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Generating vortex rings in Bose-Einstein condensates in the line-source approximation
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We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially
symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the curl
of the superfluid velocity field is different from zero only on a circumference of a given radius located on a
plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a
modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance
of density profiles, the vortex core structure, and the vortex nucleation energy, i.e., the energy difference
between vortical and ground-state configurations. This is used to present a qualitative description of the vortex
dynamics.
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[. INTRODUCTION ingly small. This assumption yields analytical expressions
for the velocity field, and provides a fair approximation to
Since 1999, when vortex lines in a trapped Bose-Einsteithe superfluid flow around the vortex core for rings in the
condensate BEC) were first experimentally obtainefl],  bulk of large condensate@homas-Fermi limit We have
their study has received great experimental and theoreticgonsidered large condensates at zero temperature and there-
interest as it constitutes a clear signature of superfluidity effore, dissipation has not been taken into account. They are
fects in these confined systems. Some remarkable expedXially symmetric about the axis, and have the=0 plane
mental achievements are, among others, the study of the d@s the symmetry plane, and may host a vortex ring of radius
namics of single vortex linek2] and the formation of small R, coaxial with the symmetry axis of the trap, and placed on
[3] and largd 4] vortex arrays. A review of the research done @ plane at a distancE=0 from the symmetry plane. Al-
in this field is presented in Ref5]. It is worth noting the though generalization to situations with more than one such
experimental situation in BEC regarding the formation andvortex rings is straightforward, we have not considered this
detection of vortices is at variance with that in He Il droplets.Possibility.
For these drops, a paradigm of superfluid finite systems, the This paper is organized as follows. In Sec. II, we present
problem of nucleating vortices, and their stability has onlythe method used to generate vortices. The way to obtain the
been addressed very recently from the theoretical point oyelocity field of a vortex ring is described in Sec. lll, and the
view (see Refs[6—8]), and their experimental detection is €xplicit expressions of the velocity components are given in
still an open question. the Appendix. Section IV is devoted to the analysis of the
\ortex rings are vortices whose core is a closed loop withParticle density profiles and vortex nucleation energies,
quantized circulation around ﬁg] They are Comp|ex topo- which allows a qualitative description of their dynamics. We
logical structures that have attracted and will continue todlso present results obtained from a completely different,
attract some experimental and theoretical interest. Based dRore involved method we have set up to generate ring vor-
numerical simulations, different methods have been protices that permits us to test the approximation of zero diver-
posed to generate vortex rings in BEC. As in bulk liquid gence of the velocity. Finally, a brief summary of the results
helium, vortex rings may be produced introducing an impu-is presented in Sec. V.
rity in the condensate with a definite velocity, whose dis-
placement causes a vortex rif@0]. Another mechanism II. ENERGY FUNCTIONAL
[11] consists in using dynamical instabilities in the conden- ] ] ]
sate to cause dark solitons to decay into vortex rings. Awell- Ve consider a weakly interacting Bose-condensed gas
controlled method to produce vortex rings by electromag-confined in a harmonic trale,(r) at zero temperature. In
netically induced atomic transitions in two-componentthe Gross-PitaevskiGP) theory, the ground-statésS) en-
condensates has also been put forwa@]. The method pro-  €rgy of the condensate is given by the functiofiad]
posed in Ref[11] has been successfully applied in Ref3]
to generate vortex rings experimentally. E[V]= f dr
Rather than proposing a method that could be imple-
mented to create a vortex ring experimentally, our aim here
is to set up a numerical method simple yet accurate enougivhereW(r) is the condensate wave function. The first term
to generate quantized vortex rings with a definite radis  in Eqg. (1) is the kinetic energy of the condensate, the second
one-component condensates. We restrict our study to vorteberm is the harmonic oscillator energy arising from the trap-
states such that the divergence of their velocity is vanishping potential, and the third term is the mean-field interac-
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tion energy. The coupling constantgs=4=#2a/m, wherea ~ number of particles the density profile can be obtained mini-

is thes-wave scattering length andis the atomic mass. The Mizing Eq.(3). This yields the equation

number of atoms in the condensatefdr|¥|?=N. The GS L

wave function is determined by solving the GP equation ob- TV i 24 T m2 _

tained minimizing the energy functional. 2m ex(1) +0[ ()] 2mv Yr)=p g(n),
The wave functior'? can be written in terms of the par- (6)

ticle densityp(r)=|¥(r)|? and phase(r) as

2v2

where = /p is the modulus of the complex wave function

W(r)=p(r)exdis(r)], 2) Eqg. (2). This is the GP equation expressed in terms of the
hydrodynamic variables.
and the superfluid velocity is given by=(7/m)VS. In this In the presence of a quantized vortex, the density of the

work we will use the equivalent quantum hydrodynamic de-System drops to zero at its core, whose size is characterized
scription of the condensate in terms of the density and th®y a healing lengtlg. For very large condensates, the healing
superfluid velocity[14], since it allows a straightforward length can be approximated ly- (8mpoa) ~ Y2 wherep is
generalization of the energy functional E@) to include the density of the condensate before creating the vortex. For
vortex states. Using E@2) it follows that a centered vortex line, in the TF approximatjegF /g and

the corresponding healing lengfy is

E[W]=Eql p]+Efi[ p.V]. 3 i

€o , @

The first term is only density dependent R

a,
Rre

_ h 2 g, with §p<a, <R;g. In this approximation a local healing

EO[p]_f d r[ﬁw\/;l TVex(Npt 307, (4 length can be  defined [15] as &(r,2)
=&0/V1—(r/Rp)?—(2/Z1p)?. Note that the size of the core

The first term inEg[ p] is the quantum kinetic energy. The is larger for a vortex in the low-density region.

second term of the energy functional E§) corresponds to

the kinetic energy associated with the flow veloaityand is IIl. SUPERELUID VELOCITY EIELD

given by

The velocity field around a straight vortex line has an
v 1 ) analytical expression when the vortex is along the symmetry
Einlp, V1= Emf dr p(r)ve(r). (®  axis[5,16]. Approximate analytical expressions can be found
in the case of vortex lines off the symmetry axis in large and

The GS wave function in the absence of vortices has a spde!Y elongated, quasi-two dimensional condensetes Ref.
tially constant phase and therefore zero velocity. It can bel7] and references thergirHowever, vortex lines generally
obtained by minimizingEq[p]. We consider condensates bend in three-dimensional condensdted 8 which renders

with positive scattering length and axially symmetric trapsimpracticable an analyticz_:ll treatment o_f the velocity field.
2,2)/2 in In the case of quantized vortex rings we proceed as

V() =m[ w? (x*+y?) + 022?]/2 [ = m(w?r?+ o? .
cylindrical (r,z) coordinate§ with different values of the ZZZWF\?;[%S Jlfgrgahv:i()\/r?eg()rir]nz Ighi]rz&ae?iiec:jf g&tﬂe(f;?ues
asymmetry parametex =w,/w, . The trap harmonic fre- of (R,Z) already defined, circulation number=1,2, .. .,

quency w, provides a length scale for the system, ; o ) D
= (h/mw, )~ We will usea, , o, | andN/af as units of and guantum C|rculat|o_h0—n h{m, we write the vorticity in
the line-source approximation:

length, energy, and density, respectively.
If we consider large condensates in which the Thomas-
Fermi (TF) approximation holdg§14], the quantum kinetic
energy can be neglected compared to the interaction energy .
in Eq. (4), and the GS density of the condensate in the abwhere {,z,¢) are the cylindrical coordinates, anglis the
sence of vortices is given bypo(l’,Z)Z,u(l—l‘Z/R-sz unit vector in the azimuthal directiogh= (— sin ¢,cose,0).
—22/Z.2|.F)/g in the region where this expression is positive, The superfluid velocity field that arises from this distributed
and zero elsewhere. The TF extents of the condensate in thv@rticity fulfills o=V Xv. Hence, the velocity field around
radial and axial directions an@TF:(ZM/mwi)UZ andZ;r the vortex is irrotational except on the vorticity line, where
=Re/\. The chemical potentigt is fixed by normalization ~the density of the condensate is zeroVIfv=0 to a good
w=%o, (15\aN/a,)?%2. We recall that the validity of the approximation[21], a velocity vector potentiah(r) can be
Thomas-Fermi approximation is guaranteemﬁlal>l' introduced such that=V XA. If the VOftiCity is SpeCiﬁed,
We turn now our attention to the case of condensates with\(r) is determined by the equation
vortex states characterized by a given irrotational velocity
field associated with a nonvanishing quantized circulation. w=VX(VXA), 9)
The total energy of the system is given by the energy func- .
tional Eq. (3). If the velocity field is known, for a given whose integral solution iE19] A(r)=Ay(r,z) ¢, with

w=kod(r—R)8(z—2) P, (8)
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2w cos¢'dg’ BT T T T T

0 JrZ+R?=2rRcos¢ ' +(z—2)%
(10)

Ko
Ao(r,z):ER

The radial andz components of the velocity are obtained as

Ao

VT T

1
r

d
0,=7 2o (FA), (1

whereas the azimuthal component of the velocity field
around the vortex ring Eq8) is zero. We give in the Appen-

dix the general expressions fﬁo’ vy, andov, written in FIG. 1. Density profile as a function ofat z=0 for a conden-
terms of hypergeometric functio22]. sate in a spherical trap with the experimental parameters of Ref.
For a confined system, the existence of a boundary anfh 3] (an/a, =440) hosting a singly quantized vortex ring At

the fact that the density is inhomogeneous may have an et=o. The dotted line corresponds to a vortex ring wRk-2a, ,
fect on the actual velocity fielf23]. In our case, since the and the dot-dashed line to a vortex ring wR=4 a, . The solid
condensate extends up to “infinite distances,” there is ndine is the GS density profile in the absence of vortices. The densi-
need to introduce any image vortex to ensure that there is nges have been normalized to one.
particle flow across the boundary due to the superfluid mo- ) ) ) )
tion. Moreover, it has been showf5] that in the TF limit ~ density profiles. As expected, the size of the core is of the
the corrections to the velocity due to density inhomogeneorder of the healing length. Indeed, for this condensate one
ities can be safely neglected. Thus, we approximate the vé1asRr=5.8a, and{,~0.17a, . Assuming that the vortex
locity field by Eqgs.(10) and (11) (see the Appendjx but ~ diameter is twice the local healing length, and using the TF
have restricted ourselves to study vortex ring configuration€Xpressions we get as core diameters the valug2,Q)
(R,Z) whose vorticity line is inside the domain where the =0.37a, , and %(4,0)=0.47a, . One can see from Fig. 1
density is positive in the TF approximation, i.e., only vortex that the core sizes are in agreement with these estimates.
rings (R,Z) satisfying the condition R/Rp)%+(Z/Z77)?  When the radius of the vortex ring increases, the core lies at
<1 are considered. We call th&k(Z) line defined by the @ lower density region and therefore its size increases.
condition (R/Rtg)2+(Z/Zyr)2=1 the TF boundary. Once To study the vortex ring energetics we have.chogen a
the superfluid velocity field has been fixed, the density prolarger condensate made = 10° atoms of®’Rb confined in
file of the condensate is obtained solving E8). an axially symmetric trap with axial frequency,/27
=220 Hz and three different geometries, namely, spherical,
disk shaped, and cigar shaped, witk-1,1/8, and 0.2, re-
spectively. For this condensate, we show in Fig. 2 several
We present numerical results for large condensates in thequidensity lineqarbitrary values in the y=0 plane. The
Thomas-Fermi limit hosting a quantized vortex ring with cir- top panel corresponds to the cigar-shaped teep @.2, Rt
culation number equal to on@ucleating vortex rings with =8.7a, , Z;g=43.3a,), the middle panel to the spherically
n>1 is energetically less favorabl®,24]). For a singly symmetric trap X=1, Rjg=Z1=10.2a,), and the bottom
quantized vortex ring configurationR(Z) with vorticity  panel to the disk-shaped trap € /8, Rye=45.5a, , Z1¢

4
r@,)

IV. RESULTS

given by Eq.(8) and circulation numben=1, we have com- =11.3a,). The x and z axes are in units of, . For all
puted the velocity field, Eq11), and have obtained the den- geometries, the vortex ring configuration iR£3.1a, ,Z
sity profile of the confined condensate by solving E).in  =0). The intersection between the vorticity line and the

cilyndrical coordinates using the imaginary time method=0 plane appears as two dark dots, indicating the steep den-
[25]. Note that although we are in the TF limit, we do solve sity depression around the vortex core. The presence of the
the complete GP equation to obtain the density profiles.  vorticity causes a drastic distortion of the density with re-
Figure 1 shows density profiles in thie=0 plane as a spect to the GS profile. Yet, for large condensates it is a
function of r for the experimental parameters of REE3],  rather local effect, as can be seen from Fig. 2, and also from
that is, N=3x10° atoms of 8'Rb (scattering lengtha  Fig. 1 for the smaller condensate.
=5.82<10"° cm) in a spherical trap withw, /27 The nucleation of a vortex has an energy cost, since the
=7.8 Hz. We have plotted two configurations with a vortexenergy of a condensate with a vortex is always larger than
ring located inZ=0 having a radiufR=2a, (dotted ling,  the energy of the condensate without Bgs. The vortex
andR=4a, (dotted-dashed linerespectively. The density nucleation energyk —Egg, corresponding to the condensate
profile of the condensate without a vortex is also showrof the spherical trap in Fig. 2 is plotted in Fig. 3 as a function
(solid line). of Z for different values ofR. At fixed R, the nucleation
The density is zero on the vorticity line, as seen in theenergy is maximum when the ring is in the- 0 plane, and it
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0.20

0.00 L

Z/ZTF

FIG. 3. Nucleation energy of a vortex ringR(Z) as a function
of Z for different values of the radius. The labels of the curves are
in units ofa, . The condensate haé=10° atoms of®’Rb and it is
confined in a spherically symmetric trap with frequeney/2m=
=220 Hz. The TF radius i®=2Z1=10.2a, .

responds to the cigar-shaped trap, and the bottom panel to
the disk-shaped trap. The top curve in all panels corresponds
to vortex rings withZ=0, and for a given trap geometry
(fixed panel, the higher the curve, the lower tEeAs in Fig.

3, we have only described vortex ring configurations inside
the TF boundary. For this reason, for a givErvalue the
corresponding nucleation energy curve stops at the value

R/RTF: \ 17(Z/ZTF) .

i

0
X 0~065 T L L I T
0.05F
FIG. 2. Vortex ring state equidensity lines, in arbitrary units, 0.04F
plotted in they=0 plane(axes are in units of, ). The ring is at 0.03E
(R=3.1a, , Z=0) in a condensate withN=10° atoms of 8'Rb, 0.02F
confined in an axially symmetric trap with axial frequeney/27 0.01E
=220 Hz and different trap geometries. The top panel corresponds E

9 -6 -3

to a cigar-shaped traphn&0.2,Ryg=8.7a, , Z1=43.3a,), the X F
middle panel to a spherically symmetric traph=1, Rye _g 0.15 |
=10.2a,), and the bottom panel to a disk-shaped trap ( ‘(’n 0.10 £
= 8, RT,:=45.5ai, ZTF: 11331) mo E

. 005
decreases a8 increases, since displacing the ring outwards ) :

implies that the superfluid flow affects less atoms in the con- E
densate. Note that to have the vorticity line within the TF 030 |
boundary, thék curves end at different values 8fZ¢ given

dary, thex cu 0.20
by V1—(R/Rp)2. The nucleation energy does not vanish £
when the ring is located on the TF boundary as there still 0.10 /\
exists a superfluid velocity field which produces some effect. oopb—— ¢+ .01 ]
0.0 0.2 04 0.6 0.8 1.0

Since we treat the superfluid velocity as an external field, the R/R
nucleation energy of very superficial vortex configurations TF
may be somewhat overestimated. This drawback is apparent £ 4 Nucleation energy of a vortex rin@R(z) as a function

beyond the TF boundary, and shows up as a long-tailegs g for gifferent values ofz. The condensate and trap geometries
nucleation energy as a function of eith@fZrr or R/Rre,  are those of Fig. 2. The top panel corresponds to the cigar-shaped
although it goes eventually to zero. trap, the middle panel to the spherically symmetric trap, and the

The nucleation energy is plotted in Fig. 4 as a function ofpottom panel to the disk-shaped trap. From top to bottom, and in
Rfor differentZ values. The smaller ring we have consideredunits ofa, , the curves correspond ©=0 to 40 inZ steps of 5
hasR/R~0.1. The middle panel corresponds to the samétop panel; Z=0 to 10 inZ steps of 1(middle panel; Z=0,1,2,
spherical condensate as in Fig. 3. Besides, the top panel caand 3(bottom panel
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Figure 4 shows that for each asymmetry paramater
given aZ there exists a vortex configuration corresponding to
a certain radiu® that maximizes the nucleation energy. This o
radius increases a¥ decreases. In the R(Z) two- g
dimensional configuration space, the nucleation energy (,Z
E(R,Z) —Egs has only one maximum atR,/Rr=0.6,Z g
=0). Itis in agreement with the results obtained in R26] s
for a spherically symmetric trap using a simplified model of ,l',
a vortex ring. =
This maximum corresponds to the only stationary, al- <
though unstable, vortex ring configuratidaequivalent to a
vortex line nucleated along the axis), whose location is
almost independent of but its value depends on it, decreas-
ing as A does. This means that the energy to nucleate a
vortex ring characterized by the values &;,Z) is lower the FIG. 5. Density profile as function afatz=0 for theN=10°
more elongated is the trap. condensate in a spherically symmetric trap with a singly quantized

vortex ring. The solid line corresponds to the density profile that

minimizes the functional Eq12) with constraint} ;=0.2w, . The

Gdashed line is the density obtained imposing a ring vorticityRat (
=3.1a, , Z=0). The densities have been normalized to one.

For each asymmetry parameter, the “iso-nucleation en
ergy” lines in the R,Z) configuration space corresponding
to a value not too far from the maximum value are closed_
curves around the maximum, and the allowed ring radii are
in the range defined by the intersection of a straight line )
representing the given nucleation energy andake) curve E[‘I’]=f dr[ﬁ—|V\If|2+v (| w|2+ 9|q,|4
in Fig. 4. If we relax the condition that the vorticity line must 2m & 2
be inside the TF boundary, this should be always like this
[26]. Otherwise, the isoenergy lines eventually do not close. +Q¢f drw*L,v, (12
Yet, the allowed ring radii are determined in a similar way.

We have considered the vortex ring as if it were a static
object. However, in a trapped condensate a vortex ring willvhere the Lagrange multiplie® , can be understood as the
move with a velocity that results from the interplay betweenlocal angular velocity about the azimuthal direction, we have
the effect caused by the inhomogeneity of the condensatebtained the associated GP equation. For a glen we
and self-induced effects arising from its own local curvaturehave solved the partial differential equations obeyed by the
[5,9,28. A qualitative analysis of the dynamics of coaxial real and imaginary part of the condensate wave function,
vortex rings can be carried out from Figs. 3 and 4, as prowhich are coupled by the presence of the constraint. These
posed in Ref[26], and tested in a real-time dynamics for equations have been discretized on rgzf mesh using
two-component condensatg$2,26. It can be seen that a seven-point formulas to represent the differential operators,
coaxial vortex ring oscillates inside the condensate, movingind have been solved using again the imaginary time method
towards the surface and instead of being annihilated at thg25].
boundary, the ring generates a background flow in the rest of Taking as an exampl@ ,=0.2w, , we have obtained a
the cloud that draws it back towards the center. The ring:oaxial vortex ring configuration with its vorticity located on
dynamics in a trapped condensate results in an oscillatiothe z=0 plane whose equidensity lines cannot be distin-
along the symmetry axis of the trap. The radius of the vortexyuished from these represented in the middle panel of Fig. 2
ring grows or shrinks depending on #sposition, in such a  at the scale of this figuréwhose parameters were chosen
way that the ring motion almost follows a trajectory with pefore to allow us to make this statement
constant energy in theR(Z) configuration space. Figure 5 presents a comparison between the two methods.

Finally, we have used a completely different method, nu-t shows the particle density profile as a functionroét z
merically more involved, to generate quantized vortex rings=0 for the spherical condensate of Fig. 3. The solid line is
It does not make any assumption on the superfluid velocityhe configuration that minimizes E¢l2). The density goes
field, nor on the radius or position of the vortex ring either,to zero inR=3.1a, , and the vortex ring has an energy
and can be used to test the results we have obtained based &jual to 37.164w, . The dashed line is the configuration
the validity of the approximatioV -v=0. obtained by the method of Sec. Il with the ring vorticity Eq.

We have proceeded by analogy with the case of a vortexg) placed in R=3.1a, , Z=0) which has an energy of
line, and have added a constraint to the energy functiona7.167:w, . Thus, the energy and density profile of both
that forces to form a toroidallike hole in the condensate withconfigurations are almost identical, and the velocity fields are
a flux of atoms around its core with zero azimuthal velocityalso in good agreement.
component. We have used as constraining operator the angu- We have also checked that minimizing the functional Eq.
lar momentum about thep axis, i.e., ¢- L=Lg=iA(rd, (12) yields quantized ring vortices with=1. To this end,
-z4d,) [27]. we have proceeded to a direct numerical integration of the

Introducing the functional circulation$v- dl using several arbitrary closed paths in the
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0 1 2 3 ;1 5 6 In this appendix_ we give thg ex_pressions and method we
r have used to obtain the velocity field. From E¢R0)—(11)

i . one has
FIG. 6. Current field around the vortex core corresponding to

the vortex ring state calculated takifiy,=0.2w, in Eq.(12). The
current is in arbitrary units and the axes are in units.pf koR(z—2)

v R (227

(r,z) “plane.” We have found that the circulation for paths
enclosing the vortex core l¥m with a good accuracy, and is
zero otherwise. The velocity field has been calculated from
the wave function recalling that the current field jig)
=pv=(R12mi)[V* V¥ —(V¥*)W¥]. The current field(r) where we have defined=4rR/[(r+R)2+(z—2)?]. The
in they=0 plane is plotted in arbitrary units in Fig. 6. The integral Eq.(Al) is written in terms of hypergeometric func-
axes are in units dd, . It can be clearly distinguished in this tions[22] yielding
figure the position of the vortex ring core Z=0 andR

Xfwlz 2cogp—1 do. A

0 (1—scog¢)3?

~3.1a, . koR(z-2)
vr(r,z)z 2 213/2
2[(r+R)*+(z—2)7]
V. SUMMARY X[F(3/2,312;25)—F(1/2,3/12;18)]. (A2)

We have developed a method to study vortex rings hostedimilarly,
in confined condensates in the TF limit. It provides analytical

expressions for the superfluid velocity field that satisfy the ko R

irrotational condition and the quantization of the circulation v,(r,z)=

of the superfluid flow. The velocity around the vortex core is 2r[(r+R)*+(z=2)%1"2
introduced as an external field in the Gross-Pitaevskii energy X[F(3/2,1/2:25)— F(1/2,1/2:18)]
functional, which is minimized to obtain the wave function

of the condensate. koR

Using this method, we have computed the density profile
and nucleation energy of vortex rings in one-component con-
densates. We have found that the size of the vortex ring core
is of the order of the healing length as in the case of vortex X[ (r+R)F(1/2,3/2;15)
lines. The presence of the vortex causes a sizeable distortion
of the density, as atoms are pushed off the core, but the effect
is rather local.

The analysis of the dependence of the nucleation energy
on the position and radius of the ring allows one to conclude
that a Hamiltonian dynamics will lead to oscillations of the

. ! .—and
vortex ring along the symmetry axis of the condensate, in-
creasing and decreasing its radius in accordance with previ-
ous predictions. A dissipative dynamics would cause the vor-
tex to decay, for example disappearing across the border of A _ koR
the condensate, as occurs for vortex lifi2g]. o(r,2)= 2[(r+R)%+ (z—2)2]2

The method provides a handleable way to generate vortex
rings in confined condensates that can be used as a starting X[F(3/2,1/12;25)—F(1/2,1/12;18)]. (A4)
point to study the dynamics. A detailed calculation of the
vortex ring dynamics in a confined condensate, either HamilThe hypergeometric functions entering E¢&2)—(A4) can
tonian or dissipative, is beyond the scope of the present pde written in terms of the complete elliptic integr&sandK
per and will be developed elsewhere. [22] as follows:

* 2[(r+R)%+(z—2)%%?

3R
—(r+2R) F(3/2,3/2;25) + 7F(5/2,3/2;35)

(A3)
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1= 2 o A[EGS)
F(1/2,1/2;15) = —K(\)s), (A5) F(3123/2:25)= —| T —K(JE)}, (A8)
o . 2E(s) -
F(1/2,3/2,ls)—F(3/2,1/2,1s)—; -5 (AB) F(5/2,3/2;35)=3 . rzE(\/g)—ZK(\/E) . (A9)
s

4
F(3/2,1/2:25)=F(1/2,3/2:25) = ;S[K(\/E)—E( V9], To evaluateE andK we have used polynomial approxima-
(A7)  tions[29].
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