113~7!/$15.00 61 0221
ly
in
,
.
d

he
l-

a
ity
te

o

al

s-
e-

s a
-

.

h

sis, it is found that the minimum number,n, of such opera-
tors is a function ofN and is given in the table:

N 1 2 3 4 5

n 2 4 6 10 12

The explicit form of Eq.~2! for the above cases can be foun
in Ref. @7#.

The far more involved case of spin-1
2 mixed states has

also been worked out in Ref.@8#. At variance with the pure
state case, the closed expression for the maximum aver
fidelity depends on what the unbiaseda priori distribution of
density matrices is. Yet, explicit solutions for optimal me
surements are found. Some remarkable properties em
along the new construction. Let us briefly mention a fe
Optimal measurements turn out to be structured using p
jectors on total spin eigenspaces and, within each eige
pace, on maximal spin component is some direction. T
allows for a reuse of minimal and optimal results from t
pure state case. Also, beyond two copies, some projector
not of rank 1.

Explicit constructions of optimal minimal measuremen
are so far restricted to spin-1

2 systems, either pure or mixed
It is the purpose of this paper to extend this analysis
arbitrary spin pure states. A number of nontrivial issues m
be faced at the outset. For instance, progress in the sp1

2

case was triggered by the appropriate use of the Bloch ve
labeling of density matrices associated to spinors. We s
resort to a similar representation in the case of arbitrary s
states, using representations of SU(2J11). The equivalent
of a Bloch vector will be shown to obey a covariant restr
tion. This extra work will allow for a unified general settin
of the problem of optimal measurements of arbitrary spin

Finding explicit minimal optimal measurements remain
matter of case-by-case analysis. We shall provide exp
bounds for the minimal number of projectors,n, in POVMs.
The case ofN52 will be fairly complete. Higher number o
copies still need further ingenuity to get rigorous bounds

II. AVERAGED FIDELITY

Consider a spinJ particle which is in an unknown pure
stateuC&,
©2000 The American Physical Society13-1
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uC&5S x11 iy1

x21 iy2

. . .

xD1 iyD

D , ~3!

whereD52J11 and the normalization of the state impos
( i 51, . . . ,D(xi

21yi
2)51. Of course, we may use a differe

parametrization, e.g.,

uC&5S cosf

sinf~x21 iy2!

. . .

sinf~xD1 iyD!
D , ~4!

with 0<f<p/2 and( i 52, . . . ,D(xi
21yi

2)51. Using this sec-
ond parametrization and following Ref.@9# it is possible to
prove that the volume element in the space of these stat

dVD54~sinf!2D23cosf df dS2D23 , ~5!

wheredS2D23 corresponds to the standard volume elem
on S2D23. The total volume is

VD5
4pD21

~D21!!
. ~6!

Given N identical copies of the arbitrary spin state, w
have

uC&N[uC& ^ uC& ^ •••

N
•••^ uC&. ~7!

A measurement on this enlarged system will bring rich
information onuC& thanN separate measures on its resp
tive copies@10#.

Setting a generalized quantum measurement consis
providing a resolution of the identity of the type

(
i 51

n

cr
2uC r&

N N^C r u1PN5I , ~8!

wherePN is the projector on the space different from the o
spanned from states of the form given in Eq.~7!. We already
have all the necessary elements to define and compute
averaged fidelity. Upon measuringuC&N with the above
POVM, a given outcome labeled byr will result with prob-
ability zN^CuC r&

Nz2. The natural guess for the initial pur
state is, then,uC r& ~this is only the best strategy if the initia
state is known to be pure; the best guess for a mixed sta
not the same state as the outcome of the POVM@8#!. The
overlap of this guess with the original state is justz^CuC r& z2.
The averaged or mean fidelity is defined as the product of
probability for r being triggered times the overlap betwe
the ensuing guess and the original state, averaged ove
possible initial unknown states,
02211
is

t

r
-
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e
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f̄ ~N,J![
1

V2J11
(
r 51

n

cr
2E

0

p/2

df~sinf!4J21 cosf

3E dS4J21zN^CuC r&
Nz2z^CuC r& z2. ~9!

To evaluate the above expression, it is convenient to use
freedom to choose the integration variables to set each i
vidual uC r& as a spinor with only a nonvanishing first com
ponent. Then,

f̄ ~N,J!5
1

V2J11
(
r 51

n

cr
2E

0

p/2

df~sinf!4J21

3~cosf!2N13S4J21 . ~10!

We finally get

f̄ ~N,J!5
~2J!! ~N11!!

~2J1N11!! (
r 51

n

cr
2 . ~11!

This sum is easily calculated. It is just the dimension of t
space spanned by the totally symmetric tensor of ordeN
whose indices can take 2J11 values,

(
r 51

n

cr
25

~2J1N!!

N! ~2J!!
. ~12!

Thus,

f̄ ~N,J!5
N11

N12J11
, ~13!

which corresponds to Eq.~1! and was obtained in Ref.@3#
using different techniques.

III. GENERALIZED BLOCH FORM OF ARBITRARY SPIN
PURE STATES

It is sometimes useful to represent the state of a spi1
2

system using the Bloch representation,

r5
1

2
I 1

1

2
bW •sW , ~14!

where bW is a vector existing within the unit sphere. Pu
states correspond to the surface of the sphere, that isbW 2

51. A similar but more complicated construction is possib
for arbitrary spin particles.

Consider a pure state of a spinJ particle. One may repre
sent it using, e.g., Eq.~3!. Alternatively we may construct its
associated density matrix and write

r5
1

2J11
I 1A J

2J11
nala , a51, . . . ,4J~J11!,

~15!

wherela are the generators of the SU(2J11) normalized by
3-2
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Tr~lalb!52dab , ~16!

and n̂ is the normalized vector that plays the role of a ge
eralized Bloch vector. The coefficients in Eq.~15! are chosen
in such a way that Trr5Tr r251.

A simple counting of degrees of freedom shows tha
spin J pure state is described by 4J real parameters wherea
the generalized Bloch vector carries 4J(J11)21. A mis-
match appears forJ. 1

2 , which implies that severe con
straints must limit the subspace of valid vectorsn̂. Indeed,
pure states must verifyr5r2, which translates into

dabcnanb5
2J21

AJ~2J11!
nc ~17!

when Eq.~15! is used and wheredabc are the completely
symmetric symbols associated to SU(2J11), defined
through the anticommutator of the generators of the gr
@11#,

$la ,lb%5
4

2J11
dabI 12 dabclc , ~18!

which verify

dabb50, dabcddbc5
~2J21!~2J13!

2J11
dad . ~19!

Some useful properties of the vectorsn̂ follow from the
above general covariant constraint~17!,

dabcnanbnc5
2J21

AJ~2J11!
,

~20!

dabedcdenanbncnd5
~2J21!2

J~2J11!
,

where it is clear that for spinJ5 1
2 the simple structure o

SU~2! causes thed symbols to vanish and the right-hand si
to be identically zero.

We can also deduce the useful constraint which follo
from the positivity of the square of the scalar product of tw
arbitrary spinJ pure states, which reads

z^CuC8& z25Tr~rr8!5
1

2J11
~112Jn̂•n̂8!>0. ~21!

Generalized Bloch vectors are thus constrained to have
lars products bounded by

n̂•n̂8>2
1

2J
. ~22!

Two pure states are orthogonal then when the scalar pro
of their generalized Bloch vectors satisfies the equality in
~22!.

Let us illustrate the construction of a Bloch vector for t
J51 example. In this case, the density matrix represen
02211
-

a

p

s

a-
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the system can be connected to the standard spinorlike
resentation. For instance, takingJ51 it is easy to see that th
generalized Bloch vector corresponds to Eq.~3! if

n15A3~x1x21y1y2!, n25A3~x1y22x2y1!,

n45A3~x1x31y1y3!, n55A3~x1y32x3y1!,
~23!

n65A3~x2x31y2y3!, n75A3~x2y32x3y2!,

n35
A3

2
@x1

21y1
22~x2

21y2
2!#, n85

1

2
@123~x3

21y3
2!#,

and la are taken in the Gell-Mann representation of SU~3!
@11#. Note that symmetric and antisymmetric combinatio
of the spinor components build the raising and lowering g
erators, whereas the Casimir combinations correspond to
agonal ones. Generalization of this construction for arbitr
spin J based on the SU(2J11) group is straightforward.

The advantage of using a generalized Bloch represe
tion for arbitrary spin pure states will become appare
shortly, when all our equations will be manifestly SU(2J
11) covariant and real. This is equivalent to note that
difference between working with spinors, which exist in t
fundamental representation of the group, or with Bloch v
tors, which exist in the adjoint representation, is that
second is real.

IV. OPTIMAL MEASUREMENTS FOR A SINGLE COPY
OF A SYSTEM

Let us go back to the construction of a generalized qu
tum measurement of arbitrary spin systems. We basic
need to solve for the minimal set ofuC r& states such that Eq
~8! is fulfilled. We have found it convenient to project ou
the PN piece using

(
r 51

n

cr
2zN^CuC r&

Nz251, ; uC&. ~24!

This equation can also be written in the Bloch representa
as

(
r 51

n

cr
2 1

~2J11!N S 112J(
a

nana~r ! D N

51, ~25!

where everyn̂(r ) corresponds to a pure state in the POV
and n̂ to the original pure state.

It is clear that the simplest situation we may face cor
sponds to having a single copy of the unknown state. T
optimal and minimal measurement for such a case is,
course, known to correspond to a von Neumann meas
ment. We shall, however, proceed in a more general way
set themodus operandifor the more elaborate cases as d
vised in Ref.@7#.

Equation ~24! with N51 can be demonstrated~with a
little effort! to be equivalent to
3-3
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(
r 51

n

cr
2@xj~r !xk~r !1yj~r !yk~r !#5d jk ,

~26!

(
r 51

n

cr
2@xj~r !yk~r !2xk~r !yj~r !#50, j ,k51, . . . ,2J11.

Using the insight given by Eq.~25! and the result of Eq.~12!,
this set of (2J11)2 independent equations can be rewritt
in terms of the Bloch vector as

(
r 51

n

cr
252J11,

~27!

(
r 51

n

cr
2na~r !50,

where it is important to remember the constraints limiti
n̂(r ). For instance, scalar products between any p
n̂(r )•n̂(s)>21/(2J), thus

(
rÞs

cr
2S 1

2J
1n̂~r !•n̂~s! D>0. ~28!

Using the set of equations~27!, the above inequality can b
transformed into

12cs
2>0, ; s51, . . . ,n. ~29!

Summing over alls, we get

n>2J11. ~30!

This bound is indeed saturated by a von Neumann meas
ment, that is,

nmin52J11,
~31!

cs
251 ; s, n̂~r !•n̂~s!52

1

2J
, ; rÞs.

The explicit standard construction forJ51 is recovered as
the solution to thisN51 POVM,

uC1&5S 1

0

0
D , uC2&5S 0

1

0
D , uC3&5S 0

0

1
D .

~32!

Or, alternatively,
02211
ir

re-

n̂~1!5S 0,0,
A3

2
,0,0,0,0,

1

2D ,

n̂~2!5S 0,0,2
A3

2
,0,0,0,0,

1

2D , ~33!

n̂~3!5~0,0,0,0,0,0,0,21!.

We are now in a position to appreciate the advantage
resorting to a Bloch-like parametrization. It is easier to d
with Eq. ~27! than with Eq.~26!. The use ofn̂(r ) introduces
a simple covariant, yet constrained, formulation. Some ex
subtleties will play a relevant role in the more complicat
cases.

V. OPTIMAL MEASUREMENTS FOR THE N52 CASE

Let us face the case whereN52 identical copies of the
system are at our disposal. Following the same reasonin
before, we start by writing Eq.~24! in terms of the basic
spinor representation. This leads to

(
r 51

n

cr
2@xi~r !xj~r !1yi~r !yj~r !#@xk~r !xl~r !1yk~r !yl~r !#

5
1

4
~2d i j dkl1d ikd j l 1d i l d jk!,

(
r 51

n

cr
2@xi~r !yj~r !2xj~r !yi~r !#@xk~r !yl~r !2xl~r !yk~r !#

5
1

4
~d ikd j l 2d i l d jk!,

(
r 51

n

cr
2@xi~r !xj~r !1yi~r !yj~r !#@xk~r !yl~r !2xl~r !yk~r !#

50. ~34!

The system is now quadratic in the basic structures appea
linearly in theN51 case. Using the Bloch vector represe
tation, these (2J11)2(2J212J11) equations can be reca
into

(
r 51

n

cr
25~2J11!~J11![B,

(
r 51

n

cr
2na~r !50, ~35!

(
r 51

n

cr
2na~r !nb~r !5B

1

4J~J11!
dab .

A general pattern is emerging. HigherN optimal measure-
ments demand a finer grained resolution of the identity. T
Bloch vectors are required to satisfy isotropy conditions
SU(2J11) group space. The determination of the fac
1/@4J(J11)# has been done using the fact thatn̂ is a nor-
malized vector and Eq.~12!. It is easy to verify that the set o
3-4
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equations~35! provides a solution for Eq.~25!.
From the above basic set of equations, it is easy to g

(
rÞs

n

cr
25B2cs

2 ,

(
rÞs

n

cr
2n̂~r !•n̂~s!52cs

2 , ~36!

(
rÞs

n

cr
2@ n̂~r !•n̂~s!#25B

1

4J~J11!
2cs

2 .

Then we may argue that

(
rÞs

cr
2@b1n̂~r !•n̂~s!#2>0, ~37!

which is extremized byb5cs
2/(B2cs

2) leading to

n>~2J11!2, cs
2<

J11

2J11
, ; s. ~38!

For J5 1
2 this bound agrees with the known solution of t

tetrahedron~see the Introduction and Ref.@7#! and general-
izes it in the following sense. The solutionn5(2J11)2 also
forces all scalar products to ben̂(r )•n̂(s)521/@4J(J
11)#. This corresponds to a hypertetrahedron in (2J11)2

21 dimensions, exactly those of the adjoint representa
of SU(2J11). Let us just write the explicit solution forJ
51,

n̂~1!5S 1

2
,
A3

2
,0,0,0,0,0,0D ,

n̂~2!5S 1

2
,2

A3

4
,
3

4
,0,0,0,0,0D ,

n̂~3!5S 1

2
,2

A3

4
,2

3

4
,0,0,0,0,0D ,

n̂~4!5S 2
1

4
,0,0,0,

A6

4
,
A3

4
,2

A6

4
,0D ,

n̂~5!5S 2
1

4
,0,0,

3A2

8
,2

A6

8
,
A3

4
,
A6

8
,2

3A2

8 D , ~39!

n̂~6!5S 2
1

4
,0,0,2

3A2

8
,2

A6

8
,
A3

4
,
A6

8
,
3A2

8 D ,

n̂~7!5S 2
1

4
,0,0,0,

A6

4
,2

A3

4
,
A6

4
,0D ,

n̂~8!5S 2
1

4
,0,0,2

3A2

8
,2

A6

8
,2

A3

4
,2

A6

8
,2

3A2

8 D ,

n̂~9!5S 2
1

4
,0,0,

3A2

8
,2

A6

8
,2

A3

4
,2

A6

8
,
3A2

8 D .

There is still the need to perform the nonobvious step
02211
n

f

finding out whether this solution does correspond to a se
spin-1 states. For completeness we give this final form of
solution, that is, the explicit statesuC1& throughuC9& which
form the POVM,

uC1&5S 1

0

0
D , uC2&5S 1

2

A3

2

0

D , uC3&5S 1

2

2
A3

2

0

D ,

uC4&5S 1

2

i
1

2

1

A2

D , uC5&5S 1

2

i
1

2

2
1

2A2
1 i

A3

2A2

D ,

uC6&5S 1

2

i
1

2

2
1

2A2
2 i

A3

2A2

D , ~40!

uC7&5S 1

2

2 i
1

2

1

A2

D , uC8&5S 1

2

2 i
1

2

2
1

2A2
1 i

A3

2A2

D ,

uC9&5S 1

2

2 i
1

2

2
1

2A2
2 i

A3

2A2

D .

Note that all the spinors have scalar products with modu
equal to1

2 .
3-5
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VI. OPTIMAL MEASUREMENTS FOR THE N53 CASE

The systematics of our approach are already set. It
however, in the case of three copies where a major differe
between spin1

2 and higher spin systems appears. Followi
an analogous reasoning to that in the preceding sections
get

(
r 51

n

cr
25

~2J13!!

3!~2J!!
[C,

(
r 51

n

cr
2na~r !50,

(
r 51

n

cr
2na~r !nb~r !5C

1

4J~J11!
dab , ~41!

(
r 51

n

cr
2na~r !nb~r !nc~r !5C

1

4J~J11!~2J13!

3S 2J11

J D 1/2

dabc .

We have used Eqs.~12!, ~19!, and ~20! for determining the
factor 1/@4J(J11)(2J13)#@(2J11)/J#1/2. Again it is easy
to prove that Eqs.~41! verify Eq. ~25!.

For the first time the right-hand side of one of the equ
tions displays a tensor structure based on thed symbol. Such
a term would vanish forJ5 1

2 due to the simpler structure o
SU~2!, but is expected for higher spins@note that the condi-
tions ~20! are zero for spin1

2 #.
A bound on the number of projectors appearing in a

timal POVM can be obtained following the by now standa
procedure of investigating manifestly positive combinatio
In this case, starting from

(
rÞs

S 1

2J
1n̂~r !•n̂~s! D @b1n̂~r !•n̂~s!#2>0, ~42!

one gets

n>~J11!~2J11!2 ~43!

and cs
2<(2J13)/@3(2J11)#. That is, n>6 for spin 1

2

~which agrees with the known result in Ref.@7#!, n>18 for
spin 1,n>40 for spin3

2 , etc. Saturating this bound is impo
sible for certain cases as implied by the following simp
argument. If the bound were to be saturated, then Eq.~42!
would become a restricting condition for all scalar produc
Indeed, n̂(r )•n̂(s) is either 21/(2J) or else (2J
21)/@2J(2J13)# for any pair rÞs. If we fix any s and
assume that the minimal solution carriesp scalar products of
the first type andq of the second, it follows that Eq.~41!
imposesp5 1

2 J(2J11)2 and q5 1
2 J(2J13)2. For any J

half-integer or even this causes no problem but for odd in
ger values of the spin this leads to noninteger pairs, whic
absurd. Thus, in such a case, the bound cannot be satur
02211
s,
ce

we

-

-

.

.

-
is
ted.

VII. CONCLUSIONS

We have presented explicit solutions for minimal optim
POVMs acting on arbitrary spinJ systems for the case whe
two copies are available. ForN53 we have provided a rig-
orous bound. The key idea to simplify the analysis cons
in using Bloch representation for pure arbitrary spin stat
These vectors do not span a naive (2J11)221 sphere, but
rather an intricate subspace defined through covariant res
tions. The power of such covariance makes the set of eq
tions simple,

(
r 51

n

cr
25

~2J1N!!

N! ~2J!!
,

(
r 51

n

cr
2na~r !50,

(
r 51

n

cr
2na~r !nb~r !5

~2J1N!!

N! ~2J!!

1

4J~J11!
dab , ~44!

(
r 51

n

cr
2na~r !nb~r !nc~r !5

~2J1N!!

N! ~2J!!

1

4J~J11!~2J13!

3S 2J11

J D 1/2

dabc ,

. . . .

In order to analyze a given case withN copies of the spinJ
particle, it is necessary to retain

@4J~J11!1N#!

N! @4J~J11!#!
~45!

equations in the system, that is, as many rows in Eq.~44! as
N11.

Our results confirm the expected increase of needed
jectors to build a POVM as the spin of the system increas
The instances analyzed, that is,N51,2,3, seem to point at a
dependence of the type

nmin;JN. ~46!
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