
Microscopic description of the twist mode in normal and superfluid trapped Fermi gases

Marcella Grasso,1,2 Michael Urban,2 and Xavier Viñas3
1Dipartimento di Fisica e Astronomia and INFN, Via Santa Sofia 64, I-95123 Catania, Italy
2Institut de Physique Nucléaire, 15 rue Georges Clémenceau, F-91406 Orsay Cedex, France

3Departament d’Estructura i Constituents de la Matèria, Facultat de Fìsica, Universitat de Barcelona,
Diagonal 647, E-08028 Barcelona, Spain

sReceived 19 July 2004; revised manuscript received 28 September 2004; published 19 January 2005d

We investigate the “twist” modesrotation of the upper against the lower hemisphered of a dilute atomic
Fermi gas in a spherical trap. The normal and superfluid phases are considered. The linear response to this
external perturbation is calculated within the microscopic Hartree-Fock-Bogoliubov approach. In the normal
phase the excitation spectrum is concentrated in a rather narrow peak very close to the trapping frequency. In
the superfluid phase the strength starts to be damped and fragmented and the collectivity of the mode is
progressively lost when the temperature decreases. In the weak-pairing regime some reminiscence of the
collective motion still exists, whereas in the strong-pairing regime the twist mode is completely washed out.
The disappearance of the twist mode in the strong-pairing regime with decreasing temperature is interpreted in
the framework of the two-fluid model.
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I. INTRODUCTION

The experimental and theoretical development of Bose-
Einstein condensation of trapped bosonic atomsf1g has also
triggered the investigation of trapped atomic Fermi gases at
very low temperaturef2g. One of the main goals in the re-
search of these Fermi systems is to detect the transition from
the normal to the superfluid phase, associated with the ap-
pearance of a macroscopic order parameter of strongly cor-
related Cooper pairs below a certain critical temperatureTc.
In order to have an attractives-wave interaction which can
provide the pairing correlations, the atoms must be trapped
and cooled in two different hyperfine states as has been
achieved in several recent experimentsssee, e.g., Ref.f3gd.
From the theoretical side, the pairing problem of trapped
fermions has been studied from different points of view
f4–6g.

Besides the ground-state properties, there is also interest
in knowing the spectrum of collective excitations. As we
stated above, ultracold atomic Fermi gases are assumed to
become superfluid belowTc, and it is therefore important to
study low-energy collective modes also in the superfluid
phasef7,8g. Having different properties in the normal and
superfluid phases, these excitations can serve as experimental
signals for superfluidity. For instance, the frequencies of
breathing modes of trapped atomic Fermi gases measured in
recent experimentsf9g give strong indications that the super-
fluid phase has been reached.

It is interesting to compare the situation of trapped fermi-
onic atoms to that of atomic nuclei, which can also show a
superfluid behavior. Contrary to the nuclear case, the fact
that the interaction in atomic gases is tunable experimentally
allows one to study the collective modes in different regimes.
For dilute systems, the atom-atom interaction can be param-
etrized by a zero-range force proportional to thes-wave scat-
tering length between atoms in two hyperfine statesf6,8g. By
changing the applied magnetic field around a Feshbach reso-
nancef10g, thes-wave scattering length can be modified. In

one limiting regime, that of weak pairing, which is similar to
the situation in atomic nuclei, the pairing results only in a
small perturbation to the response of the system to the exter-
nal probe. In the other limit of strong pairing the response is
dominated by the effects of superfluidity.

Many of the collective excitations show features proper to
Landau’s zero-sound modes in bulk Fermi liquidsf11g which
for finite Fermi systems translate into modes analogous to
those of an elastic bodyf12g. Since the trapped atomic Fermi
gases contain a very large number of atoms, the single-
particle orbital angular momenta near the Fermi surface can
also become very large. Consequently, important orbital ef-
fects such as excitations having angular momentum and par-
ity JP=1+ and 2− will exist, which correspond to magnetic
resonances ofM1 or M2 type, respectively, in atomic nuclei.
The 2− excitation is the so-called twist mode, in analogy to
the quadrupole torsional vibration of an elastic sphere
f12,13g. From a macroscopic point of view, the twist consists
of a coherent counterrotation of the particles in the upper
hemisphere against those in the lower hemisphere. For small
amplitudes, it corresponds to a purely kinetic excitation with-
out spatial distortion of the equilibrium shape.

The twist mode has been studied in different Fermi sys-
tems. In nuclei, this mode has been analyzed from a semi-
classical point of view within a fluid-dynamical description
f13g. From a quantum-mechanical point of view, this mode
has been studied so far only for magic nucleisi.e., without
pairingd such as90Zr and208Pb f14,15g. More recently, some
experimental effort has been made to detect this mode by
backward inelastic electron scatteringf16g. A direct evidence
for the existence of the orbital twist modesto be distin-
guished from the 2− spin-flip moded in nuclei has been
achieved by comparing electron and proton scattering cross
sections of58Ni f17g. The twist mode has also been theoreti-
cally studied in metallic clustersf18g although it has not yet
been detected.

So far, the theoretical study of the twist mode in trapped
atomic Fermi gases has been done in the hydrodynamical
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description and in the normal phase onlyf19g. In the case of
ans-wave interaction, a moderate shift of the twist frequency
of about 10% with respect to the noninteracting case was
found, which is consistent with the fact that for a transverse
zero sound thes-wave interaction does not contribute to the
restoring forcef14,20g.

In the present article, our aim is different. We will analyze
the effect of pairing correlations on the twist mode. This
effect has not been considered in any of the theoretical stud-
ies mentioned above, either for atomic nucleior for metallic
clusters or trapped Fermi gases. Of particular interest can be
the study of the strong-pairing regime, because it is known
that in this case the low-energy collective modes are strongly
affected by the pairing and can become signatures that the
superfluid phase is reachedf7,8g.

The paper is organized as follows. In Sec. II, we sketch
the derivation of the twist response function in the superfluid
phase, using a Hartree-Fock-Bogoliubov or Bogoliubov–de
Gennes frameworkf21,22g. In Sec. III, we consider the twist
mode in the normal phase within a quantum-mechanical de-
scription. Section IV is devoted to the study of the twist
mode in the superfluid phase in the cases of weak- and
strong-pairing correlations. Finally, our conclusions are
given in the last section.

II. QUASIPARTICLE RESPONSE FUNCTION

In this article we will consider an atomic Fermi gas
satomic massmd, trapped in a spherical harmonic trap with
frequencyV. We assume that the atoms equally occupy two
hyperfine states, denoted bys= ±1. Because of the low den-
sity of the gas, the interaction between the atoms can be
regarded as pointlike and its strength can be parametrized by
the s-wave atom-atom scattering lengtha. In order to sim-
plify the notation, we will express all quantities in harmonic
oscillatorsHOd units, i.e., frequencies in units ofV, energies
in units of "V, temperatures in units of"V /kB, and lengths
in units of the oscillator lengthlHO=Î" / smVd. Furthermore,
instead of the scattering length we will use the coupling con-
stantg=4pa/ lHO as the parameter of the interaction strength.

The twist is a motion where the upper and lower hemi-
spheres rotate in the opposite sense back and forth around
the z axis with an angle proportional toz. This mode can be

excited in both spherical and deformedswith a rotation axisd
systems. Such a motion can be generated by the operatorzLz,
whereLz=−isx=y−y=xd denotes thez component of the an-
gular momentum operator. Restricting our description to
small amplitudes, we can use linear response theory in order
to treat the oscillations around equilibrium. Then the main
problem consists in calculating the equilibrium state. In order
to describe the system in the superfluid phase, this is done
within the framework of a Hartree-Fock-BogoliubovsHFBd
or Bogoliubov–de Gennesf21,22g calculation similar to that
presented in Ref.f6g, but with the modified regularization
scheme for the gap equation described in Refs.f23,24g. We
refer to Ref.f24g for more details about our approach. The
calculation provides the wave functionsuasrd andvasrd sat-
isfying the HFB equations,

fH0 + Wsrdguasrd + Dsrdvasrd = Eauasrd,

Dsrduasrd − fH0 + Wsrdgvasrd = Eavasrd. s1d

Here H0 denotes the Hamiltonian of the noninteracting HO
minus the chemical potential,H0=s−=2+r2d /2−m, while the
interaction is accounted for in a self-consistent way through
the Hartree potentialWsrd and the pairing fieldDsrd.

Now let us consider the retarded correlation function

P0svd = − iE
0

`

dt eivtkkfQstd,Qs0dgll, s2d

wherekk·ll means the thermal average. In our case,Q is the
twist operator

Qstd = o
s=±1

E d3r cs
†st,rdzLzcsst,rd. s3d

The field operatorc can be expressed in terms of quasipar-
ticle creation and annihilation operatorsb† andb as follows:

csst,rd = o
nlm

fbnlmsunlmsrdeiEnlt − sbnlm−s
† vnlm

* srde−iEnltg.

s4d

Separating the radial and angular dependence of the wave
functions, unlmsrd=unlsrdYlmsu ,fd and vnlmsrd
=vnlsrdYlmsu ,fd, one obtains after a straightforward but te-
dious calculation the following result:

P0svd = 2 o
nn8ll8m

m2UE dV Ylm
* su,fdcosu Yl8msu,fdU2

3 F sEn8l8 + Enldf1 − fsEnld − fsEn8l8dg

sv + ihd2 − sEn8l8 + Enld2 SE
0

`

dr r3funlsrdvn8l8srd

− vnlsrdun8l8srdgD2

+
sEn8l8 − EnldffsEnld − fsEn8l8dg

sv + ihd2 − sEn8l8 − Enld2 SE
0

`

dr r3funlsrdun8l8srd + vnlsrdvn8l8srdgD2G . s5d

In deriving this formula, we have used the anticommutation
relations between the operatorsb and b† fhba ,bbj=hba

† ,bb
†j

=0, hba ,bb
†j=dabg as well as the relation kkba

†bbll
= fsEaddab, where f denotes the Fermi distribution function,
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fsEd=1/seE/T+1d. Note that the relative signs appearing in
the radial integrals in Eq.s5d are different from those ob-
tained, e.g., for the case whenQ is a multipole operator as in
Ref. f8g. The reason is that the twist operator is odd under
time reversal, i.e.,ed3r f *srdzLzgsrd=−fed3r g*srdzLzfsrdg* .
The angular matrix element in Eq.s5d can be computed ex-
plicitly, with the simple result

o
m

m2UE dV Ylm
* su,fdcosu Yl8msu,fdU2

=5
sl8 − 1dl8sl8 + 1d

15
if l8 = l + 1,

sl − 1dlsl + 1d
15

if l = l8 + 1,

0 otherwise.
6 s6d

Therefore the numerical task of calculatingP0 reduces es-
sentially to calculating the radial integrals and the triple sum
over n, n8, and l.

In general it is not sufficient to calculate the free quasi-
particle responseP0. Rather one has to calculate the quasi-
particle random-phase approximationsQRPAd response,
which accounts for correlations with the quantum numbers
corresponding to the excitation under consideration in the
ground state. However, because of the particular form of the
interaction used here, it is clear that there cannot be any
ground-state correlations with the quantum numbers of the
twist modesJP=2−d. Therefore the QRPA response function
P is just equal to the free quasiparticle response functionP0
f18g. In this sense the situation for trapped atoms is different
from that in nuclei, where the spin-orbit part of the interac-
tion leads to assmalld change of the twist response function
f14g, e.g., through the coupling between the twist mode and
the spin-flip mode, which is excited by the operatorsr
^ sd20.

In the remaining part of this article we will show numeri-
cal results for the strength functionSsvd=−Im Psvd /p
which we calculate from Eq.s5d with a finite width h for
each peak.

III. NORMAL PHASE

Let us first look at the normal phase of the system at zero
temperature, i.e., we artificially putD=0 in Eq. s1d. For this
situation, there exist microscopic descriptions of the twist
mode in nucleif14,15g and in metal clustersf18g. However,
for the twist mode in trapped atomic gases there exists only
a calculationf19g following the fluid-dynamical approach
developed by Holzwarth and Eckart for the nuclear casef13g.
This fluid-dynamical approach allows one to predict the twist
frequency, but it cannot answer the question if the twist
mode as a collective motion exists at allf13g.

In the case of a noninteracting HO, it is straightforward to
show that the operatorzLz excites only transitions withv
=1 sin units of"Vd. Therefore, in the noninteracting HO, the
total strength is concentrated atv=1. If now the Hartree
potentialW is switched on, two effects are to be expected.

sad The energy difference between neighboring shells be-
comes largerssmallerd in the case of an attractivesrepulsived
interaction. Therefore, the twist frequency will be shifted up-
ward sdownwardd. This effect has been described quantita-
tively within the fluid-dynamical approachf19g.

sbd The degeneracy of states with differentl is lifted, and
we therefore expect a fragmentation of the strength of the
twist mode into many particle-hole states corresponding to
transitionsn, l →n, l +1 andn, l →n+1, l −1 fremember that
for given quantum numbersn and l, the number of HO
quanta is 2sn−1d+ lg.

Both effects can be observed in Fig. 1, where we display
the strength functionSsvd of the twist mode as a function of
the excitation energy for two systems of6Li with different
numbers of atomssscattering lengtha=−2160a0 f25g, where
a0 is the Bohr radiusd in a trap with a frequency ofV=2p
3144 Hz, corresponding to a coupling constantg=−0.4 in
HO units. In order to show the fragmentation of the mode,
we display the response function in a small energy interval
scontaining 100% of the total strengthd with a very high reso-
lution sh=10−4d. Let us first look at the result corresponding
to 105 particles in the traps53104 particles per spin state,
chemical potentialm=62.6d. One can clearly see that the
average frequency is higher than 1 and that the strength is
fragmented into two series of peaks, corresponding to the
two series of transitions mentioned above undersbd. With
23105 particless105 particles per spin state,m=78.0d, the
Hartree field is stronger and therefore both effects, fragmen-
tation and shift of the average frequency, are enhanced.

The difference shown by the strength at low frequencies
of the systems containing 105 and 23105 particles is related
to the different single-particle spectra of these two systems.
In the case of 105 particles, the Hartree fieldW breaks the
accidental degeneracy of the noninteracting HO single-
particle levels, but the different HO major shells are still
separated. However, when the number of particles in the trap
grows, the Hartree field becomes strong enough to mix dif-
ferent HO major shells. This leads more or less accidentally
to the fact that in the case of 23105 particles the transition
energies of the seriesn, l →n+1,l −1 with 2sn−1d+ l =82
sthe major shell number 82 is the last one lying completely
below the Fermi leveld are almost degenerate atv<1.05.

FIG. 1. Strength functionSsvd s3109; in HO unitsd for the twist
mode in a gas of 105 ssolid lined and 23105 sdashed lined trapped
6Li atoms at zero temperature without pairingsD=0d as a function
of the frequencyv sin units of the trapping frequencyVd.
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In order to compare our results quantitatively with the
predictions obtained within the fluid-dynamical approach, we
define an average frequency according to

vav =

E
0

`

dv vSsvd

E
0

`

dv Ssvd
. s7d

For both cases considered here, this average frequency is in
perfect agreement with the frequencyv fd predicted in Ref.
f19g in the framework of the fluid-dynamical approach: for
N=105 atoms, vav=1.088 andv fd=1.087, and forN=2
3105 atoms,vav=1.100 andv fd=1.101. It should also be
emphasized that the width of the interval over which the
strength is distributed is very narrow compared with the av-
erage frequency of the twist mode. It is therefore justified to
speak about a collective excitation.

IV. SUPERFLUID PHASE

Let us now consider the superfluid case. It is interesting to
analyze how the properties of the twist mode are modified
when pairing correlations are taken into account in the cal-
culations and the full HFB equations are solved. We will
show that the structure of the strength function and the col-
lectivity of the twist mode are strongly affected by pairing
correlations and we will study this dependence at different
temperatures for two systems with different numbers of at-
oms.

We set the coupling constantg equal to −1 in HO units.
For 6Li atoms with a scattering lengtha=−2160a0 this cor-
responds to a trapping frequency ofv=2p3817 Hz. sWe
chose a stronger coupling than in the previous section in
order to be able to study the case of strong pairing, which
would be possible only for extremely large numbers of par-
ticles if g=−0.4.d We shall consider two cases for the trapped
gas: sad a small system with around 1800 atomssweak-
pairing regime,D,"Vd; sbd a big system with around 3.6
3104 atomssstrong-pairing regime,D."Vd. For both cases
we will take into account different temperatures and analyze
how the twist mode evolves when the critical temperatureTc
of the phase transition is approached and crossed.

Before passing to consider the two cases we would like to
mention that in atomic nuclei, which are the only systems for
which the twist mode has been observed so far, one is always
in the weak-pairing regime, the relationD,"V being al-
ways satisfied.

sad Weak-pairing regime. The chemical potentialm in this
case is chosen equal to 16. We show in Fig. 2 the strength
function for three values of the temperature:T=0 stopd, 0.13
smiddled, and 0.15sbottomd. The three cases correspond to
values of the pairing field in the center of the trap ofDsr
=0d=0.67, 0.26, and 0, respectivelysin HO unitsd. In the last
casesbottom of the figured the gas is in the normal phase: we
observe that in the normal phase the strength function is
concentrated at aboutv=1.12 sthis is slightly higher than in
Fig. 1 because of the stronger coupling, which leads to a

stronger Hartree fieldd. If we lower the temperature, the su-
perfluid transition takes place; the effect on the strength
function is to push its structure toward higher values of the
energy. Qualitatively this can be understood by replacing the
single-particle energiesenl by the quasiparticle energiesEnl

<Îsenl−md2+D2, whereD denotes the average matrix ele-
ment of the pairing field at the Fermi surface. Neglecting the
effect of the Hartree field for the moment, one obtains in this
way a shift of the twist frequency from 1 to a higher value
which lies betweenÎ1+4D2 andD+Î1+D2. To see this, let
us consider two limiting cases. If the chemical potential lies
exactly on a single-particle levelshalf-filled shelld, m=NF
+3/2, atransition of the typeNF→NF+1, for example, cor-
responds to the creation of two quasiparticles with energies
ENF

=D and ENF+1=Î1+D2. In the other limiting case, the
chemical potential lies between two single-particle levels
sclosed shelld, m=NF+2, and the twist mode corresponds to
the excitation of two quasiparticles having each the energy
ENF

=ENF+1=Î1/4+D2.
Moreover, as one can also observe in Fig. 2, the excitation

mode becomes less collective and, due to pairing, more and
more damped and fragmented if one goes fromT=0.13 to 0.
In the latter case pairing correlations are more intense and
the loss of collectivity and the Landau damping are conse-
quently more important. A similar Landau damping effect
due to superfluidity has been found in Ref.f8g for the spin-
dipole mode in the weak-pairing regime.

Another interesting effect to notice is the strength below
v=1 which appears belowTc but disappears atT=0. Obvi-
ously this effect is due to the second term in Eq.s5d, which is
equal to zero atT=0.

sbd Strong pairing regime. Let us consider now the case
with about 3.63104 atomssm=40d. We present in Fig. 3 the
strength function at four temperatures:T=0, 2, 5, and 6.5
sfrom top to bottomd. In the four cases the central values of
the pairing field areDsr =0d=12.7, 12.5, 9.6, and 0, respec-
tively. In the latter casesnormal phased we observe a unique
peak centered at aboutv=1.2. Again, the energy is higher
with respect to Fig. 1 and with respect to the casesad sFig. 2d
due to the stronger coupling. A fragmented structure with a
very low strength exists in the energy region fromv=2 up to
4. When we lower the temperature, we cross the superfluid
transitionssee upper panel of Fig. 4d. At T=5 the system is

FIG. 2. Strength functionSsvd s3105; in HO unitsd for the twist
mode in a system with about 1800 atoms of6Li at T=0 stopd, 0.13
smiddled, and 0.15sbottomd; v and T in units of V and "V /kB,
respectively.
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superfluid: we observe that the main peak still exists, even if
the excitation mode is less collective than in the normal
phase case. Also, the fragmented structure towardv=2–3
gets more strength than in the previous case. The fragmenta-
tion becomes much stronger and extends up tov=10 when
the temperature is lowered further, as can be seen in the case
T=2. However, the peak at aboutv=1.2 is still visible. Fi-
nally, if we look at theT=0 case, where the pairing correla-
tions are the strongest, we observe that the main collective
peak completely disappears, while a very fragmented struc-
ture with a low strength remains in the energy region be-
tweenv=2 and 10. We can thus conclude that atT=0 the
collective twist mode does not exist any more. The same
conclusion has been drawn in Ref.f8g for the spin-dipole
mode in the strong pairing regime.

Actually, once the irrotational flow limitsstrong pairingd
is reachedf26,27g, the superfluid current has an irrotational
velocity field, and the only possible excitations of the super-
fluid are density-fluctuation modes. In the language of a two-
fluid model, all the other excitations of the gas, such as the
twist and the spin-dipole modes, have to be related to its
normal component, as was discussed in Refs.f28,29g. When

one decreases the temperature belowTc, the number of “nor-
mal” quasiparticles is reduced and therefore the strength of
the twist mode becomes smaller. On the other side, the en-
ergy spectrum of the normal quasiparticles is modified, lead-
ing to a destruction of coherence between quasiparticles
moving in the same directionf28g. It follows that the mode is
more and more damped when one approachesT=0. Obvi-
ously, this effect will strongly depend on the strength of pair-
ing correlations, and this is why it is more important in the
strong-pairing regime.

Let us now discuss the relationship between the strength
of the twist response function and the normal-fluid compo-
nent of the system in a more quantitative way. To that end we
consider the inverse-energy weighted sum rule, which is pro-
portional to the real part of the response function atv=0:

E
0

`

dv
Ssvd

v
= −

1

2
Ps0d. s8d

Within the two-fluid model it can be shown explicitlyssee
the Appendixd that this quantity is related to the density of
the normal-fluid component of the system,rn, by

Ps0d = −
8p

15
E

0

`

dr r6rnsrd. s9d

In Fig. 4 sbottomd we show numerical results for the depen-
dence of the sum rule on temperature. The solid line repre-
sents the full HFB calculation, while the dashed line corre-
sponds to Eq.s9d. The agreement is very satisfactory except
at extremely low temperature, where quantum finite-size ef-
fects scorrections in"v /D, see Ref.f27gd lead to a nonvan-
ishing value of the sum rule, whereas the two-fluid model
predicts that the sum rule should go to zero at zero tempera-
ture because of the vanishing normal-fluid component. How-
ever, the overall good agreement confirms our interpretation
that only the normal-fluid part of the system participates in
the twist motion. In order to recognize more easily the re-
gions where the gas is superfluid and normal, and to observe
how pairing correlations decrease by increasing the tempera-
ture, we also plot in Fig. 4stopd the value of the gap at the
center of the trap,Ds0d. Note that the temperature depen-
dence ofPs0d differs considerably from that ofDs0d.

To conclude this section, we remark that our approach is
only valid in the regime where collisions between atoms can
be neglected. Following Ref.f7g, this means that the mean
time between collisions,t=ra2vFsT/eFd2 swherer, vF, and
eF are the density, Fermi velocity, and Fermi energy, respec-
tivelyd, must be much larger than the oscillation period in the
trapping potential, 2p /V. Expressed in HO units, we obtain
Vt / s2pd=6p3/ sgTd2. In the case ofT=6.5 this ratio gives
still 4.4, i.e., an atom performs more than four oscillations
before it collides with another one. Consequently, all cases
we considered are well in the collisionless regime.

V. SUMMARY AND OUTLOOK

In this article we have studied the twist mode of an atomic
Fermi gas trapped by a spherical harmonic potential in the

FIG. 3. Strength functionSsvd s3105; in HO unitsd in a gas
with about 3.63104 atoms at four different temperaturessfrom top
to bottomd: T=0, 2, 5, and 6.5sv andT in units of V and"V /kB,
respectivelyd.

FIG. 4. Temperature dependence of the gap in the center of the
trap, Ds0d stop; D andT in units of "V and"V /kB, respectivelyd,
and of the static response function −Ps0d sbottom; 310−6 in HO
unitsd, which is equal to twice the inverse-energy weighted sum
rule, for a gas with 3.63104 atoms. In the lower figure, we show
for comparison the result of the HFB calculationssolid lined to-
gether with the result obtained within the two-fluid model, Eq.s9d
sdashed lined.
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normal and in the superfluid phase. The ground state has
been obtained by solving the Bogoliubov–de Gennes equa-
tions, using the regularization procedure introduced in Refs.
f23,24g. The excitations have been treated within the linear
response theory. As the zero-range interaction does not
couple to the twist operator, we analyzed this excitation by
calculating the free quasiparticle response function.

We have analyzed the twist mode without pairing corre-
lations by settingD=0 in the Bogoliubov–de Gennes equa-
tions. We observed that the strength function is concentrated
around an energy higher thanv=1. This shiftswith respect
to the case of a noninteracting HOd is due to the Hartree
potential and depends on the sign of the coupling constantg.
We have also observed a fragmentation of the strength which
describes the transitionsn, l →n, l +1 andn, l →n+1,l −1.

In the case of pairing correlations we have shown that the
excitation mode starts losing its collectivity below the criti-
cal temperatureTc. When the temperature is lowered fromTc

towardT=0, the strength function becomes more and more
damped and fragmented. In the weak-pairing regimesD
,"Vd this effect is less pronounced than in the strong-
pairing regimesD."Vd. In the weak-pairing case the col-
lective twist mode still exists at zero temperature. With in-
creasing strength of the pairing correlations, the collective
peak is shifted to higher energies, and at the same time it
becomes more and more broad and fragmented and its
strength decreases. Finally, in the strong-pairing limit it com-
pletely disappears atT=0. In fact, it can be predicted that the
twist mode ceases to exist once the pairing is strong enough
for the system to reach its irrotational flow limitf26,27g.

It should be pointed out that, in the normal phase, the
twist mode can only exist in the collisionless regime, since
the restoring force for this collective oscillation comes en-
tirely from the Fermi surface deformationf13g. This means
that detecting the twist mode in the normal phase would be a
signal that the system is in the collisionless regime. This
might be of importance since the evidence for the superflu-
idity obtained in recent experimentsf9g relies on the assump-
tion that the system is in the collisionless regime. The sub-
sequent disappearance of the twist mode at lower
temperatures would be a clear signal that the superfluid
phase has been reached. Concerning the possibility to excite
the twist mode experimentally we refer to Ref.f19g.

Recently, the twist mode has been measured in open-shell
finite nuclei such as58Ni f17g. In the existing theoretical
studies of the twist mode in nuclei pairing correlations have
not been taken into account, i.e., these studies are essentially
restricted to closed-shellsmagicd nuclei. Although nuclei are
in the weak-pairing regime, we think that a theoretical study
of the twist mode in nuclei taking into account pairing cor-
relations could be very interesting. Work in this direction is
in progress.
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APPENDIX: RELATION BETWEEN THE SUM RULE
AND THE NORMAL COMPONENT

In this appendix we will briefly show how a relationship
betweenPs0d and the normal-fluid component of a system
with strong pairingsD@1 in HO unitsd can be established. A
detailed discussion of some of the topics mentioned here can
be found in Ref.f27g.

As mentioned in Sec. IV, the inverse-energy weighted
sum rule is proportional to the responsePs0d of the system
to a static perturbation with a perturbation HamiltonianH1
~zLz. By taking the"→0 limit of the time-dependent HFB
equations, one can derive equations similar to the Vlasov
equation for the superfluid phasesin our case, of course, the
time dependence does not play any roled. The resulting de-
viation of the Wigner functionrsr ,pd from its equilibrium
value reads

r1sr,pd = SdfsEd
dE

D
E=Esr,pd

h1sr,pd, sA1d

with

Esr,pd = Îfhsr,pdg2 + D2srd, sA2d

wherehsr ,pd and h1sr ,pd denote the Wigner transforms of
H0+Wsrd andH1, respectively. SincePs0d is defined as the
expectation value ofzLz in the perturbed system, we can
write

Ps0d = 2E d3r d3p

s2pd3 SdfsEd
dE

D
E=Esr,pd

szxpy − zypxd2.

sA3d

Assuming spherical symmetry and a strongly peaked Fermi
surfacesi.e., D, T!md it is straightforward to derive Eq.s9d,
where

rnsrd = rsrd E djS−
dfsEd

dE
D

E=Îj2+D2srd
sA4d

is the density of the normal-fluid component within the two-
fluid model.

Note that the temperature dependence of Eq.s9d is differ-
ent from that of the number of normal particles, since in Eq.
s9d the r6 factor weights very strongly the surface of the
system, whereDsrd is smaller and where consequently the
normal-fluid fractionrn/r is higher than in the center of the
trap.
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