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Majorization arrow in quantum-algorithm design
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We apply majorization theory to study the quantum algorithms known so far and find that there is a
majorization principle underlying the way they operate. Grover’s algorithm is a neat instance of this principle
where majorization works step by step until the optimal target state is found. Extensions of this situation are
also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation
algorithms, including Shor’s algorithm. We state that in quantum algorithms the time arrow is a majorization
arrow.
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I. INTRODUCTION

Majorization is the natural ordering on probability distr
butions. One probability distribution is more uneven th
another one when the former majorizes the latter. Furth
more, majorization implies an entropy decrease, thus the
dering concept introduced by majorization is more restrict
and powerful than the one associated to the Shanon’s
tropy. The goal of this work is to show that all known effi
cient quantum algorithms obey a majorization principle, in
way to be made precise later.

The classical theory of majorization was first introduc
by Muirhead@1# and later developed by Hardy, Littlewood
and Po´lya in their study of symmetric means@2#. Majoriza-
tion was studied by economists in the beginning of the tw
tieth century in order to formalize the concept of unevenn
in the distribution of income. In 1905, Lorenz pointed o
that one distribution can be said to be more uneven t
another precisely when it majorizes the other@3#. Likewise,
Dalton in 1920 stated hisprinciple of transfersshowing that
a distribution is less uneven than another if it can be obtai
from the other by transferring some income from a richer
a poorer income-receiver. Moreover, majorization has fou
many applications in classical computer science like stoch
tic scheduling, optimal Huffman coding, greedy algorithm
etc.

In quantum information theory, majorization characteriz
when two quantum bipartite pure states can be connected
local operations and classical communication@4,5#. This re-
sult shows that this connection is indeed possible when th
exists majorization between the vectors of eigenval
~weights! of the partial von Neumann entropies associated
each bipartite state. A further application of majorization
quantum information theory corresponds to the problem
Hamiltonian simulation@6#. There, strong restrictions base
on majorization theory limit the possibility to simulate a pr
posed quantum evolution from a different given Hamiltoni
complemented with local unitary transformations. Majoriz
tion is also present in quantum measurement theory an
the separability problem.

Majorization is often defined as a binary relation deno
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by a on vectors inRd. We need to fix notations by introduc
ing some basic definitions.

Definition 1. For x,yPRd,

xay iff 5 (
i 51

k

x[ i ]<(
i 51

k

y[ i ] , k51, . . . ,d21,

(
i 51

d

x[ i ]5(
i 51

d

y[ i ] ,

~1!

where @z[1]•••z[d] #ªsort↓(z) denotes the descendingl
sorted~nonincreasing! ordering ofzPRd. An immediate con-
sequence is that majorization is a partial order for sor
vectors inRd.

Definition 2. If it exists, the least elementxl ~greatest el-
ementxg) of a partial order like majorization is defined b
the conditionxlax,;xPRd (xaxg ,;xPRd).

In this paper we address the following basic problem
elucidating what is the role, if any, played by majorization
the way quantum algorithms operate. We find, indeed, t
there is a majorization principle underlying the way quantu
algorithms work that we shall now state more precisely. L
us denote byuCm& the pure state representing the state of
register in a quantum computer at an operating stage lab
by m50,1, . . . ,M21, whereM is the total number of step
of the algorithm. We can associate naturally a set of sor
probabilities@p[x] #,x50,1, . . . ,2n21 to this quantum state
of n qubits in the following way: decompose the regist

state in the computational basis, i.e.,uCm&ª(x50
2n21cxux&

with $ux&ªux0x1•••xn21&%x50
2n21 denoting the basis states i

digital or binary notation, respectively, andxª( j 50
n21xj2

j .
The sorted vectors to which majorization theory applies
precisely@p[x] #ª@ uc[x] u2#. Thus in quantum algorithms we
shall be dealing with probability densities defined inR1

d ,
with d52n. With these ingredients, our main result can
stated as follows: in the quantum algorithms known so
the set of sorted probabilities@p[x]

m # associated to the quan
tum register at each stepm are majorized by the correspond
ing probabilities of the next step,
©2002 The American Physical Society05-1
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@p[x]
m #a@p[x]

m11#, H ; m50,1, . . . ,M22,

x50,1, . . . ,2n21.
~2!

This is a strong result for it means that majorization wo
locally in quantum algorithms, i.e., step by step, and not j
globally ~for the initial and final states!. Our starting point is
the majorization analysis of Grover’s algorithm@7#.

II. GROVER’S ALGORITHM

This quantum algorithm solves efficiently the problem
finding a target item in a large database. The algorithm
based on a kernel that acts symmetrically on the subsp
orthogonal to the solution. This is clear from its constructi

KªUsUy0
,

Usª2us&^su21, Uy0
ª122uy0&^y0u, ~3!

whereus&ª1/AN(xux& and uy0& is the searched item.
Theorem.The set of probabilities to obtain any of theN

possible states in a database is majorized step by step a
the evolution of Grover’s algorithm when starting from
symmetric state until the maximum probability of success
reached.

Proof. To prove this result we write@p[x] # as the set of
sorted probabilities of finding the stateux& when performing
a measurement. We call@p[x]8 # the set of sorted probabilitie
after one single application of Grover’s kernel. The theor
is equivalent to prove that@p[x] #a@p[x]8 # until p1, the prob-
ability of finding the correct solution, reaches its maximu
value.

The hypothesis of symmetry imposes that the probab
ties of finding each of theN outputs at some point during th
implementation of Grover’s algorithm can be ordered in
list

Fp,
12p

N21
,
12p

N21
, . . . ,

12p

N21G , ~4!

wherep is the one associated to the correct output. After o
further action of the kernel these probabilities will be

Fp8,
12p8

N21
,
12p8

N21
, . . . ,

12p8

N21 G . ~5!

We first need to prove that Grover’s algorithm increases
probability of success monotonically, that isp8.p, until it
reaches a maximum and then decreases also monotoni
This part of the proof relies on the fact that the Grover alg
rithm can be described in a reduced two-dimensional sp
@8,9#, which follows from the symmetry of the subspace o
thogonal touy0&. In this case, the dynamics can be reduced
a two-state system,$uy0&,uy0

'&%. Grover’s kernel on this
space acts as a rotation@10#

K5S cosu 2sinu

sinu cosu D , ~6!
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where cosu5122/N. Starting from the symmetric state

us& t5S 1

AN
A12

1

ND , ~7!

m applications of the kernel lead to

Kmus&5S 1

AN
cos~mu!2A12

1

N
sin~mu!

1

AN
sin~mu!1A12

1

N
cos~mu!

D . ~8!

The projection onto the upper component corresponds to
probability amplitude which, thus, evolves monotonica
until it reaches a maximum.

Returning to the original problem, we can now check th
all probabilities evolve in such a way that majorizatio
works smoothly:

P<p8,

~N22!p11

N21
<

~N22!p811

N21
, ~9!

A

~N2m21!p1m

N21
<

~N2m21!p81m

N21
.

Thus @p[x] #a@p[x]8 # and Eq.~2! holds true. j

Majorization works in a simple way in Grover’s algo
rithm. Nevertheless, the proof does not hold when the ini
distribution of probabilities is not symmetric in the subspa
orthogonal to the solution. It is indeed easy to find numeri
counterexamples to the majorization principle in absence
symmetry. We realize that this corresponds to starting wit
quantum stateus& whose set of probabilities is theleast ele-
mentof the majorization we have introduced to study qua
tum algorithms. We shall see that this fact also happen
the rest of the algorithms below.

III. QUANTUM ADIABATIC EVOLUTION ALGORITHMS

Grover’s algorithm can be mapped onto the evolution
the homogeneous stateus& into the solutionu0& driven by a
simple Hamiltonian@8#. Farhiet al.have proposed to use th
adiabatic evolution to guarantee that the system remain
the fundamental state and reaches the target solution in
end @11#. More precisely, the idea consists of setting up
Hamiltonian of the form

HS t

TD5S 12
t

TDH01
t

T
H1 , ~10!

such thatus& is the ground state ofH0 and u0& is the ground
state ofH1. For large enoughT, the evolution will be adia-
batic and the system will remain in the ground state all alo
the flow. The adiabatic theorem dictates thatT must scale as
5-2
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the inverse squared of the minimum gap of the system.
question we address here is whether this evolution resp
majorization.

Although the system containsn qubits, 2n possible states
the adiabatic evolution can be computed using a subspa
sufficient symmetry is present. The simplest example is
consider the Hamiltonian

HS t

TD52us&^suS 12
t

TD2u0&^0u
t

T
~11!

and the initial stateus&. In this particular case, the evolutio
can be computed using a reduced two state Hilbert sp
More precisely

us&5
1

A2n
~ u0&1A2n21u0'&). ~12!

Then the Hamiltonian written in the basis$u0&,u0'% reads

HS t

TD52S 12
t

TD S 1

2n A2n21

2n

A2n21

2n

2n21

2n
D 2

t

T S 1 0

0 0D .

~13!

It is possible to verify numerically that whenT;432n the
probability follows the graphic shown in Fig. 1. An argume
similar to the previous theorem indicates that symmetry
poses majorization for the complete set of probabiliti
ShorterT lead to evolutions that do not hit the solution wi

FIG. 1. Evolution of the probability of finding the target sta
~bold! and other states~dashed! for n56.
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probability one, while a largerT smooths this evolution.
Once the maximum is attained, the probabilities oscillate a
majorization is obviously lost.

It is worth mentioning that a combination ofH0 andH1
chosen as above but mixed with no time dependence lead
a Hamiltonian that rotates the ground state in the manne
the previous theorem. Then, the solution is obtained inT
5(p/2)2n/2 with probability 1. This is precisely the scalin
law found in Grover’s algorithm.

A more refined test for the majorization principle corr
sponds to the Hamiltonian evolution proposed by Farhiet al.
as a natural starting point for any adiabatic evolution@11#.
Let us consider the following choice:

H05 (
i 51,n

~12sx!
( i ). ~14!

This Hamiltonian acts as an eraser of information and has
state us& as its ground state. Furthermore, it allows for
decomposition of the Hilbert space inton11 symmetric sub-
spaces. Finding the target instanceu0& amounts to solving
the dynamical evolution in this (n11)-dimensional Hilbert
space. Let us denote asuk& the symmetric space withk qubits
in the stateu1& and the rest inu0&. The Hamiltonian becomes

H05
n

2
I 2N, ~15!

where the elements of the symmetric matrixN are given by

^ i uN~ i , j !u j &5AjAn2~ j 21!d i 11,j . ~16!

A numerical solution of the evolution is now easy to pe
form. For T.732n, the system indeed evolves along th
ground state and majorization holds for the set ofn11 prob-
abilities, as shown in Fig. 2. Shorter evolutions perfo
poorly and fail to verify the majorization principle. We con
clude that quantum algorithms based on adiabatic evolu
naturally fulfill a majorization principle provided that th
Hamiltonians and initial state are chosen with sufficient sy
metry and the evolution is slow enough.

IV. QUANTUM PHASE-ESTIMATION ALGORITHMS

These represent a large family of quantum algorithms t
include as particular instances the order-finding proble
Shor’s algorithm@12#, discrete logarithms, etc.@13#. The ba-
sic problem is: given an arbitrary unitary operatorU and one
,

FIG. 2. Curves for p1 , p1

1p2, and p11p21p3 for n54.
The failure of majorization
~monotonicity! for fast evolution,
T5432n, in the upper curves
goes away for slower evolution
T5732n.
5-3
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eigenvectoruv&, estimate the phasef of the corresponding
eigenvalueUuv&ªe22p ifuv&,fP@0,1), with n bits of accu-
racy. The efficient quantum solution of this problem can
encoded in the quantum circuit shown in Fig. 3, and we s
always refer to this circuit when performing the majorizati
analysis stepwise. The algorithm clearly has two parts:~i!
application of Hadamard gatesUH and controlled-U j gates,
j 50,1, . . . ,n21; and ~ii ! application of the quantum Fou
rier transform~QFT! UF .

Part ~i!. The whole quantum register is made up of fi
and second registers. The initialization stage is such tha
quantum computer is in the stateuC in&ªu00•••0&uv&, where
the first register has been prepared at the stateu0& for short,
and the second holds the eigenvector ofU. In what follows,
we denote by@p[x]

m # the sorted probabilities distributions o
the first register, at time stepsm50,1, . . . ,n11 that we
show in Fig. 3 as time slices.

Clearly, the probability distribution ofuC in& is the greatest
element of the majorization. However, an application of
Hadamard gates yields a lowest element as in Grov
algorithm. Thus our starting point for majorization

uC0&ª(UH
^ n

^ 1)uC& in522n/2(x50
2n21ux&uv&. Then, @p[x]

0 #
5@22n#,;x.

Next, a series of controlled-U2 j
gates encompassing tim

steps fromt1 to tn ~Fig. 3! are applied. The outcome of thes
steps is the factorized state

uCn&522n/2@ u0&1e22p i2n21fu1&] •••@ u0&1e22p i20fu1&]

522n/2 (
x50

2n21

e22p ixfux&uv&. ~17!

FIG. 3. ~a! Quantum circuit implementing the phase-estimati
algorithm constructed from Hadamard gatesUH , controlled-U
gates acting asu0&^0u ^ 11u1&^1u ^ U, and the QFT. Dashed line
represent time steps for majorization testing.~b! An example of
QFT decomposition into elementary gates forn53 qubits.
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As the action of these gates only introduces phases local
the computational states, then we obtain again the unifo
distributions@p[x]

m #5@22n#,;x,m50,1, . . . ,n.
Part ~ii !. Although the local phases inuCn& do not play

any role in majorization, so far, they become relevant wh
combined with the application of the QFT on the first reg
ter, due to interference of quantum amplitudes. The state
ter time steptn11 ~Fig. 3! is

uCn11&ª~UF ^ 1!uCn&522n (
x,y50

2n21

e22p ix(f2y/2n)uy&uv&.

~18!

Now, p[ y]
n11

ªu22n(x50
2n21e22p ix(f2y/2n)u2 majorizes the leas

element distribution at stepm5n. Interestingly enough,
there is a stronger majorization working stepwise when
QFT is applied by means of its canonical decomposition
terms ofn Hadamard andn(n21)/2 controlled-phase gate
@14#. For concreteness, we show such decomposition in
3~b! for n53 qubits and with the corresponding time slic
~majorization checkpoints!. The proof of this result relies on
the recursive application of the following inequalities

U 1

A2
~16e2p ia6(y,f)!U2

>1,

$~a1P@0,1
4 #,@ 3

4 ,1#; a2P@ 1
4 , 3

4 # !, ~19!

where, at each step,a6 depends ony,f in a computable
way @15#. To illustrate this fact, we show in Fig. 4 a numeri-
cal plot for n53 qubits in the form of a Lorenz diagram
partial probability sums vsx, for each time step. Therefore
as a consequence of our analysis we find that the major
tion principle is working locally in algorithms like order
finding ar51 mod N, where the unitary operator is give
by Uux&ªuax mod N& and f51/r ; Shor’s algorithm,
where order-finding is used combined with controlled-U
gates implementing the modular exponentiation; Chuan

FIG. 4. Lorenz diagram~partial probability sums! for the quan-
tum phase-estimation algorithm withf50.2 andn53 qubits as in
Fig. 3. It shows how majorization works along the time arrows

→h→L→n.
5-4
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algorithm for quantum clock synchronization, whereU
ªUcnotUTQPUcnot and UTQP is the so-called Ticking Qubi
Protocol@16#; etc.

V. CONCLUSIONS

Efficient quantum algorithms are scarce as compared w
their classical counterparts, suggesting that we are mis
the basic principles for quantum algorithm design@17#. In
this paper, we have produced evidence for the general
that there is a majorization principle acting step by step d
ing the time evolution in efficient quantum algorithms. W
02230
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may say that majorization is a sort of driving force for su
algorithms. Learning to tame majorization may be useful
devising quantum-algorithm design. When majorization
not at work, the quantum algorithm is neither efficient n
successful.
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