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Optimal generalized quantum measurements for arbitrary spin systems
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Positive-operator-valued measurements on a finite numbét identically prepared systems of arbitrary
spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted byla SJ(2
covariant constraint. This representation allows for a simple description of the equations to be fulfilled by
optimal measurements. We explicitly find the minimal positive-operator-valued measurement for=the
case, a rigorous bound fdi=3, and set up the analysis for arbitray

PACS numbegs): 03.65.Bz, 03.67%a

I. INTRODUCTION sis, it is found that the minimum numbaer, of such opera-
tors is a function olN and is given in the table:
A measurement on a quantum-mechanical system only

provides partial information on the measured state. Even in N 1 2 3 4 5
the case wherhl identical copies of the system are available,
the information which can be retrieved remains bounded. n 2 4 6 10 12

This fact can be quantified using the averaged fidelity baseﬁihe explicit form of Eq(2) for the above cases can be found
on the following general idea. Gived identical copies of a in Ref.[7]

system, we may cc_)nsider a two-step procedure to rate the The far more involved case of spinmixed states has
fidelity of a measuring apparatus. First, we set up a genera(L;—lISO been worked out in Refi8]. At variance with the pure

ized tquanlturrclj-mechamcal moe\a/\:/lureT(;ﬁorU positive-  giate case, the closed expression for the maximum averaged
fopera or-value meaSlirgtmeth; ) [1, ]3 tﬁonb pgr-f fidelity depends on what the unbiasagbriori distribution of
orming a measurement, IS oulcome provides the basis tor aensity matrices is. Yet, explicit solutions for optimal mea-

best guess about the inc_oming state. The avera_ggd ﬁde"%rements are found. Some remarkable properties emerge
guantifies how close the final guess is from the original Stat%long the new construction. Let us briefly mention a few

averaging over the latter. For any finite nu_mb.bmf CopIes Optimal measurements turn out to be structured using pro-
of a spinJ pure state system, the average fidelity is proven t(]ectors on total spin eigenspaces and, within each eigens-

be bounded by3] pace, on maximal spin component is some direction. This
allows for a reuse of minimal and optimal results from the
+1 pure state case. Also, beyond two copies, some projectors are
N+2J+1° (1) not of rank 1.
Explicit constructions of optimal minimal measurements
re so far restricted to spi-systems, either pure or mixed.
is the purpose of this paper to extend this analysis for
- . . . , arbitrary spin pure states. A number of nontrivial issues must
Explicit constructions of optimal and minimal generalized ; . .
. . be faced at the outset. For instance, progress in thespin-
quantum-mechanical measurements of gpisystems have X .
) . case was triggered by the appropriate use of the Bloch vector
been presented recently in Refd—8]. The detailed con- . . . . .
LA - labeling of density matrices associated to spinors. We shall
struction is subtle and depends on whether the original sys-

S . . resort to a similar representation in the case of arbitrary spin
tem is in a pure or mixed state. The simplest case corre-

sponds to measuring a spjnsystem known to be in a pure states, using representations of SU{2l). The equivalent

. of a Bloch vector will be shown to obey a covariant restric-
state. A generalized measurement can be constructed as.a

resolution of the identity made with rank-1 Hermitian opera-tion' This extra work will allow for a unified general setting
tors, which are in turn built from the direct product of a of the problem of optimal measurements of arbitrary spins.

Finding explicit minimal optimal measurements remains a

(N,J)=

The issue at stake remains to devise the optimal and minim%
measuring strategy for any quantum system.

given state, matter of case-by-case analysis. We shall provide explicit
| bounds for the minimal number of projectors,in POVMs.
5 NN The case oN=2 will be fairly complete. Higher number of
|=r§=:l WM N, 2 copies still need further ingenuity to get rigorous bounds.
wherel is then the identity in the maximal spin subspace. Il. AVERAGED FIDELITY

The important—and of possible future practical relevance—
result is that the maximum averaged fidelity is attained with Consider a spird particle which is in an unknown pure
a finite number of operatof$]. Upon a case-by-case analy- state|¥),
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To evaluate the above expression, it is convenient to use the
whereD =2J+1 and the normalization of the state imposeSgeedom to choose the integration variables to set each indi-
Si-1, . p(X+yj)=1. Of course, we may use a different y;qyq| |W,) as a spinor with only a nonvanishing first com-

parametrlzatlon e. g y ponent Then
cos¢ Y, 43-1
sing(xx+iy») fND)= V2J+1 f dé(sing)
V)= : 4
) o X(COS¢)2N+3S4J71- (10
sing(Xp+iyp)
We finally get
with 0<¢=<m/2 andZ;_,  p(x?+y?)=1. Using this sec- _ (23)/(N+1)1 &
ond parametrization and following Rd®] it is possible to f(N,J)= 2N+ D)1 ; 2 : (13)

prove that the volume element in the space of these states is

This sum is easily calculated. It is just the dimension of the
space spanned by the totally symmetric tensor of obder

whose indices can takeJ2 1 values,
wheredS,p 3 corresponds to the standard volume element

dVp=4(sin$)?P3cos¢p dép dS,p_3, (5)

on S,p_3. The total volume is n (23+N)!
D Cl= e (12)
4701 =1 N!'(2J)!
Vp=——7rr. 6
° (D-1)! © Thus,
Given N identical copies of the arbitrary spin state, we . N=+1
have f(N,J)Z m, (13)
[P)N=|P)e|P)e - N e T). @)

which corresponds to Ed1l) and was obtained in Ref3]

using different techniques.
A measurement on this enlarged system will bring richer

information on|¥) thanN separate measures on its respec-
tive copies[10].
Setting a generalized quantum measurement consists in
providing a resolution of the identity of the type It is sometimes useful to represent the state of a $pin-
system using the Bloch representation,

Ill. GENERALIZED BLOCH FORM OF ARBITRARY SPIN
PURE STATES

n

-21 W IN N |+ Py=1, ®

p=-1+ b0, (14)

I\JIH
I\)II—\

wherePy is the projector on the space different from the one

spanned from states of the form given in Ef. We already where b is a vector existing within the unit sphere. Pure
have all the necessary elements to define and compute tlsgates correspond to the surface of the sphere, thdi?is,
averaged fidelity. Upon measuring’)N with the above =1. A similar but more complicated construction is possible
POVM, a given outcome labeled bywill result with prob-  for arbitrary spin particles.

ability [N(¥|¥ N2, The natural guess for the initial pure ~ Consider a pure state of a splrparticle. One may repre-
state is, then|¥,) (this is only the best strategy if the initial sent it using, e.g., Eq3). Alternatively we may construct its
state is known to be pure; the best guess for a mixed state &ssociated density matrix and write

not the same state as the outcome of the PONJJ. The

overlap of this guess with the original state is jlggt | ¥ )|°. 1 [ J

The averaged or mean fidelity is defined as the product ofthe P~ 23+ 1 I+ 2J+1 a=1,...,4(+1),
probability for r being triggered times the overlap between (15)
the ensuing guess and the original state, averaged over all

possible initial unknown states, where\ , are the generators of the SU(2 1) normalized by
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Tr(Ag\p) =260, (16) the system can be connected to the standard spinorlike rep-
resentation. For instance, takidg 1 it is easy to see that the
andn is the normalized vector that plays the role of a gen-generalized Bloch vector corresponds to B).if
eralized Bloch vector. The coefficients in EG5) are chosen

in such a way that Ts=Tr p?=1. N=3(X1 X2+ Y1Y2),  N2=3(X1y2—XaY1),
A simple counting of degrees of freedom shows that a
spinJ pure state is described byl 4eal parameters whereas ny= \/§(x1x3+y1y3), Ng= \/§(x1y3—x3y1),
the generalized Bloch vector carried(@+1)—1. A mis- (23
match appears fod>3, which implies that severe con- Ng=vV3(XoXz+VoY3), N7=/3(Xoy3—X3Y5),
straints must limit the subspace of valid vectorsindeed,
pure states must verify=p?, which translates into J3 . y 1 .
n3:7[xl+y1_(xz+)’2)]y n8:§[1_3(x3+y3)]:
2J-1
dp,NNp=——=—=n (17
abeal VI(2J+1) ¢ and \, are taken in the Gell-Mann representation of(SU

[11]. Note that symmetric and antisymmetric combinations
when Eq.(15) is used and wheré,;,. are the completely of the spinor components build the raising and lowering gen-
symmetric symbols associated to SU(21), defined erators, whereas the Casimir combinations correspond to di-
through the anticommutator of the generators of the grougigonal ones. Generalization of this construction for arbitrary
[11], spinJ based on the SU(®+1) group is straightforward.

The advantage of using a generalized Bloch representa-

- tion for arbitrary spin pure states will become apparent
o = 2347 Sanl T2 davche (18 shortly, when all our equations will be manifestly SU(2

+1) covariant and real. This is equivalent to note that the

{Nah

which verify difference between working with spinors, which exist in the
(2J-1)(23+3) fundamental re_pre_sentation.oyc the group, or yvith .Bloch vec-
dapp=0, dapdypc= 53 . (19)  tors, which exist in the adjoint representation, is that the

+1 second is real.

Some useful properties of the vectarsollow from the

above general covariant constraia), IV. OPTIMAL MEASUREMENTS FOR A SINGLE COPY

OF A SYSTEM
q o 2-1 Let us go back to the construction of a generalized quan-
abclaMpNe= 123+1)’ tum measurement of arbitrary spin systems. We basically
(20) need to solve for the minimal set p¥,) states such that Eq.
(23-1)2 (8) is fulfilled. We have found it convenient to project out
dabedcdenanbncnd=—‘](2‘]+ ok the Py piece using
n
where it is clear that for spid=3 the simple structure of 2|N N2 _
SU(2) causes the symbols to vanish and the right-hand side 21 VIO =1, ¥ [¥). 249

to be identically zero.

We can also deduce the useful constraint which followsThis equation can also be written in the Bloch representation
from the positivity of the square of the scalar product of twoas
arbitrary spinJ pure states, which reads

(1+23n-n")=0. (21 =23+ )N

N
o 1 1+23> nana(r)> =1, (25
KW W) =Tr(pp")= 5377 a
Generalized Bloch vectors are thus constrained to have scihere evenyn(r) corresponds to a pure state in the POVM
lars products bounded by andn to the original pure state.

It is clear that the simplest situation we may face corre-
sponds to having a single copy of the unknown state. The
optimal and minimal measurement for such a case is, of
course, known to correspond to a von Neumann measure-
Two pure states are orthogonal then when the scalar produotent. We shall, however, proceed in a more general way and
of their generalized Bloch vectors satisfies the equality in Egset themodus operandior the more elaborate cases as de-
(22). vised in Ref[7].

Let us illustrate the construction of a Bloch vector for the  Equation (24) with N=1 can be demonstrate@vith a
J=1 example. In this case, the density matrix representingjttle effort) to be equivalent to

-~ - 1
n~n’>—§. (22
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n i \/§ 1
21 X ()X +Y; (DY) 1= ik n(1)=<o,o,7,o,o,o,o5 ,
(26) ) A .
C . n(2)=|0,0---0,0,0,05), (33
2, cllx(NYdD) =Xy (N1=0, jk=1,...2+1.

n(3)=(0,0,0,0,0,0,0; 1).

Using the insight given by Eq25) and the result of E¢(12), We are now in a position to appreciate the advantage of
this set of (2+1)? independent equations can be rewrittenresorting to a Bloch-like parametrization. It is easier to deal
in terms of the Bloch vector as with Eq. (27) than with Eq.(26). The use ofi(r) introduces

a simple covariant, yet constrained, formulation. Some extra

" 5 subtleties will play a relevant role in the more complicated
21 c,=2J+1, cases.
27 V. OPTIMAL MEASUREMENTS FOR THE N=2 CASE
n
S e2ny(r)=0 Let us face the case wheM=2 identical copies of the
=T ' system are at our disposal. Following the same reasoning as

before, we start by writing Eq(24) in terms of the basic
where it is important to remember the constraints limitingSPINOr representation. This leads to
ﬁ(r). For instance, scalar products between any pair "

n(r)-n(s)=—1/(23), thus Zl CZLxi()X; (1) +Yi(0) Y (N 11Xy (1) +Yi(yy(r)]
1 . 1
> c (5+n(r)-n(s))>o. (28) = 7(28i; 0+ diSji+ 8 Oy,
r#s

n

Using the set of equationt€7), the above inequality can be >, cZ[x;(r)y;(r)—x;(N)yi(N)1[x(1)y1(r) =X ()yi(r)]
transformed into =4
1
1-¢Z=0, Vs=1,...n (29) :Z(aikéjl_éiléjk):

n

21 Crz[xi(r)xj(r)+yi(r)yj(r)][Xk(r)yl(r)_Xl(r)yk(r)]

r=

Summing over alk, we get

n=2J+1. (30) —0. (34)
This bound is indeed saturated by a von Neumann measurdhe system is now quadratic in the basic structures appearing
ment, that is, linearly in theN=1 case. Using the Bloch vector represen-
tation, these (2+1)?(2J%+2J+1) equations can be recast
np=2J+1, Into
(31 i

> ¢?=(23+1)(J+1)=B,

A - 1
=1V s, n(r)-n(s)=——3 Vr#s

n
- _ . > cZng(r)=0, (35
The explicit standard construction fdr=1 is recovered as r=1
the solution to thilN=1 POVM,

n

1
2 —
I’Zl Crna(r)nb(r)_B4J(J+ 1)5ab

1 0
W)= 0 v, = 1 W)= ol A general pattern is emerging. Highbr optimal measure-
ments demand a finer grained resolution of the identity. The
Bloch vectors are required to satisfy isotropy conditions in
(32  SU(2J+1) group space. The determination of the factor
1[4J(J+1)] has been done using the fact timais a nor-
Or, alternatively, malized vector and Eq12). It is easy to verify that the set of
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equationg35) provides a solution for Eq25). finding out whether this solution does correspond to a set of
From the above basic set of equations, it is easy to get spin-1 states. For completeness we give this final form of the
n solution, that is, the explicit stat¢¥ ;) through|¥4) which
> ?=B-c?, form the POVM,
r#s ' s
n
> c2A(r)-n(s)=—c?, (36) 1 1
r#s 1 2 2
é PO | , w)={ 0], [w)=[ 3|, [¥a)=| 3],
L Cr[n(r)-n(s)] = m—cs. 0 2 2
Then we may argue that 0 0
> cilb+n(r)-n(s)]*=0, (37)
r+s
1 1
which is extremized byp=c2/(B—c2) leading to 2 2
, L, J+1 |t B 1
n>(2J+1) , Cs$m, VY s. (38) |\If4>— 2 | |\I’5>_ 2 )
For J=3 this bound agrees with the known solution of the i 1 +i V3
tetrahedron(see the Introduction and Rdf7]) and general- N7 2.2 \/_
izes it in the following sense. The solution= (2J+ 1)? also
forces all scalar products to ba(r)-n(s)=—1[43(J
+1)]. This corresponds to a hypertetrahedron id{2)?
—1 dimensions, exactly those of the adjoint representation E
of SU(2J+1). Let us just write the explicit solution faor 2
=1, 1
. (1 3 () W)= 5 , (40)
n(l)= -,0,0,0,0,0,0,
(D=|5. 5 . i
-
. 1 33 22 2\2
n(2)=( , 0000,%.
4
. 1 V3 3 1 1
n(3)=(§,—7,— 2,0,0,0,0,(), 5 2
n(4)= 1000\/6\/§ \/60 |\I'7>: _i% |q’8>: _i%
n( )_ _Z! 1y TaTa_Ty l
i (636 32 - L
- 1 3 3 2 = o ETIS S
I 2 22 2\2
n(5) ( e ) (39 V2 V2
ﬁ(ﬁ)— _loo_i_\/_—\/_—£3\/— 1
| 47" 8’ 8'4'8'8 ) 5
n(7)= ——ooo(—ffo 1
44 |Wq)= -5
c | Oo_sf_f_f_ﬁ_sf G
8= -300 % "5 "4 "8 8 22 2\2
ﬁ(g)— _lo Oi _\/__ _\/__ _\/__i
4778 8" 4 8'8 )

Note that all the spinors have scalar products with modulus
There is still the need to perform the nonobvious step ofequal to3.
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VI. OPTIMAL MEASUREMENTS FOR THE N=3 CASE VII. CONCLUSIONS

The systematics of our approach are already set. It is, We have presented explicit solutions for minimal optimal
however, in the case of three copies where a major differencBOVMs acting on arbitrary spid systems for the case when
between spirg and higher spin systems appears. Followingtwo copies are available. Fdt=3 we have provided a rig-
an analogous reasoning to that in the preceding sections, warous bound. The key idea to simplify the analysis consists

get in using Bloch representation for pure arbitrary spin states.
These vectors do not span a naivel §21)?— 1 sphere, but
n (23+3)1 rather an intricate subspace defined through covariant restric-
2 =577 =C. tions. The power of such covariance makes the set of equa-
r=1 3!(20)! tions simple,

21 cZna(r)=0, (23+N)!

2__
Zl N2
n

1
2 _ _
r:§1 crna(r)nb(r)—C4J(J+1)5ab, (41

n
r=1

Z alr)ng(ryng(r)= C

43(J+1)(23+3) )
2J+1\12 E (Dne(r) = (2J+N)! 1 5 )
*| 73] ape: - DT NI(29)1 433+ 1) %0

We have used Eq$12), (19), and(20) for determining the
factor 1[4J(J+1)(23+3)][(2J+ 1)/J]¥2 Again it is easy
to prove that Eqs(41) verify Eq. (25).

For the first time the right-hand side of one of the equa-
tions displays a tensor structure based ondlsgmbol. Such
a term would vanish fod= % due to the simpler structure of
SU(2), but is expected for higher spifisote that the condi-
tions (20) are zero for spirg .

A bound on the number of projectors appearing in a op-
timal POVM can be obtained following the by now standard
procedure of investigating manifestly positive combinations.In order to analyze a given case withcopies of the spid
In this case, starting from particle, it is necessary to retain

(2J+N)! 1
NI(22)! 4J(J+1)(2J+3)

2, cfna(r)ng(rng(r) =

2J+1\1?

J

abc»

E (21J+n(r) n(S))[bJrn(r) n(s)2=0, (42 [4J(J+1)+N]!

NI[4J(I+1)]! (45

one gets
equations in the system, that is, as many rows in(E4). as
n=(J+1)(2J+1)? (43 N+1.
5 ) . Our results confirm the expected increase of needed pro-
and cg=<(2J+3)[3(2J+1)]. That is, n=6 for spin 3 jectors to build a POVM as the spin of the system increases.

(which agrees with the known result in R¢T]), n=18 for  The instances analyzed, that = 1,2,3, seem to point at a
spin 1,n=40 for spin3, etc. Saturating this bound is impos- dependence of the type

sible for certain cases as implied by the following simple
argument. If the bound were to be saturated, then(E&3).

N

would become a restricting condition for all scalar products. Nmin~=J". (46)
Indeed, n(r)-n(s) is either —1/(2J) or else (2

—1)[23(2J+3)] for any pairr#s. If we fix any s and ACKNOWLEDGMENTS
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