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Microscopic study of He2-SF6 trimers
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The He2-SF6 trimers, in their different He isotopic combinations, are studied in the framework of both the
correlated Jastrow approach and the correlated hyperspherical harmonics~CHH! expansion method. The en-
ergetics and structure of the He-SF6 dimers are analyzed, and the existence of a characteristic rotational band
in the excitation spectrum is discussed, as well as the isotopic differences. The binding energies and the spatial
properties of the trimers, in their ground and lowest lying excited states, obtained by the Jastrow ansatz are in
excellent agreement with the results of the converged CHH expansion. The introduction of the He-He corre-
lation makes all trimers bound by largely suppressing the short range He-He repulsion. The structural proper-
ties of the trimers are qualitatively explained in terms of the shape of the interactions, Pauli principle, and
masses of the constituents.
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I. INTRODUCTION

Helium systems are dominated by quantum effects
remain liquid down to zero temperature. This is a con
quence of both the small atomic mass and the weak at
atom interaction, which is the weakest among the rare-
atoms. Helium clusters remain liquid under all conditions
formation and are very weakly bound systems.

Small helium clusters have been detected by diffraction
a helium nozzle beam by a transmission grating@1#. Using a
grating of 200 nm period, conclusive evidence of the ex
tence of the dimer4He2 has been established@2#. The exis-
tence of 4He2 was previously reported@3# using electron-
impact ionization techniques. Diffraction experiments from
100-nm-period grating has led to the determination of a m
lecular bond length of 5464 Å, out of which a binding en-
ergy of 1.120.210.3 mK has been deduced@4#. This energy
is in good agreement with the values obtained by direct
tegration of the Schro¨dinger equation using modern He-H
interactions@5#. Theoretical calculations indicate that an
number of4He atoms form a self-bound system. In contra
a substantially larger number of3He atoms is necessary fo
self-binding, as a consequence of the smaller3He atomic
mass and its fermionic nature. The required minimum nu
ber has been estimated to be 29 atoms, using a den
functional plus configuration-interaction techniques to so
the many-body problem@6#, or 34–35 atoms, using an acc
rate variational wave function@7,8# with the HFD-B~HE!
Aziz interaction@9#. It is worth recalling that a theoretica
description of pure3He clusters, either based on ab init
calculations or employing Green-function or diffusion mon
carlo techniques, is still missing.

Doping a helium cluster with atomic or molecular imp
rities constitutes a useful probe of the structural and en
getic properties of the cluster itself. It has been proved t
1050-2947/2003/68~5!/053205~11!/$20.00 68 0532
d
-
-

as
f

f

-

-

-

,

-
ty-
e

r-
at

rare gases and closed-shell molecules such as HF, OC
SF6 are located in the bulk of the cluster@10#. Doped 4He
clusters have been extensively studied in the past by a v
ety of methods, ranging from diffusion and path-integ
quantum monte carlo methods to two-fluid models. A co
prehensive view of this subject is found in Ref.@11#, giving
account of a microscopic basis of the free rotation of a he
molecule in a4He nanodroplet, consistent with the occurrin
bosonic superfluidity at the attained temperatures. This p
nomenon is not expected to take place in doped3He clusters,
because of the fermionic nature of the atoms, unless very
temperatures~below a few mK! are reached. Even more in
teresting, from both the theoretical and experimental po
of view, are mixed doped clusters of3He and 4He atoms.
The status of the theory in these last cases is far behind
in the 4He droplets. The most updated studies of3He and
mixed 4He-3He clusters, either pure or doped, employ
finite-range density-functional theory@12,13#.

In this work we study the properties of a trimer formed
two helium atoms plus a heavy dopant. The dopant molec
behaves as an attractive center binding a certain numbe
otherwise unbound3He atoms. This fact has been used
Ref. @14# to set an analogy between electrons bound by
atomic nucleus and3He atoms bound by a dopant specie
Systems formed by two3He atoms plus a molecule hav
been studied employing the usual quantum chemistry
chinery.

Helium droplets doped with the SF6 molecule have been
widely investigated, also in view of the fact that the intera
tion He-SF6 is well established@15,16#. In this work we use
the spherically averaged interaction of Taylor and Hurly@16#
between the helium atom and the SF6 molecule, and the Aziz
HFD-B~HE! helium-helium interaction@9#. We first perform
a variational study of the 3He2-SF6 , 4He2-SF6, and
4He-3He-SF6 trimers using a Jastrow correlated wave fun
©2003 The American Physical Society05-1



Å.

BARLETTA et al. PHYSICAL REVIEW A 68, 053205 ~2003!
TABLE I. Observables of the bound states of the He-SF6 dimers. Energies are in K and distances in

3He 4He
, e0, ^V& ^R& A^R2& e1, e0, ^V& ^R& A^R2& e1,

0 227.336 239.184 4.622 4.646 21.940 230.563 241.509 4.549 4.568 24.292
1 226.561 239.104 4.626 4.650 21.541 229.964 241.459 4.552 4.571 23.920
2 225.016 238.939 4.635 4.659 20.775 228.767 241.355 4.557 4.577 23.184
3 222.707 238.677 4.648 4.673 226.976 241.193 4.566 4.585 22.105
4 219.647 238.298 4.667 4.693 224.598 240.963 4.577 4.597 20.721
5 215.854 237.771 4.693 4.720 221.641 240.653 4.592 4.613
6 211.354 237.047 4.728 4.758 218.117 240.243 4.612 4.634
7 26.183 236.041 4.776 4.809 214.040 239.707 4.637 4.660
8 20.394 234.579 4.848 4.887 29.431 239.001 4.669 4.693
9 24.318 238.058 4.711 4.738
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tion. Then the correlated hyperspherical harmonics~CHH!
expansion method@17# is employed and its outcomes a
used as benchmarks for the variational calculations.
CHH expansion has proved to be a powerful technique
study three- and four-body strongly interacting systems
light atomic nuclei its accuracy is comparable with~and in
some cases even better than! other popular approaches, suc
as the Faddeev, Faddeev-Yakubowsky and, quantum m
carlo ones@18#. Besides accurately studying the ground a
first excited states of the trimers, comparing the variatio
and CHH results may provide essential clues for the c
struction of a reliable variational wave function to be used
heavier doped nanodroplets.

The plan of this paper is the following. In Sec. II we stu
the dimers formed by a single helium atom and the S6
molecule and enlighten some aspects of their excitation s
trum. In Sec. III we consider the trimers by the Jastr
variational and CHH approaches. Results for the energe
and structure of the trimers are given and discussed in
IV. Finally, Sec. V provides the conclusions and the futu
perspectives of this work.

II. THE He-SF 6 DIMER

Prior to the study of trimers made by two helium atom
and a dopant species, it is convenient to analyze the dime
some details. To fix the notation for later discussions,
write here the Schro¨dinger equation for the relative motio
of a helium atom and a dopantD,

h0fn,~r !5en,fn,~r ! ~1!

with

h052
\2

2ma
¹21VHe-D~r !, ~2!

wherema ~with a53,4) is the reduced mass of theaHe-D
pair, andVHe-D(r ) is the helium-dopant interaction,r being
the relative coordinate. We have numerically solved t
equation for the dopant SF6, using the spherically average
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interaction determined in Ref.@16#. A set of energies and
orbitals characterized by the quantum numbers (n,) is thus
obtained.

The He-SF6 interaction has an attractive well stron
enough to sustain 12 and 15 bound states for isotopes3He
and 4He, respectively. In Table I some observables of
dimers are displayed. The calculations have been done in
limit of infinite mass of the SF6 molecule. The most striking
feature of the energy spectra is that the first seven~nine!
levels correspond to nodelessn50 states. Note that for eac
isotope the expectation values^R& and A^R2& are not very
different, neither for a given,-state nor for different, val-
ues. The expectation value^V& neither varies too much, in
creasing by;10% in going from the,50 to the ,58,9
states. These results are an indication that the wave funct
show a well-defined peak in nearly the same region, a
consequence of the characteristics of the He-SF6 interaction.

To first order in the mass ratio, the correction to the in
nite dopant mass approximation modifies the kinetic ene
asT(a)5TM5`

(a) (11ma /M ), with M being the dopant mass
Accordingly, the finite mass system results less bound
DE

(a)5TM5`
(a) (ma /M ). The mass ratiosma /M are 0.0207

and 0.0274 for3He and 4He, respectively, considering th
32S isotope. So, the binding energy corrections areDE

(3)

50.245 K andDE
(4)50.300 K, both being about 1% of th

total energy. An exact finite mass calculation confirms t
estimate, providingDE

(3)50.242 K andDE
(4)50.296 K.

The He-SF6 interaction is displayed in Fig. 1. It is
strongly repulsive at distances shorter than.3.8 Å, and at-
tractive beyond. The attractive part is mostly concentrated
a narrow region around 4.2 Å, immediately after the rep
sive core. This implies that the He atom locates relatively
away from the potential origin, so that the centrifugal te
entering the Schro¨dinger equation can be considered as
perturbation. Two consequences can be deduced from
observation. First, the radial distributions are very peaked
the same narrow region, independently on the value of
angular momentum,, as it is shown in Fig. 1 for three
states, corresponding to,50 and 4 for both isotopes, an
the nodeless bound states with the highest excitation ene
namely,,58 for 3He and 9 for4He. The distributions are
5-2
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concentrated in the same region, and those correspondin
,50 and 4 are barely distinguishable. Second, the excita
energies are closely proportional to,(,11), i.e., they fol-
low a rotational pattern. Figure 2 depicts the differenc
(e0,2e00) in functions of ,(,11) ~squares for3He-SF6
and stars for4He-SF6), together with the linear fits to the
energy differences. The slopes provide then50 rotational
constants,C0

(3,4) . From the fits we obtainC0
(3)50.376 K and

C0
(4)50.294 K, in good agreement with the rough estim

\2/2m^R2&, where^R2& is the mean square dopant-Heliu
distance. A similar behavior is found for then51 excited
states, whose rotational constants areC1

(3)50.194 K and
C1

(4)50.179 K. The ratio of the rotational constants of t
dimers with either isotope are of course in the inverse ra
of masses. Note that the larger mass of the4He atom trans-
lates into a larger binding. Both the decrease of the kin
energy and the increase of the attraction contribute to
increment of the binding energy for the4He-SF6 dimer. The
stronger localization of the4He atom is visualized by the
peak of the radial probability density shown in Fig. 1, whi
is slightly higher for the4He atom.

It is worth stressing that the observed rotational spectr
is a direct consequence of the shape of the He-SF6 interac-
tion, whose attractive well, having a depth of'257 K, al-
lows for 12 or 15 bound states. Taking the lighter Ne a
dopant, we have found that only three bound states exist
depth of the attractive well being'220 K. Moreover, the
binding energies are very small, and the probability distrib
tions are extended over a large region.

III. THE He 2-SF6 TRIMERS: THEORY

In the limit of infinite mass of the dopant molecule, hen
considered as a fixed center, the Hamiltonian of the He2-SF6
trimers is

FIG. 1. Dimer radial probability densities (3He-SF6, upper
panel; 4He-SF6, middle panel; He-SF6 interaction, lower panel!.
The probability densities correspond to the quantum number,
50 ~solid line!, ,54 ~dashed line!, and,58 and 9~dash-dotted
line! for 3He and4He, respectively. Distances are in Å, potential
K, and densities in Å23.
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VD-He~r i !1VHe-He~r12!,

~3!

with a i53,4. VD-He(r ) andVHe-He(r ) are the dopant-helium
and helium-helium interaction potentials, respectively.r i is
the coordinate of thei th helium atom with respect to th
central molecule andr12 is the helium-helium relative coor
dinate.

The ground and excited states properties of the trim
can be obtained either by an exact solution of the Sch¨-
dinger equation,

H~1,2!Cg
T~1,2!5EgCg

T~1,2!, ~4!

or by some approximate estimate of their wave functio
Hereg labels the generic trimer state, whose wave funct
is Cg

T(1,2).
The Schro¨dinger equation for clusters of4He atoms may

be exactly solved for the ground state by quantum Mo
Carlo ~QMC! methods@19–21#. Other approaches, such a
variational Monte Carlo@22–24# with Jastrow correlated
wave functions or density-functional theories~DFT! @25,26#,
provide a less accurate description of the clusters. Howe
they are generally more flexible than QMC.

FIG. 2. Differencese0l2e00 ~in K! vs ,(,11) for the He-SF6
dimers. Squares correspond to the3He-SF6 results and stars to the
4He-SF6 ones. The lines are linear fits to the numerical values.
5-3
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The presence of more than two3He atoms makes the
exact solution of the Schro¨dinger equation much more diffi
cult, because of the notorious sign problem@27# associated to
their fermionic nature. As a consequence, only DFT ba
studies of doped3He clusters are available in literatur
@12,13#. The most updated study of the3He2-SF6 trimer has
been done within the Hartree-Fock approximation, not c
sidering the strong He-He correlations induced byVHe-He
@14#.

In this section we will first present a variational approa
based on a Jastrow correlated wave function. Then we
apply the CHH expansion method@17# to further improve the
description of the doped trimers.

A. Variational approach

The Jastrow correlated wave function of the trimer for t
g state is given by

Cg
J~1,2!5Fg~1,2! f J~r 12!, ~5!

whereFg(1,2) is an independent particle~IP! wave function
of the two helium atoms in the dopant field having the sa
setg of quantum numbers. The correlation function betwe
the two atoms,f J(r ), is assumed to depend only on the i
teratomic distance and takes into account the modificatio
the IP wave function mainly due to the He-He interactio
The optimal f J(r ) is variationally fixed by minimizing the
total energy of the state.Fg(1,2) is built as an appropriat
combination of the dimer He-SF6 wave functions. For in-
stance, using the (LS)p notation (L being the IP orbital an-
gular momentum,S the total spin, andp the parity of the
helium pair!, the (00)1IP wave function for the3He2-SF6
trimer is taken as

F (00)1~1,2!5J0~1,2!f1s~r1!f1s~r2!, ~6!

where J0(1,2) is the spin-singlet wave function of th
3He-3He pair andf1s(r ) is the 1s (n50 and,50) solution
of the 3He-SF6 dimer Schro¨dinger equation~1!.

In an analogous way, the (10)2 and (11)2 IP wave func-
tions are

F (10)2~1,2!5J0~1,2!
1

A2
@f1s~r1!f1p~r2!

1f1p~r1!f1s~r2!# ~7!

and

F (11)2~1,2!5J1~1,2!
1

A2
@f1s~r1!f1p~r2!

2f1p~r1!f1s~r2!#, ~8!

whereJ1(1,2) is the spin-triplet pair wave function.
The total Hamiltonian~3! can be written as

H~1,2!5h0~1!1h0~2!1VHe-He~r12!

5H0~1,2!1VHe-He~r12!, ~9!
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whereh0 is Hamiltonian~2! of the dimer and

H0~1,2!Fg~1,2!5~eg1
1eg2

!Fg~1,2!, ~10!

where the two sets of dimer quantum numbers,g1 and g2,
are those taken to build up the totalg-trimer state.

The total energy of the trimer in theg state is

Eg5
^Cg

J uH~1,2!uCg
J&

^Cg
J uCg

J&
. ~11!

Since@VD-He, f J#50, the energy results in

Eg5eg1
1eg2

1(
i 51

2
\2

2ma i

^Fgu“ i f J~r 12!•“ i f J~r 12!uFg&

^Cg
J uCg

J&

1
^Fgu f J~r 12!VHe-He~r12! f J~r 12!uFg&

^Cg
J uCg

J&
. ~12!

This equation will be used to estimate the variational ene
of the trimer and to optimize the choice of the correlati
factor.

B. CHH approach

In order to implement the CHH method for a system
three atoms of massesmi , in positionsr i , it is convenient to
introduce the three sets (xi ,yi) of Jacobi coordinates:

xi5A mkmj

mj1mk
~r j2r k!,

yi5Ami~mj1mk!

mi1mj1mk
S r i2

mj r j1mkr k

mj1mk
D . ~13!

In the fixed-center limit (m35`) the positionr3 coincides
with the molecular center of mass and, for two equal-m
atoms (m15m25m), the Jacobi coordinates, after dividin
by m1/2, can be reduced to

x15r2 , x252r1 , x35A1

2
~r12r2!,

y15r1 , y25r2 , y352A1

2
~r11r2!. ~14!

The total wave function,C (LS)p(1,2) can be expressed a
a sum of three Faddeev-like amplitudes@18#, each of which
explicitly depends upon a different Jacobi set:

C (LS)p~1,2!5c (LS)p
(1)

~x1 ,y1!1c (LS)p
(2)

~x2 ,y2!

1c (LS)p
(3)

~x3 ,y3!. ~15!

The amplitudes are then expanded into channels, labele
the partial angular momenta,x,i and,y,i , associated withxi
andyi , respectively:
5-4
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c (LS)p
( i )

~xi ,yi !5JS~1,2! (
,x,i ,,y,i

F
( i )

,x,i ,,y,i~xi ,yi !

3@Y,x,i
~ x̂i !Y,y,i

~ ŷi !#LM , ~16!

whereY, are ordinary spherical harmonics, andF
( i )

,x,i ,,y,i
is a two-dimensional function depending upon the modul
the Jacobi vectors. As a result, the parity of the state is gi
by ,x,i1,y,i , even~odd! for positive ~negative! parity.

Following Ref. @28#, each amplitudeF
( i )

,x,i ,,y,i is ex-
panded in terms of a correlated hyperspherical harmo
basis set. After introducing the hyperspherical coordina
(r,f i), associated with the Jacobi set,

r25x1
21y1

25x2
21y2

25x3
21y3

2 , ~17!

xi5r cosf i , ~18!

yi5r sinf i , ~19!

the CHH basis elements, having quantum numbers (LS)p

and corresponding to the set of Jacobi coordinates labele
i, are defined as follows:

um,k,,x,i ,,y,i ; i &5JS~1,2!FJ~r 1 ,r 2 ,r 12!r
,x,i1,y,iLm

(5)~z!

3expS 2
z

2D (2)

Pk
,x,i ,,y,i~f i !

3@Y,x,i
~ x̂i !Y,y,i

~ ŷi !#LM , ~20!

where

(2)Pk
,x ,,y~f!5N,x ,,y ,k~cosf!,x~sinf!,y

3Pk
,y11/2,,x11/2

@cos~2f!#

is a normalized hypherspherical polynomial,Pk
,y11/2,,x11/2 is

a Jacobi polynomial,Lm
(5) are associated Laguerre polynom

als, andz5br, with b a nonlinear variational parameter.
The other ingredient in the CHH basis elements is

correlation factorFJ(r 1 ,r 2 ,r 12). Due to the strongly repul-
sive core of the interatomic potentials, it is convenient
take FJ as a product of pairwise Jastrow-like correlati
functions,

FJ~r 1 ,r 2 ,r 12!5g~r 1!g~r 2! f J~r 12!. ~21!

The correlation functions mainly describe the short-range
havior of the wave function as the two helium atoms a
close to each other or to the dopant. The polynomial par
the CHH expansion is expected to reproduce the mid-
long-range configurations. Therefore, it is preferable
choose correlation functions which behave in the outer p
tion of the Hilbert space as smoothly as possible, in orde
avoid potentially deleterious biasing of the polynomial e
pansion.

Suitable correlation functions to be used in Eq.~21! are
obtained by solving the two-body Schro¨dinger equation:
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2m
¹21V* ~r !1le2jr Dh~r !50, ~22!

where m is the reduced mass of the considered two-bo
system, and the pseudopotentialle2jr is introduced to ad-
just the asymptotic behavior of the correlation function
such a way thath(r→`)→1. The parametersj and l are
optimized for each of the different cases, SF6-He, 4He-4He,
and 3He-3He. For the helium-dopant correlation (h5g), we
take m5mHe, and V* is a modified SF6-He potential. In
fact, in order to build a nodeless correlation function, it
necessary to reduce the attractive part of the helium-dop
interaction. The repulsive part, on the other hand, is k
unaltered. In the4He-4He case (h5 f J , m5m4He/2), the cor-
relation function has been obtained as in Ref.@28#. The
3He-3He pair does not support a bound state, so the corr
tion function has been obtained simply as the solution of
zero-energy Schro¨dinger equation (V* 5VHe-He andl50 in
Eq. 22!.

In order to work with basis elements of defined symme
under the permutation operatorP12 ~according to the Paul
principe! we take proper symmetric or antisymmetric com
binations of the basis elements withi 51 and 2:

um,k,,x,1 ,,y,1 ;n&5um,k,,x,1 ,,y,1 ;1&

1~21!qum,k,,x,1 ,,y,1 ;2&, ~23!

wheren ([s,a) labels symmetric or antisymmetric state
respectively, andq50, 1 is chosen according to the value
of ,x andS.

The expansion of the total wave function in terms of CH
states with well-defined permutation symmetry results in

C (LS)p5 (
,x,1 ,,y,1

(
ka ,ma

Aka ,ma
uka ,ma ,,x,1 ,,y,1 ;n&

1 (
,x,3 ,,y,3

(
kb ,mb

Bkb ,mb
ukb ,mb ,,x,3 ,,y,3 ;3&.

~24!

The sum over the partial angular momenta,x ,,y , although
constrained by the values of the total angular momentumL,
the parity, and by symmetry considerations, runs over
infinite number of channels. However, in practice only t
lower channels are included, since the higher the ang
momentum the lesser the contribution to the wave functi
Moreover, due to the presence of both the correlation fac
FJ and the amplitude expansion, an infinite number of ch
nels is automatically included, though in a nonflexible wa

In the description of the (LS)p5(00)1,(10)2,(11)2

states for 3He2-SF6, we have retained only the lowes
angular-momentum channels, that is,,x,15,y,15,x,35,y,3
50 for (00)1, ,x,15,x,350 and ,y,15,y,351 for (10)2,
and ,x,15,x,351, and,y,15,y,350 for (00)2. The CHH
wave functions for these three states are
5-5
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TABLE II. Convergence pattern ofEi
N for the two lowest-lying states of the (00)1 band in 3He2-SF6 as

a function of the numbers (n1 ,n3) of Jacobi polynomials in expansion~25! for the amplitudes~1,2! and 3,
respectively. The number of Laguerre polynomials is independently optimized for each case. The var
parameterb is fixed to 1.59 Å. Energies are in K.

(00)1 Ground state (00)1 First excited state
n3\n1 1 2 3 4 1 2 3

0 254.269 254.652 254.656 254.656
1 254.381 254.743 254.746 254.746 251.652 251.674 251.674
2 254.397 254.777 254.780 254.780 252.384 252.416 252.416
3 254.413 254.789 254.792 254.792 252.411 252.439 252.439
4 254.414 254.792 254.795 254.795 252.425 252.454 252.454
5 254.416 254.793 254.796 254.796 252.426 252.455 252.455
6 254.416 254.793 254.796 254.796 252.427 252.456 252.456
7 254.417 254.793 254.796 254.797 252.427 252.457 252.457
8 254.417 254.793 254.796 254.797 252.427 252.457 252.457
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C (00)1~1,2!5J0~1,2!FJe
2z/2

3H (
ka ,ma

Aka ,ma
Lma

(5)~z!Pka

1/2,1/2~cos2f1!

1 (
kb ,mb

Bkb ,mb
Lmb

(5)~z!Pkb

1/2,1/2~cos 2f3!J ,

~25!

C (10)2~1,2!5J0~1,2!FJe
2z/2H (

ka ,ma

Aka ,ma
Lma

(5)~z!

3@rsinf1Pka

3/2,1/2~cos2f1!Y1
M~ ŷ1!

1r cosf1Pka

3/2,1/2~2cos 2f1!Y1
M~ x̂1!#

1 (
kb ,mb

Bkb ,mb
Lmb

(5)~z!r sinf3Pkb

3/2,1/2

3~cos 2f3!Y1
M~ ŷ3!J , ~26!

C (11)2~1,2!5J1~1,2!FJe
2z/2H (

ka ,ma

Aka ,ma
Lma

(5)~z!

3@Pka

1/2,3/2~cos 2f1!r cosf1Y1
M~ x̂1!

2r sinf1Pka

1/2,3/2~2cos 2f1!Y1
M~ ŷ1!#

1 (
kb ,mb

Bkb ,mb
Lmb

(5)~z!r cosf3Pkb

1/2,3/2

3~cos 2f3!Y1
M~ x̂3!J , ~27!

whereka>0 andkb>1. However, only even values ofka
are allowed inC (00)1. In 4He2-SF6 we just studyC (00)1 and
C (10)2 states, since onlyS50 combinations are possible.
05320
In Eqs. ~25!–~27! the linear coefficients$Aka ,ma
% and

$Bkb ,mb
% are unknown quantities to be determined. T

implementation of the variational principle for linear vari
tional parameters leads to a generalized eigenvalues pro
whose solutionsEi are upper bounds to the true energy
genvalues of the three-body Schro¨dinger equation. It is pos-
sible to improve the estimates of the energies by includin
larger number of polynomials and channels in the CHH
sis. If N is the dimension of the basis set, the estimatesEi

N

will monotonically converge from above to the exact eige
values asN is increased. The pattern of convergence for
(00)1 two lowest-lying state of3He2-SF6 is shown in Table
II. An optimum choice of the nonlinear parameterb has been
adopted to improve the convergence rate.

IV. RESULTS

Table III collects the energies for the He2-SF6 trimers in
the uncorrelated, Jastrow, and CHH approaches. The co
lation function is set equal to unity in the uncorrelated c
culations, whereas it has been choosen of the McMillan@29#
form

f J~r !5expF2
1

2 S bs

r D 5G ~28!

in the variational case. Here,s52.556 Å andb is the only
nonlinear variational parameter. This type of correlation h
been widely adopted in variational studies of liquid heliu
since it provides an excellent description of the short-ran
properties of the correlated wave function. In fact, it giv
the exact short-range behavior for a 12-6 Lennard-Jo
atom-atom interaction. The correlation operator adopted
the CHH expansion has been described in the preceding
tion. In the CHH case we use different correlation functio
since a nonlinear parameterb is already present in the bas
functions@see Eq.~20!#. Therefore, employing the McMillan
form would imply a two non-linear parameters minimizatio
However, it has been checked that the use of the McMil
correlation in the CHH expansion produces binding energ
5-6
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TABLE III. Total, kinetic, and potential energies~in K! of the He2-SF6 trimers in the uncorrelated
variational and CHH approaches.b is the adimensional parameter of the McMillan correlation function.

3He-3He 4He-4He 3He-4He
(00)1 (10)2 (11)2 (0)1 (1)2 (0)1

b 1.16 1.17 1.06 1.16 1.17 1.16
E(unc) 837.18 1704.7 233.378 931.84 1899.2 881.18
E(var) 254.746 253.859 254.078 261.346 260.783 258.045
E(CHH) 254.797 253.871 254.161 261.442 260.843 258.102
T(unc) 23.696 24.390 24.390 21.892 22.440 22.794
T(var) 23.936 24.948 24.389 22.074 22.869 23.004
T(CHH) 24.301 25.587 24.553 22.668 23.713 23.528
VD-He

(unc) 278.368 278.288 278.288 283.018 282.967 280.693
VD-He

(var) 278.045 277.661 278.2134 282.761 282.469 280.401
VD-He

(CHH) 278.392 278.252 278.402 283.058 282.988 280.702
VHe-He

(unc) 891.85 1758.6 20.520 992.97 1959.7 939.08
VHe-He

(var) 20.638 21.146 20.254 20.660 21.183 20.649
VHe-He

(CHH) 20.705 21.206 20.312 21.052 21.569 20.908
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within 0.01% of those given in Table III, showing that th
converged results are to a large extent independent of
correlation function, provided the short range behavior is
equately described. In Table III, we also show the kineticT
and potentialV contributions to the energy, separating t
latter in its dopant-helium (D-He! and helium-helium~He-
He! parts.

The uncorrelated trimers are unbound in all states, w
the exception of the spatially antisymmetric (11)2 for
3He2-SF6. The orbital antisymmetry reduces the probabil
of configurations having the two3He atoms close to eac
other. Hence, the contribution of the strong He-He repuls
at short distances is drastically suppressed. In Ref.@14# an
expansion of the single-particle heliums andp orbitals in a
finite set of gaussian basis functions centered at the do
provided an energy of231.36 K for the (11)2 state in
3He2-SF6. This energy is higher than our uncorrelated es
mate, pointing to a lack of convergence in the Hartree-F
result in that reference.

The introduction of the Jastrow correlation bounds all
mers, as it suppresses the short-range helium-helium re
sion. TheL50, positive-parity states are the lowest-lyin
ones, the other states having small excitation energies, lo
than 1 K. The values of the variational parameter giving
minimum energies are also reported in Table III. T
b-values for the spatially symmetric trimers are close
those found in the Jastrow correlated studies of bosonic
uid 4He. As in fermionic liquid 3He, b is smaller for the
spatially antisymmetric (11)2 state, since both the correla
tion and the Pauli principle concur in depleting theVHe-He(r )
repulsion.

The converged CHH expansion provides slightly mo
binding ~at most about20.1 K) to the trimers. This fact is a
strong indication of the high efficiency of the simple Jastr
correlated wave function in these systems. The kinetic
dopant-helium potential energies do not vary much in go
from the uncorrelated to the variational and CHH estima
The helium-helium potential energy is, instead, strongly
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pendent on the wave-function. For the uncorrelated cases
repulsive core is overwhelmingly dominant, except in t
Pauli suppressed (11)2 state. The short-range structure
the correlated and CHH wave functions results in a sligh
attractive value of̂ VHe-He& ~from 20.3 K to 21.6 K).

For the mixed3He-4He-SF6 trimer we give only the en-
ergies of the lowest lying (0)1 state. The extension of th
CHH theory presented in Sec. III to this type of trimer
straightforward. All energies consistently sit in between t
lighter 3He2-SF6 and the heavier4He2-SF6 cases.

It is worth noting that the strong suppression of the m
tual He-He repulsion due to the correlations translates in
total binding energy which is very close to the sum of t
two dimer energies. The sum of the,50 energies of Table I
gives254.67, 261.13 and257.90 K, respectively, for the
combinations 3He2 , 4He2 and 3He-4He, which are very
close to the binding energies of the trimer. The practical
fect of the correlations is to reduce the He-He interaction
a small attraction of'0.1–0.2 K. This result is very differ-
ent from the findings of Ref.@14#, with total binding energies
smaller than ours by roughly a factor of 2.

We use a simple argument to estimate the accuracy of
infinite dopant mass approximation. From Table III we o
serve that, to a very good extent, the He2-SF6 trimer can be
considered as the superposition of two independent He-6
dimers. Accordingly, thea-b-trimer corrected kinetic energy
results in T(a,b)5TM5`

(a,b) @111/2(ma /M1mb /M )#. This
correction corresponds to a modification of the total trim
energy less than 1%.

Structural properties of the trimers are shown in Table
We give the root-mean-square~rms! dopant-helium distance
A^R2&, the rms helium-helium distanceA^r 12

2 &, and the av-
erage value of the cosine between the two D-He ra
^cos(u12)&, in the three approaches.A^R2& is not very sensi-
tive to the introduction of the He-He correlation. For a giv
trimer, it assumes essentially the same values in the diffe
states, reflecting the fact that theD-He wave functionsf1s
5-7
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TABLE IV. Root-mean-square dopant-helium,A^R2&, and helium-helium,A^r 12
2 &, radii and average

cosine between the two dopant-helium radii,^cos(u12&, in the uncorrelated, variational, and CHH approach
In the first two rows of the last column, the first~second! value gives theD-3He (D-4He) rms radius.
Distances in are Å .

3He-3He 4He-4He 3He-4He
(00)1 ~10!2 (11)2 ~0!1 ~1!2 ~0!1

A^R2& (unc) 4.646 4.648 4.648 4.568 4.570 4.646/4.568
A^R2& (var) 4.655 4.665 4.650 4.576 4.584 4.656/4.575
A^R2& (CHH) 4.645 4.645 4.653 4.568 4.569 4.646/4.567

A^r 12
2 & (unc) 6.570 5.382 7.580 6.461 5.288 6.516

A^r 12
2 & (var) 6.996 6.029 7.642 6.893 5.946 6.944

A^r 12
2 & (CHH) 6.845 5.903 7.476 6.351 5.363 6.533

^ cos(u12)&
(unc) 0 1/3 21/3 0 1/3 0

^ cos(u12)&
(var) 20.133 0.163 20.355 20.138 0.157 20.135

^ cos(u12)&
(CHH) 20.087 0.195 20.298 0.033 0.260 20.006
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andf1p are similar. Since the He-SF6 interaction is the same
for both helium isotopes, the smaller3He mass would pro-
duce a larger kinetic energy than4He. In order to minimize
the energy, this tendency is partially compensated by a la
value of A^RD-3He

2 & with respect toA^RD-4He
2 &. The He-He

average distance increases in going form the uncorrelate
the variational and CHH cases in the spatially symme
states, as a consequence of the introduction of the cor
tion, which suppresses short-range He-He configuratio
The effect is not very visible in the spatially antisymmet
state (11)2, these configurations being already largely inh
ited by the Pauli principle. We even find a small decrease
A^r 12

2 & in this state after solving the CHH equations. T
values of the uncorrelated average He-He cosine^ cos(u12)&
are immediately understood in terms of the structure
F (LS)p(1,2). Correlations change these values, mostly in
spatially symmetricS50 states. For instance, the avera
cosine corresponds tou1250.39p in the uncorrelated (10)2

state of the3He2-SF6 trimer, and tou1250.45(0.44)p for
the Jastrow~CHH! case. The change for the spatially an
symmetric state (11)2 is much less evident.

The one-body helium densities~OBD!

rg
(1)~r1!5

E dr2uCg~1,2!u2

E dr1E dr2uCg~1,2!u2

, ~29!

normalized as

E dr1rg
(1)~r1!51, ~30!

are shown in Fig. 3 for theL50 and 1 states of the
3He2-SF6 and 4He2-SF6 trimers, obtained in the uncorre
lated~symbols! and CHH~lines! approaches. The OBDs ar
very little affected by both the introduction of the He-H
correlation and by the optimization of theD-He wave func-
tion. Actually, they are similar to the dimer radial probabili
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densities shown in Fig. 1. As in the dimer case, the4He atom
is more localized than the3He one because of its large
mass. For a given trimer, the OBDs do not appreciably
pend on theL values, since the 1s and 1p D-He wave func-
tions are almost coincident.

Differences between the various approaches show u
the helium-helium two-body density~TBD!, defined as

rg
(2)~r1 ,r2!5

uCg~1,2!u2

E dr1E dr2uCg~1,2!u2

. ~31!

In Fig. 4 we display the center-of-mass integrated TBD,

rg
(2)~r12!5E dR12rg

(2)~r1 ,r2!, ~32!

normalized as

E dr12rg
(2)~r12!51, ~33!

where R125(m1r11m2r2)/(m11m2) is the He-He center-
of-mass coordinate andr125r12r2 is the He-He distance
rg

(2)(r12) gives the probability of the two helium atoms bein
at a distancer 12 apart.

The Pauli repulsion suppressesrg
(2)(r12) in the uncorre-

lated ~11! 2 state of the3He-SF6 trimer at short He-He dis-
tances, in contrast with the uncorrelated~00! 1 one. This be-
havior makes the former state bound and the latter unbou
We recall that the repulsive core of the He-He interaction
Rc;2.5 Å. The introduction of the He-He correlation d
pletes the TBD at smallr values in all the states, which
result, as a consequence, all bound. In both trimers the
lium atoms are more closely packed in the spatially symm
ric, L51 states, consistently with the values ofA^r 12

2 &
shown in Table IV. As expected, the spatially antisymmet
(11)2 state is the most diffuse. The uncorrelated long-ran
structures of the TBDs remain essentially untouched by
correlations.
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We finally show in Fig. 5 the TBD around the SF6 mol-
ecule in the isosceles configurations,rg

(2)(r 1 ,r 25r 1 ,r 12), for
the uncorrelated and CHH (00)1, (10)2, and (11)2 states of
3He2-SF6. All of the TBDs vanish at lowr 1 values because
of the strong D-He repulsion. The isotropic distributio
shown by the uncorrelated~00! 1 TBD disappears after in
troducing the He-He correlation, which suppresses the d
sity at low interhelium distances. As already noticed in F
4, the (11)2 TBD is the least affected by the correlation
since it displays a short range He-He repulsion due to
Pauli principle.

FIG. 3. Helium densities in theL50 ~upper panel! and L51
~lower panel! states of the He2-SF6 trimers. The symbols denote th
uncorrelated densities, the lines stand for the CHH ones. In
upper panel the circles and the dashed line stand for4He2-SF6

while the triangles and the dash-dotted line correspond
3He2-SF6. The same notation is used for theL51 4He2-SF6 case in
the lower panel. For theL51 3He2-SF6 trimer two states are re
ported, corresponding toS50 ~triangles and dotted line! andS51
~stars and dash-dotted line!. However, at the scale of the figure the
are hardly distinguishible.
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n-
.

e

V. SUMMARY AND CONCLUSIONS

The study of He2-SF6 trimers reveals the crucial role o
the dopant heavy molecule in binding these systems. In f
the SF6 molecule acts as a fixed center of force in which t
He atoms are moving. We have shown that the specific
tures of the SF6-He interaction gives a rotational band in th
excitation spectrum of the dimers. The different masses
the 3He and 4He explain in a qualitative way the particula
features of each dimer. The solution of the dimer Sch¨-
dinger equation provides the single-particle wave functio
needed to build the trial wave function to be used in t
variational study of the trimers.

The ground state energies of the three isotopic trime
namely 4He2-SF6 , 3He2-SF6, and 4He-3He-SF6, have been

e

o

FIG. 4. Helium-helium center-of-mass integrated two-body d
sities in the 3He2-SF6 ~upper panel! and 4He2-SF6 ~lower panel!
trimers in the uncorrelated and CHH approaches. The uncorrel
(10)2 two-body density for3He2-SF6 is very close to the (00)1

one and it is not shown in the figure. The same holds for the
correlated (1)2 TBD for 4He2-SF6.
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FIG. 5. Helium-helium two-body densities in the isosceles configurations,rg
(2)(r 1 ,r 25r 1 ,r 12), for the 3He2-SF6 trimer in the uncorre-

lated (00)1 ~a!, (10)2 ~c! and (11)2 ~e! states, and in the CHH (00)1 ~b!, (10)2 ~d!, and (11)2 ~f! states. Distances are in Å and densiti
in Å26.
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estimated employing a Jastrow correlated wave-func
built up as the product of the dimer wave functions time
two-body correlation function of the McMillan type betwee
the He atoms, having a single variational parameter. The
curacy of the variational approach has been tested agains
correlated hyperspherical harmonics expansion method.
have found that the variational results are in excellent ag
ment with the CHH ones at convergence.

The role of the Jastrow correlation is crucial in order
overcome the strong repulsion between the He atoms. A
ally the uncorrelated variational approach does not bind
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trimers, except the3He2-SF6 one in the (11)2 configuration.
The reason is that its wave function is spatially antisymm
ric, and therefore the two3He atoms are kept already apa
by the Pauli repulsion. We stress that the preferred spa
configuration assumed by the two He atoms is such that t
take advantage from the mutual attraction, suppressing
much as possible, the short-range repulsion. As a result,
optimal configuration is not a linear one, with the SF6 mol-
ecule in the middle of the two He atoms. Instead, the
atoms are closer, and their position vectors with respec
the SF6 molecule form an angle between.70o and .86o,
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depending on the particular state. The practical effect of
correlations is that the binding energy of the trimer is sligh
larger than the sum of the binging energies of the co
sponding dimers.

The He-He correlation does not particularly affect the h
lium probability densities in the trimers, which are similar
those in the dimer. In contrast, the correlation is essentia
inverting the energy hierarchy between the spatially symm
ric and antisymmetric configurations. In fact, in the cor
lated 3He2-SF6 trimer the (00)1 state, symmetric in spac
with both He atoms in the 1s state andS50, is more bound
than the (11)2 state, antisymmetric in space with one ato
in 1s and the other in the 1p state andS51 ~aligned spins!.
The uncorrelated approach does not even bind the (01

trimer, whereas the (11)2 one is still bound.
The good agreement between the variational and the C

estimates for the trimers makes us confident that med
size He-doped clusters can be accurately described by m
of a correlated variational wave function. This trial wa
, J

.

-

y,

em
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function would be built up from the single-particle wav
functions obtained after solving the dimer case, and from
appropriate Jastrow factor to properly take into acco
He-He correlations. In this respect, variational Monte Ca
and Fermi hypernetted chain techniques seem to be the
likely candidates to microscopically address the study
medium-heavy doped-helium nanodroplets.
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Köhler, and M. Stoll, Phys. Rev. Lett.85, 2284~2001!.
@5# A.R. Janzen and R.A. Aziz, J. Chem. Phys.103, 9626~1995!.
@6# M. Barranco, J. Navarro, and A. Poves, Phys. Rev. Lett.78,

4729 ~1997!.
@7# R. Guardiola and J. Navarro, Phys. Rev. Lett.84, 1144~2000!.
@8# R. Guardiola, Phys. Rev. B62, 3416~2000!.
@9# R.A. Aziz, F.R. McCourt, and C.C.K. Wong, Mol. Phys.61,

1487 ~1987!.
@10# See, e.g., J. P. Toennies, inMicroscopic Approaches to Quan

tum Liquids in Confined Geometries, edited by E. Krotscheck
and J. Navarro~World Scientific, Singapore, 2002!.

@11# Y. Kwong, P.Huang.M.H. Pavel, D. Blume, and K.B. Whale
J. Chem. Phys.113, 6469~2000!.

@12# M. Barranco, M. Pi, S.M. Gatica, E.S. Herna´ndez, and J. Na-
varro, Phys. Rev. B56, 8997~1997!.

@13# F. Garcias, Ll. Serra, M. Casas, and M. Barranco, J. Ch
Phys.108, 9102~1998!.

@14# P. Jungwirth and A.I. Krylov, J. Chem. Phys.115, 10 214
.

.

~2001!.
@15# R.T. Pack, E. Piper, G.A. Pfeffer, and J.P. Toennies, J. Ch

Phys.80, 4940~1984!.
@16# W.L. Taylor and J.J. Hurly, J. Chem. Phys.98, 2291~1993!.
@17# A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A551, 241

~1993!.
@18# A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A577, 511

~1994!; M. Viviani, A. Kievsky, and S. Rosati, Few-Body Sys
18, 25 ~1995!.

@19# S.A. Chin, and E. Krotscheck, Phys. Rev. B45, 852 ~1992!.
@20# R.N. Bartlett and K.B. Whaley, Phys. Rev. A47, 4082~1993!.
@21# M. Lewerenz, J. Chem. Phys.106, 4596~1997!.
@22# V.R. Pandharipande, S.C. Pieper, and R.B. Wiringa, Phys. R

B 34, 4571~1986!.
@23# S.A. Chin and E. Krotscheck, Phys. Rev. B52, 10 405~1995!.
@24# R. Guardiola, J. Navarro, and M. Portesi, Phys. Rev. B63,

224519~2001!.
@25# S. Stringari, and J. Treiner, J. Chem. Phys.87, 5021~1987!.
@26# F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and

Treiner, Phys. Rev. B52, 1193~1995!.
@27# See, e.g., J. Boronat, inMicroscopic Approaches to Quantum

Liquids in Confined Geometries~Ref. @10#!.
@28# P. Barletta, and A. Kievsky, Phys. Rev. A64, 042514~2001!.
@29# W.L. McMillan, Phys. Rev.138, 442 ~1965!.
5-11


