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Comment on “Canonical formalism for Lagrangians with nonlocality of finite extent”
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The paper by WoodwariPhys. Rev. 462, 052105(2000] claimed to have proved that Lagrangian theories
with a nonlocality of finite extent are necessarily unstable. In this Comment we propose that this conclusion is
false.
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[. INTRODUCTION variations of the configuration of the system, provided that
the initial and final configurations of the system are pre-

In Ref. [1] a canonical formalism for nonlocal Lagrang- scribed.”
ians with a nonlocality of finite extent is established. It is On the other hand, the action integral whose variation
compared with the Ostrogradski formalisfg] for local  would be the left-hand side of EQ) is
Lagrangians that depend on a finite number of derivatives of
coordinates. One of its central conclusions is that Lagrangian A t
systems with a nonlocality of finite extent have no.". S([Q]’t):fo er[Q](t_r):ﬁ_AdT Llal(n) (3
possible phenomenological rdle-]. They have inherited the
full Ostrogradskian instabilt. .. .”

The aim of the present Comment(i$ to point out some
defects in Ref[1] (Sec. I) concerning the application of the 5S([a].t)
variational principle that underlies the derivation of the non- oAahb
local Eq.(2) from a Lagrangian(ii) to stress the importance oq(t) ’
of the functional space where the variational problem is de-
veloped; this is also the functional space where the solutiongheret is the same both in the numerator and the denomi-
must be searched@Sec. Il)); and (iii) to illustrate by two nator. However, the Euler-Lagrange equation that follows
simple counterexampleSec. V) that (a) Lagrangian sys- from the action principleS$S=0 is
tems containing derivatives of a higher order than the first
are not necessarily unstable afil nonlocality of finite ex- 5S([q].t)

tent does not inevitably lead to instability. Sa(t) , VU,

and Eq.(2) is equivalent to

4

Il. THE NONLOCAL ACTION PRINCIPLE which is much more restrictive than E@L).

Although the canonical formalism set up in RéL] is Moreover, an equation like
derived on a general ground, it is basically illustrated by the

; i . 1 1
simple nonlocal Lagrangian system —m{q(t)+ szq(t+A)+ szq(t—A)] -0, (5

A
t+

1 2
5|~ 3mefaa(t+a) (@)

1 .
L t)=—-m
[al(®) 2 q2 valid for —o<t<o, cannot be derived from an action inte-

gral like Eq.(3), extending over a finite interval. Indeed, the
and the equation of motion for this Lagrangian is written asyariation of the action(3) is

ASL[q](t—r) ( 1 A AT
————— dr=—m{q(t)+ s w?q(t+A =l m
Jo == A+ @At a) ss((al.)=|md| 7+ 5| da| 7+ 5) -,
+£ 2 (t—A) =0 (2) t . A A
5@ q : —mf driq| 7+ =| 89| 7+ =
t-A 2 2
It must be noticed that the latter equation as it reads does w2 w2
not properly correspond to the standard action principle of + 7q(r+ A)5q(7')+?q(7') oq(T+A)|.
mechanics. Indeed, the latter states {l¥dt“The motion of
an arbitrary mechanical system occurs in such a way that the (6)

action integralS becomes stationary for arbitrary possible
The extremal conditionsS=0 then leads to the boundary
conditions dq[t+(A/2)]=46q[t—(A/2)]=0 and to the
*Electronic address: pitu@ffn.ub.es equations of motion:
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A For a local action, the bounds of the integral also deter-

5 q(7+4)=0, mine the functional Banach space where the variational cal-
culus is meaningful4], e.g., the spac€?([a,b]) for an
action integral extending ovéma,b]. This is also the space

(a) t—A<T<t—

A .
(b) t— E< <t, Qq(7)+w?29(7+A)=0, where the solutions to the Euler-Lagrange equations have to
be sought.
A () A way to derive Eq.(2), for t extending from—co to oo,
(0) t<7<t+=, Q(7)+w2q(7—A)=0 from an action principle could consist in taking the integral
2' ’ over the wholeR:
A o0
(d) t+5<r<t+A, q(r—4)=0, 5= ﬁ dr L[q](7). )

which has the only solutiog(7) =0 fort—A<r<t+A, as
it ineluctably follows from sequentially exploitingd), (b),
(a), and(c).

Furthermore, if we alternatively try with an action ex-
tended over a larger interval,

but then two additional difficulties arise: on the one hand, the
action S does not converge anymore for alk C?(R) and,
on the otherC?(R) is not a Banach spacéThe variational
calculus should be then approached in terms ofclfee
space$5,6].) To my knowledge, it remains an open problem

T to establish the appropriate mathematical framework where a
s:f dr L[q](7), nonlocal equation like E(5) can be derived from an action

0 integral like Eq.(9). This results in a lack of preciseness in
the definition of the functional space where the nonlocal

the Euler-Lagrange equations are equation has to be solved.

(i) q(7+A)=0,
On possible nonstandard statements of the action principle
It could be thougHtthat the derivation of E¢(2) from the
action integral(1) does rather rest on a nonstandard version
of the action principle than on the standard statement quoted
right before Eq(3), namely, “the actiorS=f§idsL[q](s) is

stationary with respect to variatior#(s) that vanish fors
W2 <t;+At andt,—At<s.” Notice that it is similar to the
Ly O A standard statement of the action principle, where the usual
(iv) g(z)+ 2 a(r=4)=0, “boundary point conditions” —initial and final conditions—
are replaced by a sort of “boundary layer condition.”
(v) g(=—A)=0, The latter nonstandard action principle leads both to the
nonlocal equation

2
(i) 4(n)+ - a(7+4)=0,

2
(i) 4+ Sla(r+A)+a(r—=4)]=0, (@

where the domaingi) to (v), respectively, correspond to 0

<7<Al2; Al2<7<A; A<7<T; T<r<T+A/2, and T . w?
+A/2<7<T+A. Equation(8) only looks like Eq.(5) in the q()+ > [q(t+Ay+q(t—Ay]=0 for
interval A< 7<T.

Conditions(i) and (v) in Eq. (8) then yield t+HAt<t<t,— At (10

and to the “boundary layer conditions”

A A
q(r)=0, A<r<3 5 or T—E<T<T

q(t)y=qq(t) for t=t;+At and
that act as constraints on the possible solution§if (iii ), (11
and (iv) in Eqg. (8). As a consequence, Eq®) can be re- q(t)=qy(t) for t,—At<t,
duced to an ordinary differential equation, whose order de-
pends on the number of times that the elementary leagth whereq;(t) andq,(t) are given functions defined in their
fits into [O,T]. respective half-lines.

We have thus illustrated the important role played by the Equations(10) and conditiong11) have to be solved to-
integration bounds in the nonlocal acti¢8) as far as the gether and, in most cases, given any set of layer data,
Euler-Lagrange equations are concerned. The integratioff;(t),q»(s); t=<t;+At,s<t,—At}, Eq.(10) has no solu-
bounds in the action and the problems associated with theiion. Indeed, as is pointed out in E@) in Ref.[1], Eq.(10)
are commonly overlooked in theoretical physics literaturecan also be written as
because, in standard local cases no trouble is usually entailed
by proceeding in this manner. Nonlocal cases are, however,a
new ground where nothing can be taken for granted. 1Suggested by R. P. Woodafgrivate communication
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h(k) = K- o cos(kA) The space of solutions of E¢) in B can be hence coor-
dinated by N<« real parameters, namely, the real and
imaginary parts of| that can be put in correspondence with
the initial data:qq, qo, ... gV %,

The solutions of Eq(5) in B are stable because a small
/\kz change in the initial datéqg“) results in a small change in
r \JE, I the complex parameter$A, . Indeed, from the linearity of
! Eqg. (5) and from the general solutiofi3) it follows that

h(k)

FIG. 1. h(k)=0 has a finite number of real roots, and the sign N
of the derivativeh’(k,) at each root is alternating. E [SA(ik))“+ SA (—ik))*]= 5qga) '
=1

q(7)= _2 qQ(7—At)—q(7—2At) for t;+2At<71<t,, a=0,1,...,N—1, which can be inverted to obtai#A, as
w? a linear function ofsq{ . Therefore, there existé>0 such

(12 that |6A||<K]||8qol|, where ||8qo||=sud|sal”];

=0,1,...,N-1} . The deviation fromg(t) evolves with

which, aftern iterations permits to obtaig(7) in terms of time as

g(r—nAt) and g(r—[n+1]JAt), whenever 7,7—(n
—1)Ate[ty+2At,t,].

Now, takingn the least integer such thah ¢ 1)At=t, |oq(t)|=
—t1, q(7)=0qsy(7), for t,—At<7<t, can be expressed in
terms ofq(7—nAt) and g(7—[n+1]At), which only de-
pend on the “lower layer datum',(t) becauser—nAt
<t,+At. This leads to a consistence condition between thé
upper and lower layer data, whence arbitrarily chosen dat{ﬂ0
could be incompatible.

N
sgl 2| 5A||<2NK]|| 8qo],

N
lE Re( 5A 'kt
=1

which proves the stabilifjof the solutions of Eq(5) in the
paceB.

Notwithstanding, if we now have a look at the Hamil-
nian[Eg. (48) in Ref.[1]],

1 . 1
Ill. THE STABILITY PROBLEM H(t)= quz(t)+ EmeQ(t)CI(HA)
Leaving aside the difficulties just mentioned, suppose 1 A
that, for some physical reasons whatsoever, we are only in- - —mwzf dsqt+s)q(t+s—4),
terested on the solutions of E) in the Banach space, 2 0

B={qeC?(R); |q(t)|, |a(t)|] and |g(t)| are boundey on substituting the general solutiéh3), we obtain that
N

The general solution of Ed8) is thus
g ) H=2m 3, kg AAT (15

t)= A ik|I+A~k —ikt , 13
q()=2) (At Afe w
where =k, are the real solutioRof 2 _

g(k)=k+ 5 A sin(ka). (16)

h(k)=k?— w?cogkA)=0 (14)

As expectedH(t) is an integral of motion, but it has not a
definite sign. Indeed, notice that(k)=h'(k)/2 alternates

Notice that the number of real roots of E@4) is finite. A sign at each rook; [see Eq.(14) and Fig. 1. Therefore,

: ) ; (k) is positive or negative depending on whethés even
:gSZxaetdFslg tﬁalts enough to get convinced that they can becg)r odd, respectivelymoreover,g(k))=0 if k; is a double

roof].

andA} is the complex conjugate @, to ensure that|(t)
e R.

ki<k; if j<i and1=1.2,...N.
IV. TWO SIMPLE COUNTEREXAMPLES
N can be either odd and then all roots are simple, or even, in
which case* ky are both double. It should also be remarked
that the greater id, the denser is the wiggling in the graph-  In Ref.[1] it is proved that the Hamiltonian formalism for
ics (Fig. 1). Therefore N increases with\. a nonlocal Lagrangian can be obtained as a limit case for
N—co of the Ostrogradski formalisrfi2] for a Lagrangian

A. The so-called Ostrogradskian instability

A complex value ofk, would result in an exponential growth
either at+« or — and thenq ¢ B. 3In the sense of Liapounov, s¢e].
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that depends on the derivatives of the coordinates up to order It could be argued that, although the Lagrangian system
N.# For N>1, the Ostrogradski Hamiltonian is linear on all (17) is stable, it is physically irrelevant unless it can be
the canonical momenta but one, namdBs, ..., Py_1, coupled to anything else. It seems that, since the energy has
therefore it has not a definite sign. The fact that the energy isot a lower bound, an unending flow of energy leaving the
not bounded from below is then argued to conclude that theystem cannot be prevented. To show that this is not the case,
solutions of the equations of motion are ineludibly unstablewe shall now see how E¢17) can be stablily coupled to a
This is what is called th®strogradskian instabilitylt is also ~ harmonic oscillator. Since classical electromagnetic field is
shown in[1] that this drawback also holds in the linfit  actually an infinite set of harmonic oscillators, each one char-
— 00, acterized by its polarization and its wave vector, the next
Actually what has been proved there is only that the enexample will also serve as an indication that the stable cou-
ergy cannot be taken as a Liapunov functi8hto conclude  pling of the systen{17) can be extended to a Maxwell field.
the stability of the equations of motion derived from s Consider the second-order Lagrangian,
order LagrangianN>1). However, the fact that a sufficient L
condition of stability is not met does not imply instability. - . m .
Let us consider the following simple counterexample: L=3 (@*+ Bq2+Cq2)+gqx+§ (*— 0. (19
e L, 1o, 1 We shall see that the parametBrandC can be tuned so that
L(a.q.9) 2q - 2 Bq +2Cq ' 17 the system is stable.

. The equations of motion are
whereB andC are two parameters which we shall later tune

in order to get stability.

iv

According to Ostrogradski theory, the canonical coordi- q=Bg-Cqg—gx,
nates and momenta afm the notation of Ref[1], Egs.(6) (20)
and (7)] ) 9
. . . x=—w’x+ md:
Qi=q, Q;=q, P;=Bg—q", P,=q
and the Hamiltonian i§Eq. (9) in [1]] and can be written in matrix form as
1, 1,01, d
H=>P3+P:1Q;~ 5BQ3-5CQ;. (18) L= 6X, (21)
Introducing where
Q: 01 0 0
% Q d M 0 0 0 1 q 0 B O -CO0 -g
=l p, an’\_COOO' g 100 O O O
_ . 01 0 O O O
P2 c B ~-10 x=| a | and c=
. . . 0 01 0 O
the Hamilton equations for Eq418) can be then written as q 5
the linear system: S 0 0 0 gm0 -
0O 0 0 0 1 0
S x
at &

The ordinary differential system is stable if the character-
the stability of whose solutions depends on the real part ofstic roots ofG are all imaginary and simple. This amounts to
the roots of the characteristic polynomigl;(\)=det(M  saying that
—\l,), that is, 2

g
B2 ac P(y)=(y+w?)(y*~By+C)+ — (22)
+ 2_
Nt B+ B2 4C. m
has three simple negative roots. A little bit of algebra shows

If the parameters are tuned so tigt0 and 0<C<B?4, thatthe latter is achieved if, and only if, the paramefeend
then all roots are imaginary and the system is sté®leThe ~ C are chosen so thét) B is a real root of the cubic equation
latter is not an obstacle to the fact that the Hamiltonian does

not have a definite sign. 2

B(B—w?)*+ aw’(B—w?)*+ Bw4+%=0,
A similar result was also obtained by RE€)]. (2) Cis
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B. A case of finite extent nonlocality

In the next example, the boundaries of the action

integral are finite. Consider the nonlocal actidjq]

_ T :
(3) and @ and 83 are two real parameters in the nonempty =JodtLLal(t), with
region of R? defined by the inequalities,

— 1. 2 1 242
max0, 9a®—2-2(1-a)¥3<278<9a? Halt =307t = g%

_ _ 3/2 w4 T
Zraa +20m [ av etar), @9
Now, assuming that the parameters meet these conditions,

the system(21) is stable in spite of the fact that the Hamil- where, for ¢,t') [0,T]?,
tonian does not have a definite sign. Notwithstanding, a posi-
tive definite integral of motior{a Lyapunov function 10]) -1

can be found such that it forbids the existence of runaways. ~ G(t,t')= [sinw(T—t'") sinwt O(t"—t)

sinwT
Indeed, if all characteristic roots of EqR1) are imagi- @
nary, the matrixc can be diagonalized and all its eigenvalues +sinw(T—t) sinwt” 6(t—t')] (26)
are imaginary, namely;i\,, a=1,2,3. Therefore, a real _ _
regular matrixl’ exists such that and is the solution of
C=F"1KF with FG(Lt) + w?G(t,t')=8(t—t) 27
0 —-x, O 0 0 0 for the boundary conditions3(0t’')=G(t,T)=0.
The variation 6S=0 with the boundary conditions
ST 0 0 0 0 89(0)=6q(T)=0 leads to the equations of motion
0 0 0 —N, O 0
K= (23 . ) A7
0 0 N, O 0 0 q(t) + wq(t) — f dt’ G(t,t")q(t’')=0. (28
0 0 0 0 -\, °
0 0 0 0 N O The solutionsq(t) must be sought in the Banach space
cx([o,T)).
Then, the quadratic form Differentiating twice (28) and taking(27) into account,
we arrive at
f( d,0,9,0,%%)=X"FTFX (24 q()+ 202 §=0. (29)

(@) is positive in the whole phase space dhjlis an integral  Hence, the solutions of E428) must be among the general
of motion. Indeed, taking Eq§21) and(23) into account, we  sojution of Eq.(29),

readily have that
q(t)=Ae“'+A*e "'+ Dt+E (30)

df . .
2 XTRETRY 4 X TRTIY
dt AR AR with a=w+2. The parameters, A*, D, andE must fulfill

the following constraints:
= XT[CTFTF+ FTRCIX g
= XTFT[KT+K]FX=0. D=0 and E=A+A*,

which result from substituting Eq30) into Eq. (28).

Thus, any orbit of the dynamical systgil) remains on the The general solution of Eq28) is therefore

ellipsoid,
q()=A(e'“'+1)+A* (e "'+ 1). (31)
f(4.9,9.0.xx)=fo=const, The phase space for our system is thus two dimensional, and
which is bounded by every solution is determined by the initial valugsand g,
fo=k? [[Xol[%, Go=2(A+A*) and go=ia(A—A*).

where k=||F|| is the norm of the linear map and X, By direct inspection of Eq(31), we see that the solutions

. . of Eq. (28) are stable, although the latter is derived from a
=(9 ¢,90,90:90:X0:X0) - Lagrangian with a nonlocality of finite extent. That is, for
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any >0 there exist>0 such that| 5qo| +|8qe|<p im- ~ sought andii) it is the function space where path integrals
plies that|5q(t)|+|5d(t)|<e, for all t, which proves the are to be calculated in an eventual quantization of the sys-
stability. tem. N _

We have also analyzed the stability of the equations of
motion for a Lagrangian system presenting a nonlocality of
finite extent. We have shown that the choice of the Banach

We have intended to stress the crucial importance ofpace where the variational principle is meaningfully formu-
clearly precising the Banach space where the variationdbted is crucial to decide the stability or unstability of the
principle for a nonlocal Lagrangian is formulated. This de-system. Furthermore, we have seen that a system can be
gree of precision is usually obviated in theoretical physicsstable in spite of the fact that the Hamiltonian does not have
(i.e., for local Lagrangianswithout any major problem. a minimum.

However, such a nonrigourous way of proceeding cannot be Finally, we have shown by a counterexample that higher
extrapolated to systems with a new complexity. The rel-order Lagrangian systems are not necessarily unstable. The
evance of the above-mentioned Banach space is twofigld: fact that a sufficient condition for stability is not fulfilled

it is where the solutions of the equations of motion must bedoes not imply instability.

V. CONCLUSION
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