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Comment on ‘‘Canonical formalism for Lagrangians with nonlocality of finite extent’’
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The paper by Woodward@Phys. Rev. A62, 052105~2000!# claimed to have proved that Lagrangian theories
with a nonlocality of finite extent are necessarily unstable. In this Comment we propose that this conclusion is
false.
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I. INTRODUCTION

In Ref. @1# a canonical formalism for nonlocal Lagrang
ians with a nonlocality of finite extent is established. It
compared with the Ostrogradski formalism@2# for local
Lagrangians that depend on a finite number of derivative
coordinates. One of its central conclusions is that Lagrang
systems with a nonlocality of finite extent have no ‘‘ . . .
possible phenomenological role@•••#. They have inherited the
full Ostrogradskian instability . . . .’’

The aim of the present Comment is~i! to point out some
defects in Ref.@1# ~Sec. II! concerning the application of th
variational principle that underlies the derivation of the no
local Eq.~2! from a Lagrangian;~ii ! to stress the importanc
of the functional space where the variational problem is
veloped; this is also the functional space where the solut
must be searched~Sec. III!; and ~iii ! to illustrate by two
simple counterexamples~Sec. IV! that ~a! Lagrangian sys-
tems containing derivatives of a higher order than the fi
are not necessarily unstable and~b! nonlocality of finite ex-
tent does not inevitably lead to instability.

II. THE NONLOCAL ACTION PRINCIPLE

Although the canonical formalism set up in Ref.@1# is
derived on a general ground, it is basically illustrated by
simple nonlocal Lagrangian system

L@q#~ t !5
1

2
mq̇2S t1

D

2 D2
1

2
mv2q~ t !q~ t1D! ~1!

and the equation of motion for this Lagrangian is written

E
0

DdL@q#~ t2r !

dq~ t !
dr52mH q̈~ t !1

1

2
v2q~ t1D!

1
1

2
v2q~ t2D!J 50. ~2!

It must be noticed that the latter equation as it reads d
not properly correspond to the standard action principle
mechanics. Indeed, the latter states that@3# ‘‘The motion of
an arbitrary mechanical system occurs in such a way tha
action integralS becomes stationary for arbitrary possib
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variations of the configuration of the system, provided th
the initial and final configurations of the system are p
scribed.’’

On the other hand, the action integral whose variat
would be the left-hand side of Eq.~2! is

S~@q#,t !5E
0

D

drL@q#~ t2r !5E
t2D

t

dt L@q#~t! ~3!

and Eq.~2! is equivalent to

dS~@q#,t !

dq~ t !
50, ~4!

where t is the same both in the numerator and the deno
nator. However, the Euler-Lagrange equation that follo
from the action principledS50 is

dS~@q#,t !

dq~ t8!
50, ; t8,

which is much more restrictive than Eq.~4!.
Moreover, an equation like

2mH q̈~ t !1
1

2
v2q~ t1D!1

1

2
v2q~ t2D!J 50, ~5!

valid for 2`,t,`, cannot be derived from an action inte
gral like Eq.~3!, extending over a finite interval. Indeed, th
variation of the action~3! is

dS~@q#,t !5Fmq̇S t1
D

2 D dqS t1
D

2 D G
t2D

t

2mE
t2D

t

dtF q̈S t1
D

2 D dqS t1
D

2 D
1

v2

2
q~t1D!dq~t!1

v2

2
q~t!dq~t1D!G .

~6!

The extremal conditiondS50 then leads to the boundar
conditions dq@ t1(D/2)#5dq@ t2(D/2)#50 and to the
equations of motion:
©2003 The American Physical Society01-1
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~a! t2D,t,t2
D

2
, q~t1D!50,

~b! t2
D

2
,t,t, q̈~t!1v2/2q~t1D!50,

~7!

~c! t,t,t1
D

2
, q̈~t!1v2/2q~t2D!50,

~d! t1
D

2
,t,t1D, q~t2D!50,

which has the only solutionq(t)50 for t2D,t,t1D, as
it ineluctably follows from sequentially exploiting~d!, ~b!,
~a!, and~c!.

Furthermore, if we alternatively try with an action e
tended over a larger interval,

S5E
0

T

dt L@q#~t!,

the Euler-Lagrange equations are

~ i! q~t1D!50,

~ ii ! q̈~t!1
v2

2
q~t1D!50,

~ iii ! q̈~t!1
v2

2
@q~t1D!1q~t2D!#50, ~8!

~ iv! q̈~t!1
v2

2
q~t2D!50,

~v! q~t2D!50,

where the domains~i! to ~v!, respectively, correspond to
,t,D/2; D/2,t,D; D,t,T; T,t,T1D/2, and T
1D/2,t,T1D. Equation~8! only looks like Eq.~5! in the
interval D,t,T.

Conditions~i! and ~v! in Eq. ~8! then yield

q~t!50, D,t,3
D

2
, or T2

D

2
,t,T

that act as constraints on the possible solutions of~ii !, ~iii !,
and ~iv! in Eq. ~8!. As a consequence, Eqs.~8! can be re-
duced to an ordinary differential equation, whose order
pends on the number of times that the elementary lengtD
fits into @0,T#.

We have thus illustrated the important role played by
integration bounds in the nonlocal action~3! as far as the
Euler-Lagrange equations are concerned. The integra
bounds in the action and the problems associated with t
are commonly overlooked in theoretical physics literatu
because, in standard local cases no trouble is usually ent
by proceeding in this manner. Nonlocal cases are, howev
new ground where nothing can be taken for granted.
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For a local action, the bounds of the integral also de
mine the functional Banach space where the variational
culus is meaningful@4#, e.g., the spaceC 2(@a,b#) for an
action integral extending over@a,b#. This is also the space
where the solutions to the Euler-Lagrange equations hav
be sought.

A way to derive Eq.~2!, for t extending from2` to `,
from an action principle could consist in taking the integ
over the wholeR:

S5E
2`

`

dt L@q#~t!, ~9!

but then two additional difficulties arise: on the one hand,
action S does not converge anymore for allqPC 2(R) and,
on the other,C 2(R) is not a Banach space.~The variational
calculus should be then approached in terms of Fre´chet
spaces@5,6#.! To my knowledge, it remains an open proble
to establish the appropriate mathematical framework whe
nonlocal equation like Eq.~5! can be derived from an actio
integral like Eq.~9!. This results in a lack of preciseness
the definition of the functional space where the nonlo
equation has to be solved.

On possible nonstandard statements of the action principle

It could be thought1 that the derivation of Eq.~2! from the
action integral~1! does rather rest on a nonstandard vers
of the action principle than on the standard statement quo
right before Eq.~3!, namely, ‘‘the actionS5* t1

t2dsL@q#(s) is

stationary with respect to variationsdq(s) that vanish fors
<t11Dt and t22Dt<s. ’’ Notice that it is similar to the
standard statement of the action principle, where the us
‘‘boundary point conditions’’ —initial and final conditions—
are replaced by a sort of ‘‘boundary layer condition.’’

The latter nonstandard action principle leads both to
nonlocal equation

q̈~ t !1
v2

2
@q~ t1Dt !1q~ t2Dt !#50 for

t11Dt,t,t22Dt ~10!

and to the ‘‘boundary layer conditions’’

q~ t !5q1~ t ! for t<t11Dt and
~11!

q~ t !5q2~ t ! for t22Dt<t,

whereq1(t) and q2(t) are given functions defined in the
respective half-lines.

Equations~10! and conditions~11! have to be solved to-
gether and, in most cases, given any set of layer d
$q1(t),q2(s); t<t11Dt,s<t22Dt%, Eq. ~10! has no solu-
tion. Indeed, as is pointed out in Eq.~3! in Ref. @1#, Eq. ~10!
can also be written as

1Suggested by R. P. Woodard~private communication!.
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q~t!52
2

v2
q̈~t2Dt !2q~t22Dt ! for t112Dt,t,t2,

~12!

which, aftern iterations permits to obtainq(t) in terms of
q(t2nDt) and q(t2@n11#Dt), whenever t,t2(n
21)DtP@ t112Dt,t2#.

Now, taking n the least integer such that (n11)Dt>t2
2t1 , q(t)5q2(t), for t22Dt,t,t2 can be expressed i
terms ofq(t2nDt) and q(t2@n11#Dt), which only de-
pend on the ‘‘lower layer datum’’q1(t) becauset2nDt
<t11Dt. This leads to a consistence condition between
upper and lower layer data, whence arbitrarily chosen d
could be incompatible.

III. THE STABILITY PROBLEM

Leaving aside the difficulties just mentioned, suppo
that, for some physical reasons whatsoever, we are only
terested on the solutions of Eq.~5! in the Banach space,

B5$qPC 2~R!; uq~ t !u, uq̇~ t !u and uq̈~ t !u are bounded%.

The general solution of Eq.~8! is thus

q~ t !5(
l

~Ale
ikl t1Al* e2 ikl t!, ~13!

where6kl are the real solutions2 of

h~k![k22v2cos~kD!50 ~14!

andAl* is the complex conjugate ofAl , to ensure thatq(t)
PR.

Notice that the number of real roots of Eq.~14! is finite. A
look at Fig. 1 is enough to get convinced that they can
indexed so that

kj,ki if j , i and l 51,2, . . . ,N.

N can be either odd and then all roots are simple, or even
which case6kN are both double. It should also be remark
that the greater isD, the denser is the wiggling in the graph
ics ~Fig. 1!. Therefore,N increases withD.

2A complex value ofkl would result in an exponential growt
either at1` or 2` and thenq¹B.

FIG. 1. h(k)50 has a finite number of real roots, and the si
of the derivativeh8(kl) at each root is alternating.
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The space of solutions of Eq.~5! in B can be hence coor
dinated by 2N,` real parameters, namely, the real a
imaginary parts ofAl that can be put in correspondence wi
the initial data:q0 , q̇0, . . . q0

(2N21) .
The solutions of Eq.~5! in B are stable because a sma

change in the initial datadq0
(a) results in a small change in

the complex parameters:dAl . Indeed, from the linearity of
Eq. ~5! and from the general solution~13! it follows that

(
l 51

N

@dAl~ ik l !
a1dAl* ~2 ik l !

a#5dq0
(a) ,

a50,1, . . . ,2N21 , which can be inverted to obtaindAl as
a linear function ofdq0

(b) . Therefore, there existsK.0 such
that udAl u<Kuudq0uu , where uudq0uu[sup$udq0

(a)u; a
50,1, . . . ,2N21% . The deviation fromq(t) evolves with
time as

udq~ t !u5U(
l 51

N

Re~dAle
ikl t!U<(

l 51

N

2udAl u<2NKuudq0uu,

which proves the stability3 of the solutions of Eq.~5! in the
spaceB.

Notwithstanding, if we now have a look at the Ham
tonian @Eq. ~48! in Ref. @1##,

H~ t !5
1

2
mq̇2~ t !1

1

2
mv2q~ t !q~ t1D!

2
1

2
mv2E

0

D

dsq̇~ t1s!q~ t1s2D!,

on substituting the general solution~13!, we obtain that

H~ t !52m (
l 51

N

klg~kl !AlAl* ~15!

with

g~k!5k1
v2

2
D sin~kD!. ~16!

As expected,H(t) is an integral of motion, but it has not
definite sign. Indeed, notice thatg(k)5h8(k)/2 alternates
sign at each rootkl @see Eq.~14! and Fig. 1#. Therefore,
g(kl) is positive or negative depending on whetherl is even
or odd, respectively@moreover,g(kl)50 if kl is a double
root#.

IV. TWO SIMPLE COUNTEREXAMPLES

A. The so-called Ostrogradskian instability

In Ref. @1# it is proved that the Hamiltonian formalism fo
a nonlocal Lagrangian can be obtained as a limit case
N→` of the Ostrogradski formalism@2# for a Lagrangian

3In the sense of Liapounov, see@7#.
1-3
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that depends on the derivatives of the coordinates up to o
N.4 For N.1, the Ostrogradski Hamiltonian is linear on a
the canonical momenta but one, namely,P1, . . . , PN21,
therefore it has not a definite sign. The fact that the energ
not bounded from below is then argued to conclude that
solutions of the equations of motion are ineludibly unstab
This is what is called theOstrogradskian instability. It is also
shown in @1# that this drawback also holds in the limitN
→`.

Actually what has been proved there is only that the
ergy cannot be taken as a Liapunov function@8# to conclude
the stability of the equations of motion derived from anNth

order Lagrangian (N.1). However, the fact that a sufficien
condition of stability is not met does not imply instabilit
Let us consider the following simple counterexample:

L~q,q̇,q̈!5
1

2
q̈21

1

2
Bq̇21

1

2
Cq2, ~17!

whereB andC are two parameters which we shall later tu
in order to get stability.

According to Ostrogradski theory, the canonical coor
nates and momenta are@in the notation of Ref.@1#, Eqs.~6!
and ~7!#

Q15q, Q25q̇, P15Bq̇2q( i i i ), P25q̈

and the Hamiltonian is@Eq. ~9! in @1##

H5
1

2
P2

21P1Q22
1

2
BQ2

22
1

2
CQ1

2 . ~18!

Introducing

XW 5S Q1

Q2

P1

P2

D and M5S 0 1 0 0

0 0 0 1

C 0 0 0

0 B 21 0

D ,

the Hamilton equations for Eq.~18! can be then written as
the linear system:

d

dt
XW 5MXW ,

the stability of whose solutions depends on the real par
the roots of the characteristic polynomialpM(l)5det(M
2lI4), that is,

l56AB6AB224C

2
.

If the parameters are tuned so thatB,0 and 0,C,B2/4,
then all roots are imaginary and the system is stable@8#. The
latter is not an obstacle to the fact that the Hamiltonian d
not have a definite sign.

4A similar result was also obtained by Ref.@9#.
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It could be argued that, although the Lagrangian syst
~17! is stable, it is physically irrelevant unless it can b
coupled to anything else. It seems that, since the energy
not a lower bound, an unending flow of energy leaving t
system cannot be prevented. To show that this is not the c
we shall now see how Eq.~17! can be stablily coupled to a
harmonic oscillator. Since classical electromagnetic field
actually an infinite set of harmonic oscillators, each one ch
acterized by its polarization and its wave vector, the n
example will also serve as an indication that the stable c
pling of the system~17! can be extended to a Maxwell field

Consider the second-order Lagrangian,

L5
1

2
~ q̈21Bq̇21Cq2!1gqx1

m

2
~ ẋ22v2x2!. ~19!

We shall see that the parametersB andC can be tuned so tha
the system is stable.

The equations of motion are

q
iv

5Bq̈2Cq2gx,
~20!

ẍ52v2x1
g

m
q,

and can be written in matrix form as

d

dt
X5GX, ~21!

where

X5S q
. . .

q̈

q̇

q

ẋ

x

D and G5S 0 B 0 2C 0 2g

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 g/m 0 2v2

0 0 0 0 1 0

D .

The ordinary differential system is stable if the charact
istic roots ofG are all imaginary and simple. This amounts
saying that

P~y!5~y1v2!~y22By1C!1
g2

m
~22!

has three simple negative roots. A little bit of algebra sho
that the latter is achieved if, and only if, the parametersB and
C are chosen so that~1! B is a real root of the cubic equatio

b~B2v2!31av2~B2v2!21Bv41
g2

m
50,

~2! C is
1-4
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C5b
~B2v2!3

v2
2

g2

mv2
,

~3! anda andb are two real parameters in the nonemp
region ofR2 defined by the inequalities,

max$0, 9a22222~12a!3/2%<27b<9a2

2212~12a!3/2.

Now, assuming that the parameters meet these condit
the system~21! is stable in spite of the fact that the Ham
tonian does not have a definite sign. Notwithstanding, a p
tive definite integral of motion~a Lyapunov function@10#!
can be found such that it forbids the existence of runawa

Indeed, if all characteristic roots of Eq.~21! are imagi-
nary, the matrixG can be diagonalized and all its eigenvalu
are imaginary, namely,6 ila , a51,2,3. Therefore, a rea
regular matrixF exists such that

G5F21KF with

K5S 0 2l1 0 0 0 0

l1 0 0 0 0 0

0 0 0 2l2 0 0

0 0 l2 0 0 0

0 0 0 0 0 2l3

0 0 0 0 l3 0

D . ~23!

Then, the quadratic form

f ~ q
. . .

,q̈,q̇,q,ẋ,x!5XTFTFX ~24!

~a! is positive in the whole phase space and~b! is an integral
of motion. Indeed, taking Eqs.~21! and~23! into account, we
readily have that

d f

dt
5ẊTFTFX1XTFTFẊ

5XT@GTFTF1FTFG#X

5XTFT@KT1K#FX50.

Thus, any orbit of the dynamical system~21! remains on the
ellipsoid,

f ~ q
. . .

,q̈,q̇,q,ẋ,x!5 f 05const,

which is bounded by

f 0<k2 uuX0uu2,

where k5uuFuu is the norm of the linear mapF and X0

5( q
. . .

0 ,q̈0 ,q̇0 ,q0 ,ẋ0 ,x0).
01610
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B. A case of finite extent nonlocality

In the next example, the boundaries of the acti
integral are finite. Consider the nonlocal actionS@q#
5*0

TdtL@q#(t), with

L@q#~ t !5
1

2
q̇2~ t !2

1

2
v2q2~ t !

1
v4

2
q~ t ! E

0

T

dt8 G~ t,t8!q~ t8!, ~25!

where, for (t,t8)P@0,T#2,

G~ t,t8!5
21

v sinvT
@sinv~T2t8! sinvt u~ t82t !

1sinv~T2t ! sinvt8 u~ t2t8!# ~26!

and is the solution of

] t
2G~ t,t8!1v2G~ t,t8!5d~ t2t8! ~27!

for the boundary conditions:G(0,t8)5G(t,T)50.
The variation dS50 with the boundary conditions

dq(0)5dq(T)50 leads to the equations of motion

q̈~ t !1v2q~ t !2v4E
0

T

dt8 G~ t,t8!q~ t8!50. ~28!

The solutionsq(t) must be sought in the Banach spa
C 2(@0,T#).

Differentiating twice ~28! and taking~27! into account,
we arrive at

q( iv)12v2 q̈50. ~29!

Hence, the solutions of Eq.~28! must be among the genera
solution of Eq.~29!,

q~ t !5Aeiat1A* e2 iat1Dt1E ~30!

with a5vA2. The parametersA, A* , D, andE must fulfill
the following constraints:

D50 and E5A1A* ,

which result from substituting Eq.~30! into Eq. ~28!.
The general solution of Eq.~28! is therefore

q~ t !5A~eiat11!1A* ~e2 iat11!. ~31!

The phase space for our system is thus two dimensional,
every solution is determined by the initial valuesq0 and q̇0,

q052~A1A* ! and q̇05 ia~A2A* !.

By direct inspection of Eq.~31!, we see that the solution
of Eq. ~28! are stable, although the latter is derived from
Lagrangian with a nonlocality of finite extent. That is, fo
1-5
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any e.0 there existsr.0 such thatudq0u1udq̇0u,r im-
plies that udq(t)u1udq̇(t)u,e, for all t, which proves the
stability.

V. CONCLUSION

We have intended to stress the crucial importance
clearly precising the Banach space where the variatio
principle for a nonlocal Lagrangian is formulated. This d
gree of precision is usually obviated in theoretical phys
~i.e., for local Lagrangians! without any major problem.
However, such a nonrigourous way of proceeding canno
extrapolated to systems with a new complexity. The r
evance of the above-mentioned Banach space is twofold~i!
it is where the solutions of the equations of motion must
,
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sought and~ii ! it is the function space where path integra
are to be calculated in an eventual quantization of the s
tem.

We have also analyzed the stability of the equations
motion for a Lagrangian system presenting a nonlocality
finite extent. We have shown that the choice of the Ban
space where the variational principle is meaningfully form
lated is crucial to decide the stability or unstability of th
system. Furthermore, we have seen that a system ca
stable in spite of the fact that the Hamiltonian does not h
a minimum.

Finally, we have shown by a counterexample that hig
order Lagrangian systems are not necessarily unstable.
fact that a sufficient condition for stability is not fulfilled
does not imply instability.
s
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