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Generating vortex rings in Bose-Einstein condensates in the line-source approximation

M. Guilleumas,1 D. M. Jezek,2 R. Mayol,1 M. Pi,1 and M. Barranco1
1Departament d’Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona, E-08028 Barcelona, Spain

2Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
and Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, RA-1428 Buenos Aires, Argentina

~Received 5 December 2001; published 2 May 2002!

We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially
symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the curl
of the superfluid velocity field is different from zero only on a circumference of a given radius located on a
plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a
modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance
of density profiles, the vortex core structure, and the vortex nucleation energy, i.e., the energy difference
between vortical and ground-state configurations. This is used to present a qualitative description of the vortex
dynamics.
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I. INTRODUCTION

Since 1999, when vortex lines in a trapped Bose-Eins
condensate~BEC! were first experimentally obtained@1#,
their study has received great experimental and theore
interest as it constitutes a clear signature of superfluidity
fects in these confined systems. Some remarkable ex
mental achievements are, among others, the study of the
namics of single vortex lines@2# and the formation of smal
@3# and large@4# vortex arrays. A review of the research do
in this field is presented in Ref.@5#. It is worth noting the
experimental situation in BEC regarding the formation a
detection of vortices is at variance with that in He II drople
For these drops, a paradigm of superfluid finite systems,
problem of nucleating vortices, and their stability has on
been addressed very recently from the theoretical poin
view ~see Refs.@6–8#!, and their experimental detection
still an open question.

Vortex rings are vortices whose core is a closed loop w
quantized circulation around it@9#. They are complex topo
logical structures that have attracted and will continue
attract some experimental and theoretical interest. Base
numerical simulations, different methods have been p
posed to generate vortex rings in BEC. As in bulk liqu
helium, vortex rings may be produced introducing an imp
rity in the condensate with a definite velocity, whose d
placement causes a vortex ring@10#. Another mechanism
@11# consists in using dynamical instabilities in the conde
sate to cause dark solitons to decay into vortex rings. A w
controlled method to produce vortex rings by electrom
netically induced atomic transitions in two-compone
condensates has also been put forward@12#. The method pro-
posed in Ref.@11# has been successfully applied in Ref.@13#
to generate vortex rings experimentally.

Rather than proposing a method that could be imp
mented to create a vortex ring experimentally, our aim h
is to set up a numerical method simple yet accurate eno
to generate quantized vortex rings with a definite radiusR in
one-component condensates. We restrict our study to vo
states such that the divergence of their velocity is van
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ingly small. This assumption yields analytical expressio
for the velocity field, and provides a fair approximation
the superfluid flow around the vortex core for rings in t
bulk of large condensates~Thomas-Fermi limit!. We have
considered large condensates at zero temperature and t
fore, dissipation has not been taken into account. They
axially symmetric about thez axis, and have thez50 plane
as the symmetry plane, and may host a vortex ring of rad
R, coaxial with the symmetry axis of the trap, and placed
a plane at a distanceZ>0 from the symmetry plane. Al-
though generalization to situations with more than one s
vortex rings is straightforward, we have not considered t
possibility.

This paper is organized as follows. In Sec. II, we pres
the method used to generate vortices. The way to obtain
velocity field of a vortex ring is described in Sec. III, and th
explicit expressions of the velocity components are given
the Appendix. Section IV is devoted to the analysis of t
particle density profiles and vortex nucleation energi
which allows a qualitative description of their dynamics. W
also present results obtained from a completely differe
more involved method we have set up to generate ring v
tices that permits us to test the approximation of zero div
gence of the velocity. Finally, a brief summary of the resu
is presented in Sec. V.

II. ENERGY FUNCTIONAL

We consider a weakly interacting Bose-condensed
confined in a harmonic trapVext(r ) at zero temperature. In
the Gross-Pitaevskii~GP! theory, the ground-state~GS! en-
ergy of the condensate is given by the functional@14#

E@C#5E dr F \2

2m
u“Cu21Vext~r !uCu21

g

2
uCu4G , ~1!

whereC(r ) is the condensate wave function. The first te
in Eq. ~1! is the kinetic energy of the condensate, the seco
term is the harmonic oscillator energy arising from the tra
ping potential, and the third term is the mean-field intera
©2002 The American Physical Society09-1
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tion energy. The coupling constant isg54p\2a/m, wherea
is thes-wave scattering length andm is the atomic mass. The
number of atoms in the condensate is*dr uCu25N. The GS
wave function is determined by solving the GP equation
tained minimizing the energy functional.

The wave functionC can be written in terms of the par
ticle densityr(r )5uC(r )u2 and phaseS(r ) as

C~r !5Ar~r !exp@ iS~r !#, ~2!

and the superfluid velocity is given byv5(\/m)“S. In this
work we will use the equivalent quantum hydrodynamic d
scription of the condensate in terms of the density and
superfluid velocity@14#, since it allows a straightforward
generalization of the energy functional Eq.~1! to include
vortex states. Using Eq.~2! it follows that

E@C#5E0@r#1Ekin
v @r,v#. ~3!

The first term is only density dependent

E0@r#5E d r F \

2m
u“Aru21Vext~r !r1

g

2
r2G . ~4!

The first term inE0@r# is the quantum kinetic energy. Th
second term of the energy functional Eq.~3! corresponds to
the kinetic energy associated with the flow velocityv, and is
given by

Ekin
v @r,v#5

1

2
mE dr r~r !v2~r !. ~5!

The GS wave function in the absence of vortices has a
tially constant phase and therefore zero velocity. It can
obtained by minimizingE0@r#. We consider condensate
with positive scattering length and axially symmetric tra
Vext(r )5m@v'

2 (x21y2)1vz
2z2#/2 @5m(v'

2 r 21vz
2z2)/2 in

cylindrical (r ,z) coordinates#, with different values of the
asymmetry parameterl5vz /v' . The trap harmonic fre-
quency v' provides a length scale for the system,a'

5(\/mv')1/2. We will usea' , \v' , andN/a'
3 as units of

length, energy, and density, respectively.
If we consider large condensates in which the Thom

Fermi ~TF! approximation holds@14#, the quantum kinetic
energy can be neglected compared to the interaction en
in Eq. ~4!, and the GS density of the condensate in the
sence of vortices is given byr0(r ,z)5m(12r 2/RTF

2

2z2/ZTF
2 )/g in the region where this expression is positiv

and zero elsewhere. The TF extents of the condensate in
radial and axial directions areRTF5(2m/mv'

2 )1/2 and ZTF

5RTF /l. The chemical potentialm is fixed by normalization
m5\v'(15laN/a')2/5/2. We recall that the validity of the
Thomas-Fermi approximation is guaranteed ifNa/a'@1.

We turn now our attention to the case of condensates w
vortex states characterized by a given irrotational veloc
field associated with a nonvanishing quantized circulati
The total energy of the system is given by the energy fu
tional Eq. ~3!. If the velocity field is known, for a given
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number of particles the density profile can be obtained m
mizing Eq.~3!. This yields the equation

S 2
\2

“

2

2m
1Vext~r !1guc~r !u21

1

2
mv2Dc~r !5m c~r !,

~6!

wherec5Ar is the modulus of the complex wave functio
Eq. ~2!. This is the GP equation expressed in terms of
hydrodynamic variables.

In the presence of a quantized vortex, the density of
system drops to zero at its core, whose size is character
by a healing lengthj. For very large condensates, the heali
length can be approximated byj5(8pr0a)21/2, wherer0 is
the density of the condensate before creating the vortex.
a centered vortex line, in the TF approximationr05m/g and
the corresponding healing lengthj0 is

j0

RTF
5S a'

RTF
D 2

, ~7!

with j0!a'!RTF . In this approximation a local healing
length can be defined @15# as j(r ,z)
5j0 /A12(r /RTF)

22(z/ZTF)
2. Note that the size of the cor

is larger for a vortex in the low-density region.

III. SUPERFLUID VELOCITY FIELD

The velocity field around a straight vortex line has
analytical expression when the vortex is along the symme
axis @5,16#. Approximate analytical expressions can be fou
in the case of vortex lines off the symmetry axis in large a
very elongated, quasi-two dimensional condensates~see Ref.
@17# and references therein!. However, vortex lines generally
bend in three-dimensional condensates@5,18# which renders
impracticable an analytical treatment of the velocity field.

In the case of quantized vortex rings we proceed
Schwarz and Jang have done in the case of He II@19# ~see
also Ref.@20#!. For a vortex ring characterized by the valu
of (R,Z) already defined, circulation numbern51,2, . . . ,
and quantum circulationk05n h/m, we write the vorticity in
the line-source approximation:

v5k0d~r 2R!d~z2Z!f̂, ~8!

where (r ,z,f) are the cylindrical coordinates, andf̂ is the
unit vector in the azimuthal directionf̂5(2sinf,cosf,0).
The superfluid velocity field that arises from this distribut
vorticity fulfills v5“3v. Hence, the velocity field around
the vortex is irrotational except on the vorticity line, whe
the density of the condensate is zero. If“•v50 to a good
approximation@21#, a velocity vector potentialA(r ) can be
introduced such thatv5“3A. If the vorticity is specified,
A(r ) is determined by the equation

v5“3~“3A!, ~9!

whose integral solution is@19# A(r )5A0(r ,z)f̂, with
9-2
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A0~r ,z!5
k0

4p
RE

0

2p cosf8df8

Ar 21R222 rR cosf 81~z2Z!2
.

~10!

The radial andz components of the velocity are obtained

v r52
]A0

]z
,

vz5
1

r

]

]r
~rA0!, ~11!

whereas the azimuthal component of the velocity fi
around the vortex ring Eq.~8! is zero. We give in the Appen
dix the general expressions ofA0 , v r , and vz written in
terms of hypergeometric functions@22#.

For a confined system, the existence of a boundary
the fact that the density is inhomogeneous may have an
fect on the actual velocity field@23#. In our case, since the
condensate extends up to ‘‘infinite distances,’’ there is
need to introduce any image vortex to ensure that there i
particle flow across the boundary due to the superfluid m
tion. Moreover, it has been shown@15# that in the TF limit
the corrections to the velocity due to density inhomoge
ities can be safely neglected. Thus, we approximate the
locity field by Eqs.~10! and ~11! ~see the Appendix!, but
have restricted ourselves to study vortex ring configurati
(R,Z) whose vorticity line is inside the domain where th
density is positive in the TF approximation, i.e., only vort
rings (R,Z) satisfying the condition (R/RTF)

21(Z/ZTF)
2

,1 are considered. We call the (R,Z) line defined by the
condition (R/RTF)

21(Z/ZTF)
251 the TF boundary. Once

the superfluid velocity field has been fixed, the density p
file of the condensate is obtained solving Eq.~6!.

IV. RESULTS

We present numerical results for large condensates in
Thomas-Fermi limit hosting a quantized vortex ring with c
culation number equal to one~nucleating vortex rings with
n.1 is energetically less favorable@9,24#!. For a singly
quantized vortex ring configuration (R,Z) with vorticity
given by Eq.~8! and circulation numbern51, we have com-
puted the velocity field, Eq.~11!, and have obtained the den
sity profile of the confined condensate by solving Eq.~6! in
cilyndrical coordinates using the imaginary time meth
@25#. Note that although we are in the TF limit, we do sol
the complete GP equation to obtain the density profiles.

Figure 1 shows density profiles in thez50 plane as a
function of r for the experimental parameters of Ref.@13#,
that is, N533105 atoms of 87Rb ~scattering lengtha
55.8231029 cm) in a spherical trap with v'/2p
57.8 Hz. We have plotted two configurations with a vort
ring located inZ50 having a radiusR52 a' ~dotted line!,
and R54 a' ~dotted-dashed line!, respectively. The density
profile of the condensate without a vortex is also sho
~solid line!.

The density is zero on the vorticity line, as seen in t
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density profiles. As expected, the size of the core is of
order of the healing length. Indeed, for this condensate
hasRTF.5.8a' andj0;0.17a' . Assuming that the vortex
diameter is twice the local healing length, and using the
expressions we get as core diameters the values 2j(2,0)
50.37a' , and 2j(4,0)50.47a' . One can see from Fig. 1
that the core sizes are in agreement with these estima
When the radius of the vortex ring increases, the core lie
a lower density region and therefore its size increases.

To study the vortex ring energetics we have chose
larger condensate made ofN5106 atoms of87Rb confined in
an axially symmetric trap with axial frequencyvz/2p
5220 Hz and three different geometries, namely, spheri
disk shaped, and cigar shaped, withl51,A8, and 0.2, re-
spectively. For this condensate, we show in Fig. 2 seve
equidensity lines~arbitrary values! in the y50 plane. The
top panel corresponds to the cigar-shaped trap (l50.2, RTF
58.7a' , ZTF543.3a'), the middle panel to the sphericall
symmetric trap (l51, RTF5ZTF510.2a'), and the bottom
panel to the disk-shaped trap (l5A8, RTF545.5a' , ZTF
511.3a'). The x and z axes are in units ofa' . For all
geometries, the vortex ring configuration is (R53.1a' ,Z
50). The intersection between the vorticity line and they
50 plane appears as two dark dots, indicating the steep
sity depression around the vortex core. The presence of
vorticity causes a drastic distortion of the density with r
spect to the GS profile. Yet, for large condensates it i
rather local effect, as can be seen from Fig. 2, and also f
Fig. 1 for the smaller condensate.

The nucleation of a vortex has an energy cost, since
energy of a condensate with a vortex is always larger t
the energy of the condensate without it,EGS. The vortex
nucleation energy,E2EGS, corresponding to the condensa
of the spherical trap in Fig. 2 is plotted in Fig. 3 as a functi
of Z for different values ofR. At fixed R, the nucleation
energy is maximum when the ring is in thez50 plane, and it

FIG. 1. Density profile as a function ofr at z50 for a conden-
sate in a spherical trap with the experimental parameters of
@13# (aN/a'5440) hosting a singly quantized vortex ring atZ
50. The dotted line corresponds to a vortex ring withR52 a' ,
and the dot-dashed line to a vortex ring withR54 a' . The solid
line is the GS density profile in the absence of vortices. The de
ties have been normalized to one.
9-3
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decreases asZ increases, since displacing the ring outwar
implies that the superfluid flow affects less atoms in the c
densate. Note that to have the vorticity line within the T
boundary, theR curves end at different values ofZ/ZTF given
by A12(R/RTF)

2. The nucleation energy does not vani
when the ring is located on the TF boundary as there
exists a superfluid velocity field which produces some effe
Since we treat the superfluid velocity as an external field,
nucleation energy of very superficial vortex configuratio
may be somewhat overestimated. This drawback is appa
beyond the TF boundary, and shows up as a long-ta
nucleation energy as a function of eitherZ/ZTF or R/RTF ,
although it goes eventually to zero.

The nucleation energy is plotted in Fig. 4 as a function
R for differentZ values. The smaller ring we have consider
hasR/RTF;0.1. The middle panel corresponds to the sa
spherical condensate as in Fig. 3. Besides, the top panel

FIG. 2. Vortex ring state equidensity lines, in arbitrary uni
plotted in they50 plane~axes are in units ofa'). The ring is at
(R53.1a' , Z50) in a condensate withN5106 atoms of 87Rb,
confined in an axially symmetric trap with axial frequencyvz/2p
5220 Hz and different trap geometries. The top panel correspo
to a cigar-shaped trap (l50.2, RTF58.7a' , ZTF543.3a'), the
middle panel to a spherically symmetric trap (l51, RTF

510.2a'), and the bottom panel to a disk-shaped trapl
5A8, RTF545.5a' , ZTF511.3a').
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responds to the cigar-shaped trap, and the bottom pan
the disk-shaped trap. The top curve in all panels correspo
to vortex rings withZ50, and for a given trap geometr
~fixed panel!, the higher the curve, the lower theZ. As in Fig.
3, we have only described vortex ring configurations ins
the TF boundary. For this reason, for a givenZ value the
corresponding nucleation energy curve stops at the va
R/RTF5A12(Z/ZTF)

2.

,

ds

FIG. 3. Nucleation energy of a vortex ring (R,Z) as a function
of Z for different values of the radius. The labels of the curves
in units ofa' . The condensate hasN5106 atoms of87Rb and it is
confined in a spherically symmetric trap with frequencyvz/2p
5220 Hz. The TF radius isRTF5ZTF510.2a' .

FIG. 4. Nucleation energy of a vortex ring (R,Z) as a function
of R for different values ofZ. The condensate and trap geometri
are those of Fig. 2. The top panel corresponds to the cigar-sh
trap, the middle panel to the spherically symmetric trap, and
bottom panel to the disk-shaped trap. From top to bottom, an
units of a' , the curves correspond toZ50 to 40 in Z steps of 5
~top panel!; Z50 to 10 in Z steps of 1~middle panel!; Z50,1,2,
and 3~bottom panel!.
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Figure 4 shows that for each asymmetry parameterl,
given aZ there exists a vortex configuration corresponding
a certain radiusR that maximizes the nucleation energy. Th
radius increases asZ decreases. In the (R,Z) two-
dimensional configuration space, the nucleation ene
E(R,Z)2EGS has only one maximum at (Req/RTF.0.6, Z
50). It is in agreement with the results obtained in Ref.@26#
for a spherically symmetric trap using a simplified model
a vortex ring.

This maximum corresponds to the only stationary,
though unstable, vortex ring configuration~equivalent to a
vortex line nucleated along thez axis!, whose location is
almost independent ofl but its value depends on it, decrea
ing as l does. This means that the energy to nucleat
vortex ring characterized by the values of (R,Z) is lower the
more elongated is the trap.

For each asymmetry parameter, the ‘‘iso-nucleation
ergy’’ lines in the (R,Z) configuration space correspondin
to a value not too far from the maximum value are clos
curves around the maximum, and the allowed ring radii
in the range defined by the intersection of a straight l
representing the given nucleation energy and theZ50 curve
in Fig. 4. If we relax the condition that the vorticity line mu
be inside the TF boundary, this should be always like t
@26#. Otherwise, the isoenergy lines eventually do not clo
Yet, the allowed ring radii are determined in a similar wa

We have considered the vortex ring as if it were a sta
object. However, in a trapped condensate a vortex ring
move with a velocity that results from the interplay betwe
the effect caused by the inhomogeneity of the conden
and self-induced effects arising from its own local curvatu
@5,9,26#. A qualitative analysis of the dynamics of coaxi
vortex rings can be carried out from Figs. 3 and 4, as p
posed in Ref.@26#, and tested in a real-time dynamics f
two-component condensates@12,26#. It can be seen that a
coaxial vortex ring oscillates inside the condensate, mov
towards the surface and instead of being annihilated at
boundary, the ring generates a background flow in the res
the cloud that draws it back towards the center. The r
dynamics in a trapped condensate results in an oscilla
along the symmetry axis of the trap. The radius of the vor
ring grows or shrinks depending on itsZ position, in such a
way that the ring motion almost follows a trajectory wi
constant energy in the (R,Z) configuration space.

Finally, we have used a completely different method, n
merically more involved, to generate quantized vortex rin
It does not make any assumption on the superfluid velo
field, nor on the radius or position of the vortex ring eith
and can be used to test the results we have obtained bas
the validity of the approximation“•v50.

We have proceeded by analogy with the case of a vo
line, and have added a constraint to the energy functio
that forces to form a toroidallike hole in the condensate w
a flux of atoms around its core with zero azimuthal veloc
component. We have used as constraining operator the a
lar momentum about thef̂ axis, i.e., f̂•L[Lf5 i\(r ]z
2z] r) @27#.

Introducing the functional
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E@C#5E dr F \2

2m
u“Cu21Vext~r !uCu21

g

2
uCu4G

1VfE d r C* LfC, ~12!

where the Lagrange multiplierVf can be understood as th
local angular velocity about the azimuthal direction, we ha
obtained the associated GP equation. For a givenVf , we
have solved the partial differential equations obeyed by
real and imaginary part of the condensate wave functi
which are coupled by the presence of the constraint. Th
equations have been discretized on a (r ,z) mesh using
seven-point formulas to represent the differential operat
and have been solved using again the imaginary time me
@25#.

Taking as an exampleVf50.2v' , we have obtained a
coaxial vortex ring configuration with its vorticity located o
the z50 plane whose equidensity lines cannot be dist
guished from these represented in the middle panel of Fi
at the scale of this figure~whose parameters were chos
before to allow us to make this statement!.

Figure 5 presents a comparison between the two meth
It shows the particle density profile as a function ofr at z
50 for the spherical condensate of Fig. 3. The solid line
the configuration that minimizes Eq.~12!. The density goes
to zero in R53.1a' , and the vortex ring has an energ
equal to 37.164\v' . The dashed line is the configuratio
obtained by the method of Sec. II with the ring vorticity E
~8! placed in (R53.1a' , Z50) which has an energy o
37.167\v' . Thus, the energy and density profile of bo
configurations are almost identical, and the velocity fields
also in good agreement.

We have also checked that minimizing the functional E
~12! yields quantized ring vortices withn51. To this end,
we have proceeded to a direct numerical integration of
circulationrv•dl using several arbitrary closed paths in t

FIG. 5. Density profile as function ofr at z50 for theN5106

condensate in a spherically symmetric trap with a singly quanti
vortex ring. The solid line corresponds to the density profile t
minimizes the functional Eq.~12! with constraintVf50.2v' . The
dashed line is the density obtained imposing a ring vorticity atR
53.1a' , Z50). The densities have been normalized to one.
9-5
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(r ,z) ‘‘plane.’’ We have found that the circulation for path
enclosing the vortex core ish/m with a good accuracy, and i
zero otherwise. The velocity field has been calculated fr
the wave function recalling that the current field isj (r )
5r v5(\/2mi)@C*“C2(“C* )C#. The current fieldj (r )
in the y50 plane is plotted in arbitrary units in Fig. 6. Th
axes are in units ofa' . It can be clearly distinguished in thi
figure the position of the vortex ring core atZ50 and R
.3.1a' .

V. SUMMARY

We have developed a method to study vortex rings hos
in confined condensates in the TF limit. It provides analyti
expressions for the superfluid velocity field that satisfy
irrotational condition and the quantization of the circulati
of the superfluid flow. The velocity around the vortex core
introduced as an external field in the Gross-Pitaevskii ene
functional, which is minimized to obtain the wave functio
of the condensate.

Using this method, we have computed the density pro
and nucleation energy of vortex rings in one-component c
densates. We have found that the size of the vortex ring c
is of the order of the healing length as in the case of vor
lines. The presence of the vortex causes a sizeable disto
of the density, as atoms are pushed off the core, but the e
is rather local.

The analysis of the dependence of the nucleation ene
on the position and radius of the ring allows one to conclu
that a Hamiltonian dynamics will lead to oscillations of th
vortex ring along the symmetry axis of the condensate,
creasing and decreasing its radius in accordance with pr
ous predictions. A dissipative dynamics would cause the v
tex to decay, for example disappearing across the borde
the condensate, as occurs for vortex lines@28#.

The method provides a handleable way to generate vo
rings in confined condensates that can be used as a sta
point to study the dynamics. A detailed calculation of t
vortex ring dynamics in a confined condensate, either Ham
tonian or dissipative, is beyond the scope of the present
per and will be developed elsewhere.

FIG. 6. Current field around the vortex core corresponding
the vortex ring state calculated takingVf50.2v' in Eq. ~12!. The
current is in arbitrary units and the axes are in units ofa' .
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APPENDIX

In this appendix we give the expressions and method
have used to obtain the velocity field. From Eqs.~10!–~11!
one has

v r~r ,z!5
k0 R~z2Z!

p@~r 1R!21~z2Z!2#3/2

3E
0

p/2 2 cos2f21

~12s cos2f!3/2
df, ~A1!

where we have defineds[4rR/@(r 1R)21(z2Z)2#. The
integral Eq.~A1! is written in terms of hypergeometric func
tions @22# yielding

v r~r ,z!5
k0 R~z2Z!

2@~r 1R!21~z2Z!2#3/2

3@F~3/2,3/2;2;s!2F~1/2,3/2;1;s!#. ~A2!

Similarly,

vz~r ,z!5
k0 R

2 r @~r 1R!21~z2Z!2#1/2

3@F~3/2,1/2;2;s!2F~1/2,1/2;1;s!#

1
k0 R

2@~r 1R!21~z2Z!2#3/2

3F ~r 1R! F~1/2,3/2;1;s!

2~r 12R! F~3/2,3/2;2;s!1
3R

2
F~5/2,3/2;3;s!G

~A3!

and

A0~r ,z!5
k0 R

2@~r 1R!21~z2Z!2#1/2

3@F~3/2,1/2;2;s!2F~1/2,1/2;1;s!#. ~A4!

The hypergeometric functions entering Eqs.~A2!–~A4! can
be written in terms of the complete elliptic integralsE andK
@22# as follows:

o
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F~1/2,1/2;1;s!5
2

p
K ~As!, ~A5!

F~1/2,3/2;1;s!5F~3/2,1/2;1;s!5
2

p

E~As!

12s
, ~A6!

F~3/2,1/2;2;s!5F~1/2,3/2;2;s!5
4

ps
@K ~As!2E~As!#,

~A7!
.E

el

ys

Sc

p.

v.

v.

nd

ol-

05360
F~3/2,3/2;2;s!5
4

ps FE~As!

12s
2K ~As!G , ~A8!

F~5/2,3/2;3;s!5
16

3ps2 F22s

12s
E~As!22K ~As!G . ~A9!

To evaluateE and K we have used polynomial approxima
tions @29#.
v.

.

ion

ev.

l

@1# M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C
Wieman, and E.A. Cornell, Phys. Rev. Lett.83, 2498~1999!.

@2# B.P. Anderson, P.C. Haljan, C.E. Wieman, and E.A. Corn
Phys. Rev. Lett.85, 2857~2000!.

@3# K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Ph
Rev. Lett.84, 806 ~2000!.

@4# J.R. Abo-Shaeer, C. Raman, J.M. Vogels, and W. Ketterle,
ence292, 476 ~2001!.

@5# A.L. Fetter and A.A. Svidzinsky, J. Phys.: Condens. Matter13,
R135 ~2001!.

@6# G.H. Bauer, R.J. Donnelly, and W.F. Vinen, J. Low Tem
Phys.98, 47 ~1995!.

@7# F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Re
Lett. 85, 1028~2000!.

@8# R. Mayol, M. Pi, M. Barranco, and F. Dalfovo, Phys. Re
Lett. 87, 145301~2001!.

@9# R. J. Donnelly,Quantized Vortices in Helium II~Cambridge
University Press, Cambridge, England, 1991!.

@10# B. Jackson, J.F. McCann, and C.S. Adams, Phys. Rev. A60,
4882 ~1999!.

@11# D.L. Feder, M.S. Pindzola, L.A. Collins, B.I. Schneider, a
C.W. Clark, Phys. Rev. A62, 053606~2000!.

@12# J. Ruostekoski and J.R. Anglin, Phys. Rev. Lett.86, 3934
~2001!.

@13# B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. C
lins, C.W. Clark, and E.A. Cornell, Phys. Rev. Lett.86, 2926
~2001!.
.

l,

.

i-

@14# F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@15# E. Lundh and P. Ao, Phys. Rev. A61, 063612~2000!.
@16# F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477~1996!.
@17# M. Guilleumas and R. Graham, Phys. Rev. A64, 033607

~2001!.
@18# J.J. Garcı´a-Ripoll and V.M. Pe´rez-Garcı´a, Phys. Rev. A63,

041603~R! ~2001!.
@19# K.K. Schwarz and P.S. Jang, Phys. Rev. A8, 3199~1973!.
@20# D.M. Jezek, M. Pi, M. Barranco, R.J. Lombard, and M

Guilleumas, J. Low Temp. Phys.112, 303 ~1998!.
@21# Note that since the density is not uniform, the assumpt

“•v'0 does not imply that the system is incompressible.
@22# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products~Academic Press, New York, 1980!.
@23# J.R. Anglin, e-print cond-mat/0110389; Phys. Rev. A~to be

published!.
@24# T. Winiecki, J.F. McCann, and C.S. Adams, Europhys. Lett.48,

476 ~1999!.
@25# M. Pi, A. Emperador, M. Barranco, and F. Garcias, Phys. R

B 63, 115 316~2001!.
@26# B. Jackson, J.F. McCann, and C.S. Adams, Phys. Rev. A61,

013 604~1999!.
@27# Actually, we have used the Hermitian formLf5(f̂•L

1L•f̂)/2.
@28# P.O. Fedichev and G.V. Shlyapnikov, Phys. Rev. A60, R1779

~1999!.
@29# M. Abramowitz and I. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1970!.
9-7


