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Microscopic study of He,-SF; trimers
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The He-SF; trimers, in their different He isotopic combinations, are studied in the framework of both the
correlated Jastrow approach and the correlated hyperspherical harrf@Hid$ expansion method. The en-
ergetics and structure of the He-glimers are analyzed, and the existence of a characteristic rotational band
in the excitation spectrum is discussed, as well as the isotopic differences. The binding energies and the spatial
properties of the trimers, in their ground and lowest lying excited states, obtained by the Jastrow ansatz are in
excellent agreement with the results of the converged CHH expansion. The introduction of the He-He corre-
lation makes all trimers bound by largely suppressing the short range He-He repulsion. The structural proper-
ties of the trimers are qualitatively explained in terms of the shape of the interactions, Pauli principle, and
masses of the constituents.
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[. INTRODUCTION rare gases and closed-shell molecules such as HF, OCS, or
SF; are located in the bulk of the clustgt0]. Doped *He
Helium systems are dominated by quantum effects andlusters have been extensively studied in the past by a vari-
remain liquid down to zero temperature. This is a conseety of methods, ranging from diffusion and path-integral
quence of both the small atomic mass and the weak atonguantum monte carlo methods to two-fluid models. A com-
atom interaction, which is the weakest among the rare-gagrehensive view of this subject is found in REE1], giving
atoms. Helium clusters remain liquid under all conditions ofaccount of a microscopic basis of the free rotation of a heavy
formation and are very weakly bound systems. molecule in a*He nanodroplet, consistent with the occurring
Small helium clusters have been detected by diffraction obosonic superfluidity at the attained temperatures. This phe-
a helium nozzle beam by a transmission grafihg Using a nomenon is not expected to take place in dopeé clusters,
grating of 200 nm period, conclusive evidence of the exis-because of the fermionic nature of the atoms, unless very low
tence of the dimefHe, has been establishg#l]. The exis- temperaturesbelow a few mK are reached. Even more in-
tence of “*He, was previously reportef3] using electron- teresting, from both the theoretical and experimental points
impact ionization techniques. Diffraction experiments from aof view, are mixed doped clusters dHe and “He atoms.
100-nm-period grating has led to the determination of a moThe status of the theory in these last cases is far behind that
lecular bond length of 544 A, out of which a binding en- in the “He droplets. The most updated studies’®sfe and
ergy of 1.1-0.2+0.3 mK has been deduc@d]. This energy mixed *He-*He clusters, either pure or doped, employ a
is in good agreement with the values obtained by direct infinite-range density-functional theof{2,13].
tegration of the Schidinger equation using modern He-He  In this work we study the properties of a trimer formed by
interactions[5]. Theoretical calculations indicate that any two helium atoms plus a heavy dopant. The dopant molecule
number of*He atoms form a self-bound system. In contrast,behaves as an attractive center binding a certain number of
a substantially larger number 3He atoms is necessary for otherwise unboundHe atoms. This fact has been used in
self-binding, as a consequence of the smaflele atomic  Ref. [14] to set an analogy between electrons bound by an
mass and its fermionic nature. The required minimum numatomic nucleus andHe atoms bound by a dopant species.
ber has been estimated to be 29 atoms, using a densitpystems formed by twoHe atoms plus a molecule have
functional plus configuration-interaction technigues to solvebeen studied employing the usual quantum chemistry ma-
the many-body problerd6], or 34—35 atoms, using an accu- chinery.
rate variational wave functiofi7,8] with the HFD-BHE) Helium droplets doped with the §fnolecule have been
Aziz interaction[9]. It is worth recalling that a theoretical widely investigated, also in view of the fact that the interac-
description of pure*He clusters, either based on ab initio tion He-SF is well established15,1§. In this work we use
calculations or employing Green-function or diffusion montethe spherically averaged interaction of Taylor and H{l§]
carlo techniques, is still missing. between the helium atom and theg3Rolecule, and the Aziz
Doping a helium cluster with atomic or molecular impu- HFD-B(HE) helium-helium interactiofi9]. We first perform
rities constitutes a useful probe of the structural and enera variational study of the3He,-SF;, “He,-SF;, and
getic properties of the cluster itself. It has been proved thatHe-*He-SK; trimers using a Jastrow correlated wave func-
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TABLE |. Observables of the bound states of the He-8fners. Energies are in K and distances in A.

%He “He

4 €o¢ (V) (R) \/<_R27 €1¢ €o¢ (V) (R) \/<_R27 €1¢

0 —27.336 —39.184 4.622 4.646 —1.940 —30.563 —41.509 4.549 4568 —4.292
1 —26.561 —39.104 4.626 4.650 —1.541 —29.964 —41.459 4552 4.571 —3.920
2 —25.016 —38.939 4.635 4.659 —0.775 -—28.767 —41.355 4557 4577 —3.184
3 —22.707 —38.677 4.648 4.673 —26.976 —41.193 4566 4.585 —2.105
4 —19.647 —38.298 4.667 4.693 —24.598 —40.963 4.577 4597 —-0.721
5 —15.854 —37.771 4.693 4.720 —21.641 —40.653 4592 4.613

6 —11.354 —37.047 4.728 4.758 —18.117 —40.243 4.612 4.634

7 —6.183 —36.041 4.776 4.809 —14.040 —-39.707 4.637 4.660

8 —0.394 —34.579 4.848 4.887 —9.431 —39.001 4.669 4.693

9 —4.318 —38.058 4.711 4.738

tion. Then the correlated hyperspherical harmonricsiH) interaction determined in Ref16]. A set of energies and
expansion method17] is employed and its outcomes are orbitals characterized by the quantum numberé)(is thus
used as benchmarks for the variational calculations. Thebtained.

CHH expansion has proved to be a powerful technique to The He-Sk interaction has an attractive well strong
study three- and four-body strongly interacting systems. Inenough to sustain 12 and 15 bound states for isotdpts
light atomic nuclei its accuracy is comparable wiind in - and 4He, respectively. In Table | some observables of the

some cases even better thather popular approaches, such gimers are displayed. The calculations have been done in the

as the Faddeev, Faddeev-Yakubowsky and, quantum monfg,s of infinite mass of the SEmolecule. The most striking

carlo oneq18]. Besides accurately studying the ground and]eature of the energy spectra is that the first se@ene

first excited states of the trimers, comparing the variationa evels correspond to nodeless0 states. Note that for each
and CHH results may provide essential clues for the con:

struction of a reliable variational wave function to be used in'S_0t0pe the _expectanon_valuéa) and V(R?) are not very
heavier doped nanodroplets. different, neither fgr a g|venf-sta'te nor fo_r different val—_

The plan of this paper is the following. In Sec. Il we study Ues- The expectation valy¥/) neither varies too much, in-
the dimers formed by a single helium atom and the, SF creasing by~10% in going from thef=0 to the {=8,9
molecule and en"ghten some aspects of their excitation Speé.ta.tes. These results are an indication that the wave functions
trum. In Sec. lll we consider the trimers by the Jastrowshow a well-defined peak in nearly the same region, as a
variational and CHH approaches. Results for the energeticgonsequence of the characteristics of the Hg-8teraction.
and structure of the trimers are given and discussed in Sec. To first order in the mass ratio, the correction to the infi-
IV. Finally, Sec. V provides the conclusions and the futurenite dopant mass approximation modifies the kinetic energy
perspectives of this work. asT@=T{" _(1+m,/M), with M being the dopant mass.
Accordingly, the finite mass system results less bound by
A(E")=T(,\,|“):w(ma/M). The mass ratiosn,/M are 0.0207
and 0.0274 for*He and *He, respectively, considering the

Prior to the study of trimers made by two helium atoms 32S isotope. So, the binding energy corrections A@)
and a dopant species, it is convenient to analyze the dimer ir-0.245 K andA”=0.300 K, both being about 1% of the
some details. To fix the notation for later discussions, weotal energy. An exact finite mass calculation confirms this
write here the Schudinger equation for the relative motion estimate, providings=0.242 K andA#)=0.296 K.
of a helium atom and a dopaB, The He-Sk interaction is displayed in Fig. 1. It is

strongly repulsive at distances shorter thaB.8 A, and at-
ho@ne(r) =€nedne(r) (1) tractive beyond. The attractive part is mostly concentrated in
a narrow region around 4.2 A, immediately after the repul-
with sive core. This implies that the He atom locates relatively far
away from the potential origin, so that the centrifugal term
2 entering the Schidinger equation can be considered as a
V2+Viyen(r), 2) perturbation. Two consequences can be deduced from this
2m, observation. First, the radial distributions are very peaked in
the same narrow region, independently on the value of the
wherem,, (with «=3,4) is the reduced mass of tli¢le-D angular momentunt, as it is shown in Fig. 1 for three
pair, andV.p(r) is the helium-dopant interaction,being  states, corresponding #=0 and 4 for both isotopes, and
the relative coordinate. We have numerically solved thishe nodeless bound states with the highest excitation energy,
equation for the dopant SF using the spherically averaged namely,¢ =8 for He and 9 for*He. The distributions are

Il. THE He-SF¢ DIMER
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FIG. 1. Dimer radial probability densities®fle-SF, upper rr
panel; “*He-Sk;, middle panel; He-SFinteraction, lower pangl r /d b
The probability densities correspond to the quantum numbers ,’ .
=0 (solid line), =4 (dashed ling and¢=8 and 9(dash-dotted 5| '/ |
line) for *He and*He, respectively. Distances are in A, potential in ‘.
K, and densities in AS. RS
- J
concentrated in the same region, and those corresponding t "f*
¢£=0 and 4 are barely distinguishable. Second, the excitatior 05‘ L 210 L 4!0 L <an I 8I0 —

energies are closely proportional £¢¢ +1), i.e., they fol-
low a rotational pattern. Figure 2 depicts the differences
(eg¢—€go) in functions of £(£+1) (squares for*He-SkK FIG. 2. Differencesey —eg (in K) vs €(¢+1) for the He-Sk
and stars for*He-SF;), together with the linear fits to the dimers. Squares correspond to thee-SF; results and stars to the
energy differences. The slopes provide tive O rotational  “He-SK ones. The lines are linear fits to the numerical values.
constantsC$ . From the fits we obtai€$)=0.376 K and
c{"=0.294 K, in good agreement with the rough estimate 2 .2 2
#212m(R?), where(R?) is the mean square dopant-Helium  H(1,2=— >, V24> Vpue() + Vierd F12),

=1

distance. A similar behavior is found for the=1 excited =1 2m,,

states, whose rotational constants &@§)=0.194 K and (€)
Cc{Y=0.179 K. The ratio of the rotational constants of the | _
dimers with either isotope are of course in the inverse ratidVith @i=3,4. Vp.i(r) andVyedr) are the dopant-helium

of masses. Note that the larger mass of thie atom trans- @nd helium-helium interaction potentials, respectivelyis
lates into a larger binding. Both the decrease of the kineti¢he coordinate of theth helium atom with respect to the
energy and the increase of the attraction contribute to théentral molecule and,, is the helium-helium relative coor-
increment of the binding energy for tHéde-Sk;, dimer. The  dinate.

stronger localization of théHe atom is visualized by the The ground and excited states properties of the trimers
peak of the radial probability density shown in Fig. 1, whichcan be obtained either by an exact solution of the Schro

I(+1)

is slightly higher for the*He atom. dinger equation,
It is worth stressing that the observed rotational spectrum
is a direct consequence of the shape of the HgiBterac- H(1,2)\If1(1,2): Eyqf;(l,Z), (4)

tion, whose attractive well, having a depthsf-57 K, al-

lows for 12 or 15 bound states. Taking the lighter Ne as &y py some approximate estimate of their wave functions.

dopant, we have found that only three bound states exist, there - labels the generic trimer state, whose wave function
depth of the attractive well being: —20 K. Moreover, the g wT(1,2)
A )

binding energies are very small, and the probability distribu-

. ; The Schrdinger equation for clusters dHe atoms may
tions are extended over a large region.

be exactly solved for the ground state by quantum Monte
Carlo (QMC) methods[19-21]. Other approaches, such as
variational Monte Carlo[22—-24 with Jastrow correlated

In the limit of infinite mass of the dopant molecule, hencewave functions or density-functional theori@FT) [25,26],
considered as a fixed center, the Hamiltonian of the-6ig ~ provide a less accurate description of the clusters. However,
trimers is they are generally more flexible than QMC.

lll. THE He ,-SFg TRIMERS: THEORY
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The presence of more than twiHe atoms makes the whereh, is Hamiltonian(2) of the dimer and
exact solution of the Schdinger equation much more diffi-
cult, because of the notorious sign probl2i] associated to Ho(1,2®,(1,2)=(e, te, )P,(1,2), (10)
their fermionic nature. As a consequence, only DFT based
studies of doped®He clusters are available in literature where the two sets of dimer quantum numbers,and v,
[12,13. The most updated study of thiéle,-SF; trimer has  are those taken to build up the totgitrimer state.
been done within the Hartree-Fock approximation, not con- The total energy of the trimer in the state is
sidering the strong He-He correlations induced Wy, e
[14]. (¥IIH(1,2|¥7)
In this section we will first present a variational approach y:W' (11)
based on a Jastrow correlated wave function. Then we will La
apply the CHH expansion methoti7] to further improve the

description of the doped trimers. Since[Vo.e, f5]=0, the energy resuits in

h? <q)y|vif.](r12)'VifJ(r12)|(D7>

A. Variati | h =
ariational approac- - Ey e,/1+ eyz+i21 2mai <\PJ7|\PJ7>
The Jastrow correlated wave function of the trimer for the
vy state is given by N (D,/f5(r12Viendrid fo(ri) @) (12
J J .
W12 =D (1,95 1), () (w3193

where®(1,2) is an independent partiolt?) wave function This equation will be used to estimate the variational energy
of the two helium atoms in the dopant field having the samdf the trimer and to optimize the choice of the correlation
sety of quantum numbers. The correlation function betweerf@CtOr-

the two atomsf(r), is assumed to depend only on the in-

teratomic distance and takes into account the modification to B. CHH approach

the IP wave function mainly due to the He-He interaction. |4 order to implement the CHH method for a system of
The optimalf,(r) is variationally fixed by minimizing the 166 atoms of masses , in positionsr; , it is convenient to

total energy of the stateb,(1,2) is built as an appropriate jnyoquce the three sets(y;) of Jacobi coordinates:
combination of the dimer He-Fwave functions. For in-

stance, using thel(S)™ notation L being the IP orbital an- mim;
gular momentums the total spin, andr the parity of the Xj=
helium paip, the (00)"IP wave function for the’He,-SF;

trimer is taken as

r—r,
mj+mk( i~

mi(mj+mk)/ m]-rj-l—mkrk)

D00+ (1,2 =E0(1,2) 151 ) bs(r2), () Y= Nimmrmd T T m o m, (13

where E(1,2) is the spin-singlet wave function of the |n the fixed-center limit fi;=) the positionr coincides
3He-*He pair andg,(r) is the 1s (n=0 and{ =0) solution i i
p 1s with the molecular center of mass and, for two equal-mass

of the *He-Sk; dimer Schidinger equatior(1). atoms (m;=m,=m), the Jacobi coordinates, after dividing
In an analogous way, the (10)and (11) IP wave func- by m'2 can be reduced to
tions are
1 \f (r1=r2)
= X1=T2, Xo=—T1, X3= \/5(r1=r2),
®(10)-(1,2=E (1,2 5[ $1(r1) b1p(r2) S
V2
+ r r 7 1
F10(l)P1elr2)] " Yi=T1, Y2=T2, Y3=— \/;(r1+r2)- (14
and
1 The total wave function' | 5~(1,2) can be expressed as
Doy (1,2)=5,(1,2) —— r r a sum of three Faddeev-like amplitudds], each of which
ay-(12 == )\/5[%5( D bup(r2) explicitly depends upon a different Jacobi set:
_ , 8
D1p(r1) d14(r2)] (8) \P(LS)’T(]-!Z):lr//&)s)ﬂ'(xl’yl)—’_‘//Ei)s)‘ﬂ(XZIyZ)
where = 1(1,2) is the spin-triplet pair wave function. c) 15
The total Hamiltonian(3) can be written as ViLg=(Xs:Ya)- (19
_ The amplitudes are then expanded into channels, labeled by
H(1,2)=hg(1)+hg(2)+ Vye. ! . )
(1.9=No(1)+ho(2)+ Ve rd 112 the partial angular momentg ; and{, ; , associated witkx;

= H0(1,2)+VHe_Hér12), (9) and yi y I’eSpeCtively:
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. 2
M xy)=Eg12 > V0.0, x,V EAREIRVE ~& | h(r)=
Pg=(Xi,Yi)=Es( ,)e xiCyi(Xi,Yi) Z,uV +VH(r)+re (r)=0, (22)
X,i oty
KLY e (00 Yey (i) Im (16) where 1 is the reduced mass of the considered two-body

) ) ) - system, and the pseudopotentiad™ ¢ is introduced to ad-
and’
whereY  are ordinary spherical harmonics, Exirlyi #'ust the asymptotic behavior of the correlation function in
is a two-dimensional function depending upon the moduli ofg;ch a way thah(r—=)—1. The parameter§ and\ are
the Jacobi vectors. As a result, the parity of the state is gi"eBptimized for each of the different cases ;Sffe, “He-*He
by £+ €y, even(odd for positive(neg(eil;[ive) parity. and *He-*He. For the helium-dopant correlatioh€g), we

Following Ref.[28], each amplitudeb™ ¢, ;,€,; is ex-  take u=mye, andV* is a modified Sg-He potential. In
panded in terms of a correlated hyperspherical harmonicfact, in order to build a nodeless correlation function, it is
basis set. After introducing the hyperspherical coordinatesiecessary to reduce the attractive part of the helium-dopant

(p, ), associated with the Jacobi set, interaction. The repulsive part, on the other hand, is kept
s o o a2 unaltered. In thé*He*He case k="f;, u=mayf2), the cor-
PE=X1ITYI=XoT Yo =X31Ys3, (17 relation function has been obtained as in ReX8]. The
3He-*He pair does not support a bound state, so the correla-
X =p COS¢; , (18 tion function has been obtained simply as the solution of the
) zero-energy Schainger equation\{* =Ve.pe @andA =0 in
yi=psing;, 19 gq.22.

. . In order to work with basis elements of defined symmetry
the CHH basis elements, having guantum numbers)t under the permutation operatbl;, (according to the Pauli

and corresponding to the set of Jacobi coordinates labeled by~ ~. . . . i
i. are defined as follows: kﬁ’rmmpe) we take proper symmetric or antisymmetric com

binations of the basis elements witlks 1 and 2:
MK, €y 11y =Es(L2F;(ry.r2.r1p% " YiLH(z)
|m,k,€xyl,€yyl;v>=|m,k,€xvl,€y’1;1>

(2)
z Cirly
Xexp( - 5) P () (DMK, G, by132), (29
X[fo,a(xi)ny,i(yi)]LM' (20 where v (=s,a) labels symmetric or antisymmetric states,
respectively, andj=0, 1 is chosen according to the values
where of ¢, andS.
@by gy PR The expansion of the total wave function in terms of CHH
Py (d’)_fo’fyvk(COS‘ﬁ) K(sing)™ states with well-defined permutation symmetry results in
O+ 1246, + 1
x Py O cog2 )]
Vi gr= A Ka Mg, €y 1,6y 15
is a normalized hypherspherical polynomig[y " *#<**?is -9 €x,1§v;y.l k;,r:na aomelKarMa bt by.ai0)
a Jacobi polynomial,.{> are associated Laguerre polynomi-
als, andz= Bp, with 8 a nonlinear variational parameter. + Z E Bk, .m |kb!mbi€x,31€y,3;3>-
The other ingredient in the CHH basis elements is the bxabyskpmy 0P
correlation factor(rq,r,,r¢,). Due to the strongly repul- (24)

sive core of the interatomic potentials, it is convenient to
take F; as a product of pairwise Jastrow-like correlation

functions, The sum over the partial angular momeiita ¢, , although

constrained by the values of the total angular momenityum
Fy(ry,r,r12=9(r)g(r,)f;(ry). (21  the parity, and by symmetry considerations, runs over an

infinite number of channels. However, in practice only the
The correlation functions mainly describe the short-range belower channels are included, since the higher the angular
havior of the wave function as the two helium atoms aremomentum the lesser the contribution to the wave function.
close to each other or to the dopant. The polynomial part oMoreover, due to the presence of both the correlation factors
the CHH expansion is expected to reproduce the mid- anéf; and the amplitude expansion, an infinite number of chan-
long-range configurations. Therefore, it is preferable tonels is automatically included, though in a nonflexible way.
choose correlation functions which behave in the outer por- In the description of the L(S)”"=(00)",(10)",(11)"
tion of the Hilbert space as smoothly as possible, in order tstates for He,-SF;, we have retained only the lowest
avoid potentially deleterious biasing of the polynomial ex-angular-momentum channels, that #§,,=¢, =€, 3={y 3

pansion. =0 for (00)*, €4;=4¢43=0 and{,,;=¢,3=1 for (10),
Suitable correlation functions to be used in Egl) are and {,,={,3=1, and{,,=¢,3=0 for (00) . The CHH
obtained by solving the two-body Scliiager equation: wave functions for these three states are

053205-5
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TABLE II. Convergence pattern ! for the two lowest-lying states of the (00)and in*He,-SF; as
a function of the numbersng ,n3) of Jacobi polynomials in expansid@5) for the amplitudeg1,2) and 3,
respectively. The number of Laguerre polynomials is independently optimized for each case. The variational

parameteis is fixed to 1.59 A. Energies are in K.

(00)* Ground state

(00) First excited state

na\n, 1 2 3 4 1 2 3
0 54269 —54.652 —54.656 —54.656
1 ~54.381 —54.743 —54.746 54746 —51.652 —51.674 —51.674
2 ~54.397 —54.777 —54.780 —54.780 —52.384 52416 —52.416
3 ~54.413 —54.789 —54.792 —54.792 52411 52439 —52.439
4 ~54.414  —54.792 —54.795 —54.795 —52.425 —52.454 —52.454
5 ~54.416 —54.793 —54.796 —54.796 —52.426 —52.455 —52.455
6 ~54.416 —54.793 —54.796 —54.796 —52.427 —52.456 —52.456
7 54417 —54.793 —54.796 —54.797 —52.427 —52.457 —52.457
8 —54.417 —54.793 —54.796 —54.797 —52.427 —52.457 —52.457

W 00yt (1,2 =Eo(1,2F e %2

X| 2 A m L (2P cos2py)

Kq .My

+ 2 By m L ()P cos 2p)
b

(29

W (10-(1,2= :0(1,2)FJe‘Z’2[ Em A, ,mal-%w?(z)

X[ psing:PY2 4 cos2p:) Y1 (V1)

+p cosp PR AR — cos 261) YY'(Xq)]

+ Bkb,mbLET?g(Z)pSin¢3pE:}2,1/2

kb ,mb

X (cos 2¢3>Y¥<93>}, (26)

“’(11>(172>=51(1,2)FjeUZ{kE Aka,maLET?;(z)

a

X[P*¥ cos 21)p cospy YY'(X1)

—p sinq&lPﬁf'g’z( —cos 241)Y}'(y1)]

5 12,312
+k2n By, m,L 5 (2)p COSp3Py
b:'"'b

X (C0S 23) Y} (X3) { (27)

wherek,=0 andk,=1. However, only even values &
are allowed in¥ gp)+. In “He,-SF; we just studyW (op)+ and
W (10)- States, since onl$=0 combinations are possible.

In Egs. (25-(27) the linear coefficients{Akayma} and
{Bkb'mb} are unknown quantities to be determined. The

implementation of the variational principle for linear varia-
tional parameters leads to a generalized eigenvalues problem
whose solution€E; are upper bounds to the true energy ei-
genvalues of the three-body ScHiager equation. It is pos-
sible to improve the estimates of the energies by including a
larger number of polynomials and channels in the CHH ba-
sis. If N is the dimension of the basis set, the estim&fs
will monotonically converge from above to the exact eigen-
values asN is increased. The pattern of convergence for the
(00)" two lowest-lying state ofHe,-SF; is shown in Table

II. An optimum choice of the nonlinear paramefghas been
adopted to improve the convergence rate.

IV. RESULTS

Table Il collects the energies for the H8F; trimers in
the uncorrelated, Jastrow, and CHH approaches. The corre-
lation function is set equal to unity in the uncorrelated cal-
culations, whereas it has been choosen of the McM[I28}

form
¢ B 1/bo\®
Jr)=ex 57

in the variational case. Here;=2.556 A andb is the only
nonlinear variational parameter. This type of correlation has
been widely adopted in variational studies of liquid helium
since it provides an excellent description of the short-range
properties of the correlated wave function. In fact, it gives
the exact short-range behavior for a 12-6 Lennard-Jones
atom-atom interaction. The correlation operator adopted in
the CHH expansion has been described in the preceding sec-
tion. In the CHH case we use different correlation functions
since a nonlinear paramet@ris already present in the basis
functions[see Eq(20)]. Therefore, employing the McMillan
form would imply a two non-linear parameters minimization.
However, it has been checked that the use of the McMillan
correlation in the CHH expansion produces binding energies

(28)
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TABLE Ill. Total, kinetic, and potential energien K) of the He-SFK; trimers in the uncorrelated,
variational and CHH approachdsis the adimensional parameter of the McMillan correlation function.

*He-*He “He-*He *He-*He
(00)" (10)~ (11)” ON (1)~ (0)*

b 1.16 1.17 1.06 1.16 1.17 1.16
E(uno 837.18 1704.7 —33.378 931.84 1899.2 881.18
E(an —54.746 —53.859 —54.078 —61.346 —60.783 —58.045
E(CHA) —54.797 —53.871 —54.161 —61.442 —60.843 —58.102
TN 23.696 24.390 24.390 21.892 22.440 22.794
T(wan 23.936 24.948 24.389 22.074 22.869 23.004
T(CHA) 24.301 25.587 24.553 22.668 23.713 23.528
vno —78.368 —78.288 —78.288 —-83.018 —82.967 —80.693
vivan —78.045 —77.661 —78.2134 —82.761 —82.469 —80.401
vEh —78.392 —78.252 —78.402 —83.058 —82.988 —80.702
vino 891.85 1758.6 20.520 992.97 1959.7 939.08
viran, -0.638 —1.146 —0.254 —0.660 —1.183 —0.649
VEH —0.705 -1.206 -0.312 -1.052 —1.569 —0.908

within 0.01% of those given in Table Ill, showing that the pendent on the wave-function. For the uncorrelated cases the

converged results are to a large extent independent of thepulsive core is overwhelmingly dominant, except in the

correlation function, provided the short range behavior is adPauli suppressed (11)state. The short-range structure of

equately described. In Table Ill, we also show the kin&tic the correlated and CHH wave functions results in a slightly

and potentialV contributions to the energy, separating the gttractive value of Vie.ye (from —0.3 K to — 1.6 K).

latter in its dOpant-heliUm[Q-HE) and he”um-heliun’(He- For the mixedSHe_4He_S|:6 trimer we give on|y the en-

He) parts. _ _ _ergies of the lowest lying (0) state. The extension of the
The uncorrelated trimers are unbound in all states, with- theory presented in Sec. Ill to this type of trimer is

tshe exception of the spatially antisymmetric (11for — gyaightforward. All energies consistently sit in between the
He,-SFK;. The orbital antisymmetry reduces the probablllty“ghter 3He,-SF, and the heaviefHe,-SF, cases.

of configurations having the twdHe atoms close to each It is worth noting that the strong suppression of the mu-

g:hser:.ortieé}gférrgsscgnglrzg::gg|Of;Ee Srtéggg dHEI!r;HEEe}lerff Z%IS'OQUaI He-He repulsion due to the correlations translates into a
Y supp ) total binding energy which is very close to the sum of the

expansion of the single-particle heliusrand p orbitals in a di ies. Th -0 . f Table |
finite set of gaussian basis functions centered at the dopaﬂ@'o Imer energies. The sum of tife= energies ot fable
gives —54.67, —61.13 and—57.90 K, respectively, for the

provided an energy of-31.36 K for the (11) state in o m " 4 .
3He,-SF,. This energy is higher than our uncorrelated esti-Compinations*He,, “He, and “He-"He, which are very
mate, pointing to a lack of convergence in the Hartree-Focl€!0Se to the binding energies of the trimer. The practical ef-
result in that reference. fect of the correlations is to reduce the He-He interaction to
The introduction of the Jastrow correlation bounds all tri-& Small attraction 0f=0.1-0.2 K. This result is very differ-
mers, as it suppresses the short-range helium-helium repd#nt from the findings of Refl14], with total binding energies
sion. TheL=0, positive-parity states are the lowest-lying STaller than ours by roughly a factor of 2.
ones, the other states having small excitation energies, lower e US€ a simple argument to estimate the accuracy of the
than 1 K. The values of the variational parameter giving thenfinité dopant mass approximation. From Table Ill we ob-
minimum energies are also reported in Table Ill. TheServe that, to a very good extent, the,H&F; trimer can be
b-values for the spatially symmetric trimers are close t0c9n5|dered as _the superposition of two mdepenqent He-SF
those found in the Jastrow correlated studies of bosonic ligdimers. Accordingly, thex-g-trimer corrected kinetic energy
uid “He. As in fermionic liquid 3He, b is smaller for the ~results in T@A=T{A1+1/2(m,/M+mg/M)]. This
spatially antisymmetric (11) state, since both the correla- correction corresponds to a modification of the total trimer
tion and the Pauli principle concur in depleting Mg, {r)  €nergy less than 1%.
repulsion. Structural properties of the trimers are shown in Table IV.
The converged CHH expansion provides slightly moreWe give the root-mean-squafems) dopant-helium distance
binding (at most about-0.1 K) to the trimers. This factis a V(R?), the rms helium-helium distancg(rZ,), and the av-
strong indication of the high efficiency of the simple Jastrowerage value of the cosine between the two D-He radii,
correlated wave function in these systems. The kinetic andcos(@,»)), in the three approacheé(_RZS is not very sensi-
dopant-helium potential energies do not vary much in goingdive to the introduction of the He-He correlation. For a given
from the uncorrelated to the variational and CHH estimatestrimer, it assumes essentially the same values in the different
The helium-helium potential energy is, instead, strongly destates, reflecting the fact that tlleHe wave functionspg
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TABLE IV. Root-mean-square dopant-heliu{R?), and helium-helium./(rZ,), radii and average
cosine between the two dopant-helium ra¢tips@,,), in the uncorrelated, variational, and CHH approaches.
In the first two rows of the last column, the fir&tecond value gives theD-2He (D-*He) rms radius.
Distances in are A .

SHeHe “He*He SHe*He

(00)* (10~ (11)” ON - (O
V(R?)(un9 4.646 4.648 4.648 4.568 4.570 4.646/4.568
V(R?)wan 4.655 4.665 4.650 4.576 4.584 4.656/4.575
J(R?)(CHH) 4.645 4.645 4.653 4.568 4.569 4.646/4.567
NGACE 6.570 5.382 7.580 6.461 5.288 6.516
J(rz,ywan 6.996 6.029 7.642 6.893 5.946 6.944
J(rZ,)(cHm) 6.845 5.903 7.476 6.351 5.363 6.533
{ cos(@;))9 0 1/3 -1/3 0 1/3 0
{ cos(;,))van -0.133 0.163 —0.355 —-0.138 0.157 —-0.135
{ cos(,,)) —0.087 0.195 —0.298 0.033 0.260 —0.006

and ¢, are similar. Since the He-gfnteraction is the same densities shown in Fig. 1. As in the dimer case, thie atom

for both helium isotopes, the smalléHe mass would pro- is more localized than théHe one because of its larger
duce a larger kinetic energy thdiie. In order to minimize mass. For a given trimer, the OBDs do not appreciably de-
the energy, this tendency is partially compensated by a largdtend on the. values, since thesland 1p D-He wave func-
value of \(Rp s, With respect to\(Rp 4. The He-He tions are almost coincident. _
average distance increases in going form the uncorrelated tﬂ lefe_rences_between the various approaches show up in
the variational and CHH cases in the spatially symmetridh€ helium-helium two-body densitfBD), defined as

states, as a consequence of the introduction of the correla- W (1,22

tion, which suppresses short-range He-He configurations. P(yz)(fl,fz)= r— (3D
The effect is not very visible in the spatially antisymmetric f dr f dr,| ¥ (1,22

state (11), these configurations being already largely inhib- ! A5

ited by the Pauli principle. We even find a small decrease of . .

J(rZ) in this state after solving the CHH equations. The'" Fig- 4 we display the center-of-mass integrated TBD,
values of the uncorrelated average He-He cos$ioes(;,))

are immediately understood in terms of the structure of p(f)(r12)=f dezp(f)(rl,rz), (32
®(g(1,2). Correlations change these values, mostly in the

spatially symmetricS=0 states. For instance, the average
cosine corresponds t,,=0.39 in the uncorrelated (10)

normalized as

state of the®He,-SF; trimer, and to#,,=0.45(0.44)r for
the Jastron(CHH) case. The change for the spatially anti- f dripP(rip) =1, (33
symmetric state (11I) is much less evident.
The one-body helium densiti¢©BD) where Ry,=(myr;+my,r,)/(m;+m,) is the He-He center-
of-mass coordinate and,=r,;—r, is the He-He distance.
dr,| ¥ (1,2 p(f)(rl_z) gives the probability of the two helium atoms being
pM(ry) = (29) at a distance 1, apart.
Y ) The Pauli repulsion suppressg§’(ry,) in the uncorre-
j dr1J dr2|\If,/(1,2)| lated (11) ~ state of the®He-SF; trimer at short He-He dis-
tances, in contrast with the uncorrelai@®) * one. This be-
normalized as havior makes the former state bound and the latter unbound.

We recall that the repulsive core of the He-He interaction is
W)\ R.~2.5 A. The introduction of the He-He correlation de-
dryp; (ry)=1, (30 pletes the TBD at smalt values in all the states, which

result, as a consequence, all bound. In both trimers the he-
are shown in Fig. 3 for thee=0 and 1 states of the lium atoms are more closely packed in the spatially symmet-
3He,-SF; and “He,-SF; trimers, obtained in the uncorre- ric, L=1 states, consistently with the values Q/f(r212>
lated (symbols and CHH(lines) approaches. The OBDs are shown in Table IV. As expected, the spatially antisymmetric
very little affected by both the introduction of the He-He (11)” state is the most diffuse. The uncorrelated long-range
correlation and by the optimization of tli2He wave func-  structures of the TBDs remain essentially untouched by the
tion. Actually, they are similar to the dimer radial probability correlations.
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FIG. 3. Helium densities in th& =0 (upper panglandL=1 FIG. 4. Helium-helium center-of-mass integrated two-body den-

(lower panel states. gf the Hée.SF6 trimers. The symbols denote the gjties in the 3He,-SFs (upper pangl and *He,-SF; (lower panel
uncorrelated densities, the lines stand for the CHH4 ones. In thgimers in the uncorrelated and CHH approaches. The uncorrelated
upper panel the circles and the dashed line stand”Me-SFs  (10)~ two-body density for®He,-SF; is very close to the (00)

while the triangles and the dash-dotted line correspond teyne and it is not shown in the figure. The same holds for the un-
*He,-SF;. The same notation is used for the-1 *He,-SF; case in  correlated (1) TBD for “He,-SF.

the lower panel. For the =1 3He,-SF; trimer two states are re-
ported, corresponding t8=0 (triangles and dotted lineand S=1

(stars and dash-dotted lindowever, at the scale of the figure they V. SUMMARY AND CONCLUSIONS

are hardly distinguishible. The study of He-SF; trimers reveals the crucial role of
_ o the dopant heavy molecule in binding these systems. In fact,
We finally show in Fig. 5 the TBD around the §Fol-  the Sk molecule acts as a fixed center of force in which the

ecule in the isosceles configuratiopﬁ)(rl,rfrl,rlz), for He atoms are moving. We have shown that the specific fea-
the uncorrelated and CHH (00) (10), and (11) states of tures of the SEg-He interaction gives a rotational band in the
3He,-SF;. All of the TBDs vanish at low; values because excitation spectrum of the dimers. The different masses of
of the strongD-He repulsion. The isotropic distribution the *He and“He explain in a qualitative way the particular
shown by the uncorrelate@®0) * TBD disappears after in- features of each dimer. The solution of the dimer Sehro
troducing the He-He correlation, which suppresses the derdinger equation provides the single-particle wave functions
sity at low interhelium distances. As already noticed in Fig.needed to build the trial wave function to be used in the
4, the (11) TBD is the least affected by the correlations variational study of the trimers.

since it displays a short range He-He repulsion due to the The ground state energies of the three isotopic trimers,
Pauli principle. namely “He,-SF;, *He,-SF;, and “He-*He-SFk;, have been
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FIG. 5. Helium-helium two-body densities in the isosceles configuratdﬁé(,rl,rZ:rl,rlz), for the 3He,-SF; trimer in the uncorre-
lated (00" (a), (10) (c) and (11) (e) states, and in the CHH (00)(b), (10)™ (d), and (11) (f) states. Distances are in A and densities
in A-®

estimated employing a Jastrow correlated wave-functionrimers, except théHe,-SF; one in the (11) configuration.
built up as the product of the dimer wave functions times arhe reason is that its wave function is spatially antisymmet-
two-body correlation function of the McMillan type between ric, and therefore the twdHe atoms are kept already apart
the He atoms, having a single variational parameter. The ady the Pauli repulsion. We stress that the preferred spatial
curacy of the variational approach has been tested against tieenfiguration assumed by the two He atoms is such that they
correlated hyperspherical harmonics expansion method. Weake advantage from the mutual attraction, suppressing, as
have found that the variational results are in excellent agreemuch as possible, the short-range repulsion. As a result, the
ment with the CHH ones at convergence. optimal configuration is not a linear one, with thegSfol-

The role of the Jastrow correlation is crucial in order toecule in the middle of the two He atoms. Instead, the He
overcome the strong repulsion between the He atoms. Actuatoms are closer, and their position vectors with respect to
ally the uncorrelated variational approach does not bind théhe Sk molecule form an angle betweea70° and =86°,
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depending on the particular state. The practical effect of théunction would be built up from the single-particle wave
correlations is that the binding energy of the trimer is slightlyfunctions obtained after solving the dimer case, and from an
larger than the sum of the binging energies of the correappropriate Jastrow factor to properly take into account
sponding dimers. He-He correlations. In this respect, variational Monte Carlo
The He-He correlation does not particularly affect the he-and Fermi hypernetted chain techniques seem to be the most

lium probability densities in the trimers, which are similar to jikely candidates to microscopically address the study of
those in the dimer. In contrast, the correlation is essential ifnedium-heavy doped-helium nanodroplets.

inverting the energy hierarchy between the spatially symmet-
ric and antisymmetric configurations. In fact, in the corre-
lated 3He,-SF; trimer the (00) state, symmetric in space
with both He atoms in thed state and5=0, is more bound
than the (11) state, antisymmetric in space with one atom  Fruitful discussions with Stefano Fantoni and Kevin
in 1s and the other in the d state andS= 1 (aligned spins Schmidt are gratefully acknowledged. This work was par-
The uncorrelated approach does not even bind the *(00) tially supported by DGKSpain Grant Nos. BFM2001-0262
trimer, whereas the (1I)one is still bound. and BFF2002-01868, Generalitat Valenciana Grant No.

The good agreement between the variational and the CHIGV01-216, Generalitat de Catalunya Project No.
estimates for the trimers makes us confident that mediurd001SGR00064, and by the Italian MIUR through the PRIN:
size He-doped clusters can be accurately described by meahisica Teorica del Nucleo Atomico e dei Sistemi a Molti
of a correlated variational wave function. This trial wave Corpi.
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