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Microscopic description of the twist mode in normal and superfluid trapped Fermi gases
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We investigate the “twist” modérotation of the upper against the lower hemispharea dilute atomic

Fermi gas in a spherical trap. The normal and superfluid phases are considered. The linear response to this
external perturbation is calculated within the microscopic Hartree-Fock-Bogoliubov approach. In the normal
phase the excitation spectrum is concentrated in a rather narrow peak very close to the trapping frequency. In
the superfluid phase the strength starts to be damped and fragmented and the collectivity of the mode is
progressively lost when the temperature decreases. In the weak-pairing regime some reminiscence of the
collective motion still exists, whereas in the strong-pairing regime the twist mode is completely washed out.
The disappearance of the twist mode in the strong-pairing regime with decreasing temperature is interpreted in
the framework of the two-fluid model.
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[. INTRODUCTION one limiting regime, that of weak pairing, which is similar to
the situation in atomic nuclei, the pairing results only in a
small perturbation to the response of the system to the exter-
al probe. In the other limit of strong pairing the response is

The experimental and theoretical development of Bose
Einstein condensation of trapped bosonic atdfrjshas also
triggered the investigation of trapped atomic Fermi gases e{(; . L
very low temperaturé2]. One of the main goals in the re- dominated by the effects of superfluidity.
search of these Fermi systems is to detect the transition from_Many of the collective excitations show features proper to
the normal to the superfluid phase, associated with the a .andau’s zero-sound modes in bulk Fermi liquids] which
pearance of a macroscopic order parameter of strongly cofo finité Fermi systems translate into modes analogous to
related Cooper pairs below a certain critical temperaiyre hose of an e_Iastlc boq’)llz]. Since t?)e tra?ped atomg: Fe_rmll
In order to have an attractiv@wave interaction which can 9253 contain a very large number of atoms, the single-

provide the pairing correlations, the atoms must be trappe article orbital angular momenta near the Fermi surface can
X . P Iso become very large. Consequently, important orbital ef-
and cooled in two different hyperfine states as has bee y 1ar9 d Y, IMp

. i ; fbcts such as excitations having angular momentum and par-
achieved in several recent experimefgse, e.g., Ref.3]). ity J’=1* and Z will exist, which correspond to magnetic

From the theoretical side, the pairing problem of trappeqesonances d¥11 or M2 type, respectively, in atomic nuclei.
fermions has been studied from different points of viewThe 7 excitation is the so-called twist mode, in analogy to
[4-6]. the quadrupole torsional vibration of an elastic sphere

Besides the ground-state properties, there is also interepf2 13. From a macroscopic point of view, the twist consists
in knowing the spectrum of collective excitations. As we of a coherent counterrotation of the particles in the upper
stated above, ultracold atomic Fermi gases are assumed f@misphere against those in the lower hemisphere. For small
become superfluid below,, and it is therefore important to amplitudes, it corresponds to a purely kinetic excitation with-
study low-energy collective modes also in the superfluidout spatial distortion of the equilibrium shape.
phase[7,8]. Having different properties in the normal and  The twist mode has been studied in different Fermi sys-
superfluid phases, these excitations can serve as experiment@s. In nuclei, this mode has been analyzed from a semi-
signals for superfluidity. For instance, the frequencies oflassical point of view within a fluid-dynamical description
breathing modes of trapped atomic Fermi gases measured ih3]. From a quantum-mechanical point of view, this mode
recent experimen{®] give strong indications that the super- has been studied so far only for magic nudies., without
fluid phase has been reached. pairing) such as®Zr and?°®Pb[14,15. More recently, some

It is interesting to compare the situation of trapped fermi-experimental effort has been made to detect this mode by
onic atoms to that of atomic nuclei, which can also show eackward inelastic electron scatterifig]. A direct evidence
superfluid behavior. Contrary to the nuclear case, the fador the existence of the orbital twist modéo be distin-
that the interaction in atomic gases is tunable experimentallguished from the 2 spin-flip mode in nuclei has been
allows one to study the collective modes in different regimesachieved by comparing electron and proton scattering cross
For dilute systems, the atom-atom interaction can be paransections of®Ni [17]. The twist mode has also been theoreti-
etrized by a zero-range force proportional to $h@ave scat- cally studied in metallic clustefd 8] although it has not yet
tering length between atoms in two hyperfine st§68]. By been detected.
changing the applied magnetic field around a Feshbach reso- So far, the theoretical study of the twist mode in trapped
nance[10], the sswave scattering length can be modified. In atomic Fermi gases has been done in the hydrodynamical
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description and in the normal phase ofily@]. In the case of excited in both spherical and deformegith a rotation axis
ans-wave interaction, a moderate shift of the twist frequencysystems. Such a motion can be generated by the opeigfor
of about 10% with respect to the noninteracting case wawherel,=-i(xV,—yV,) denotes the component of the an-
found, which is consistent with the fact that for a transversegular momentum operator. Restricting our description to
zero sound the-wave interaction does not contribute to the small amplitudes, we can use linear response theory in order
restoring forcg 14,20. to treat the oscillations around equilibrium. Then the main
In the present article, our aim is different. We will analyze Problem consists in calculating the equilibrium state. In order
the effect of pairing correlations on the twist mode. Thisto describe the system in the superfluid phase, this is done
effect has not been considered in any of the theoretical studVithin the framework of a Hartree-Fock-BogoliubgkFB)
ies mentioned above, either for atomic nucleior for metallicO" Bogoliubov-de Genneg21,2 calculation similar to that
clusters or trapped Fermi gases. Of particular interest can gyesented in Refl6], but with the modified regularization

R ; o cheme for the gap equation described in Rg#8,24]. We
the study of the strong-pairing regime, because it is knOWr?efer to Ref.[24] for more details about our approach. The

that in this case the low-energy collective modes are strong|l . d X
affected by the pairing and can become signatures that th}éeaICUIatIon provides the wave functiong(r) andu,(r) sat

superfluid phase is reach€d,8]. ISfying the HFB equations,

The paper is organized as follows. In Sec. Il, we sketch [Ho+WI(r)Jua(r) + A(r)v(r) = E u,(r),
the derivation of the twist response function in the superfluid
phase, using a Hartree-Fock-Bogoliubov or Bogoliubov—de A(r)uy(r) = [Ho+ WIN)Jv,(r) = Egu,(r). (1)

Gennes frameworf21,23. In Sec. ll, we consider the twist Here Hy denotes the Hamiltonian of the noninteracting HO

mode in the normal phase within a quantum-mechanical deﬁwinus the chemical potentiaty=(~V2+r2)/2 -, while the

scription. Section IV is devoted to the study of the tW'Stinteraction is accounted for in a self-consistent way through

mode in _the superflui(_j phase_ in the cases of vyeak- anﬂwe Hartree potentidlV(r) and the pairing field\(r).
st.rong.-palrmg correl_atlons. Finally, our conclusions are Now let us consider the retarded correlation function
given in the last section.

— N jot
Il. QUASIPARTICLE RESPONSE FUNCTION Holw) = IJO dt &R, QO @

In this article we will consider an atomic Fermi gas where{(-)) means the thermal average. In our ca3és the
(atomic massm), trapped in a spherical harmonic trap with twist operator
frequency(). We assume that the atoms equally occupy two
hyperfine states, denoted by +1. Because of the low den- Qty= > | ¥ gtz (tr). (3)
sity of the gas, the interaction between the atoms can be o=+1
regarded as pointlike and its strength can be parametrized
the sswave atom-atom scattering leng#h In order to sim-
plify the notation, we will express all quantities in harmonic

bP/he field operatory can be expressed in terms of quasipar-
ticle creation and annihilation operatdssandb as follows:

oscillator(HO) units, i.e., frequencies in units 6f, energies tr) = b U (1Bt = bl u% (r)e Ent].
in units of (), temperatures in units dfQ/kg, and lengths Yolt.r) %n[ o (1) pim-o?nim(") |
in units of the oscillator lengthyo=+%/(m(}). Furthermore, )

instead of the scattering length we will use the coupling con-

stantg=4mall,o as the parameter of the interaction strength.Separating the radial and angular dependence of the wave
The twist is a motion where the upper and lower hemi-functions, Unim(N) =Uni(N)Ym(6, &) and Uniml1)

spheres rotate in the opposite sense back and forth arourd,(r)Y,n(8, ), one obtains after a straightforward but te-

the z axis with an angle proportional to This mode can be dious calculation the following result:

dr r3[un (v (r)

. [ (Eq + En)[L ~ H(Ex) — F(Ey)] ( f

My(w)=2 > mZUdQ Y (6, $)cos8 Y, (6, &) (@t in= Eom TEL7

nn’ll’'m 0

(En’ T En)[f(En) - f(En’ ’)] “ 2
PrET ( f A 19U () (1) + un|<r>vnf.f<r>]> ] . (5)

0

2
- Unl(r)un’l’(r)]> +

In deriving this formula, we have used the anticommutation=0, {ba,b;;}:ﬁaﬁ] as well as the reIation((bLbB»
relations between the operatdssand b' [{ba,bﬁ}:{bl,b;r;} =f(E,)d,5 Wheref denotes the Fermi distribution function,
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f(E)=1/(e¥T+1). Note that the relative signs appearing in
the radial integrals in Eq(5) are different from those ob-
tained, e.g., for the case whéhis a multipole operator as in

Ref. [8]. The reason is that the twist operator is odd under

time reversal, i.e./d® " (r)zLg(r)=—[/d® g"(r)zL,f(r)]".
The angular matrix element in E¢G) can be computed ex-
plicitly, with the simple result

2
> f dQ V,,(6, $)cosO Y, (6, )
" '
C=DPED e =yag,
15
=4 (1=l +1) —— (6)
15
\O otherwise.

Therefore the numerical task of calculatihly reduces es-

sentially to calculating the radial integrals and the triple sunt

overn, n’, andl.

In general it is not sufficient to calculate the free quasi-
particle responsél,. Rather one has to calculate the quasi-

particle random-phase approximatiofQRPA) response,
which accounts for correlations with the quantum number

corresponding to the excitation under consideration in thd
ground state. However, because of the particular form of th
interaction used here, it is clear that there cannot be an
ground-state correlations with the quantum numbers of th

twist mode(J°=2"). Therefore the QRPA response function
IT is just equal to the free quasiparticle response fundtign

[18]. In this sense the situation for trapped atoms is differen
from that in nuclei, where the spin-orbit part of the interac-

tion leads to asmal) change of the twist response function

[14], e.g., through the coupling between the twist mode and®

the spin-flip mode, which is excited by the operaior
® )20

In the remaining part of this article we will show numeri-
cal results for the strength functio®(w)=-ImIl(w)/=
which we calculate from Eq(5) with a finite width » for
each peak.

Ill. NORMAL PHASE
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FIG. 1. Strength functio®(w) (X 10°% in HO unit9 for the twist
mode in a gas of T0(solid line) and 2x 10° (dashed ling trapped
bLi atoms at zero temperature without pairifiy=0) as a function
of the frequencyw (in units of the trapping frequencf).

(a) The energy difference between neighboring shells be-
omes largefsmallep in the case of an attractieepulsive
Interaction. Therefore, the twist frequency will be shifted up-

ward (downward. This effect has been described quantita-

tively within the fluid-dynamical approadig].
(b) The degeneracy of states with differénis lifted, and

e therefore expect a fragmentation of the strength of the

wist mode into many patrticle-hole states corresponding to

r given quantum numbera and |, the number of HO
uanta is 2n—1)+l1].

Both effects can be observed in Fig. 1, where we display
the strength functio®(w) of the twist mode as a function of
the excitation energy for two systems @fi with different
numbers of atoméscattering lengtta=-216QG, [25], where
a, is the Bohr radiusin a trap with a frequency of)=2x
144 Hz, corresponding to a coupling constgat-0.4 in
HO units. In order to show the fragmentation of the mode,
we display the response function in a small energy interval
(containing 100% of the total strengtiith a very high reso-
lution (=10"%). Let us first look at the result corresponding
to 10 particles in the trag5x 10* particles per spin state,
chemical potentialu=62.6. One can clearly see that the
average frequency is higher than 1 and that the strength is
fragmented into two series of peaks, corresponding to the
two series of transitions mentioned above un@d®r With
2X 10° particles(10° particles per spin state,=78.0, the

§ansitionm, | —n,l+1 andn, | —n+1, -1 [remember that

Let us first look at the normal phase of the system at zerdlartree field is stronger and therefore both effects, fragmen-

temperature, i.e., we artificially p&t=0 in Eq.(1). For this

situation, there exist microscopic descriptions of the twist

mode in nuclei14,15 and in metal clustergl8]. However,

tation and shift of the average frequency, are enhanced.
The difference shown by the strength at low frequencies
of the systems containing 1@nd 2x 10° particles is related

for the twist mode in trapped atomic gases there exists onlyo the different single-particle spectra of these two systems.

a calculation[19] following the fluid-dynamical approach
developed by Holzwarth and Eckart for the nuclear ¢asé

In the case of 1Dparticles, the Hartree fieltV breaks the
accidental degeneracy of the noninteracting HO single-

This fluid-dynamical approach allows one to predict the twistparticle levels, but the different HO major shells are still
frequency, but it cannot answer the question if the twistseparated. However, when the number of particles in the trap

mode as a collective motion exists at lB].

grows, the Hartree field becomes strong enough to mix dif-

In the case of a noninteracting HO, it is straightforward toferent HO major shells. This leads more or less accidentally

show that the operatazl, excites only transitions witho
=1 (in units of (). Therefore, in the noninteracting HO, the
total strength is concentrated at=1. If now the Hartree
potential W is switched on, two effects are to be expected.

to the fact that in the case of21(Q° particles the transition
energies of the series,| —n+1,[-1 with 2(n-1)+1=82
(the major shell number 82 is the last one lying completely
below the Fermi levelare almost degenerate at=1.05.
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In order to compare our results quantitatively with the Pl =
predictions obtained within the fluid-dynamical approach, we o]
define an average frequency according to . J\
* 2y T=0.13
f do wS(w) P9t
0
Way = ™ e ) (7 g I T=0.15 ‘
f do Sw) o,
0
. . . 0.8 1 1.2 14 1.6
For both cases considered here, this average frequency is in ®

perfect agreement with the frequenayy predicted in Ref.
[19] in the framework of the fluid-dynamical approach: for ~ FIG. 2. Strength functio®(w) (X 10° in HO unit9 for the twist
N=10° atoms, w,,=1.088 andw;y=1.087, and forN=2 mode in a system with about 1800 at_omsﬁ_bif at T=0 (top), 0.13
X 10P atoms, w,,=1.100 andwsg=1.101. It should also be (middle)_, and 0.15(bottom); w and T in units of Q and A Q/kg,
emphasized that the width of the interval over which the'®SPectively.
strength is distributed is very narrow compared with the avgnger Hartree field If we lower the temperature, the su-
erage frequency of the twist mode. Itis therefore justified 10,qf1ig transition takes place: the effect on the strength
speak about a collective excitation. function is to push its structure toward higher values of the
energy. Qualitatively this can be understood by replacing the
single-garticle energies, by the quasiparticle energids,
IV. SUPERFLUID PHASE ~ (e~ m)?>+A2, whereA denotes the average matrix ele-
Let us now consider the superfluid case. It is interesting tgnent of the pairing field at the Fermi surface. Neglecting the
analyze how the properties of the twist mode are modifieceffect of the Hartree field for the moment, one obtains in this
when pairing correlations are taken into account in the caiway a shift of the twist frequency from 1 to a higher value
culations and the full HFB equations are solved. We willwhich lies between/1+4A% andA+\1+A? To see this, let
show that the structure of the strength function and the colus consider two limiting cases. If the chemical potential lies
lectivity of the twist mode are strongly affected by pairing €xactly on a single-particle levehalf-filled shel), n=Ng
correlations and we will study this dependence at differentt3/2, atransition of the typdNg— Ng+1, for example, cor-
temperatures for two systems with different numbers of atfesponds to the creation of two quasiparticles with energies
oms. En.=A and Ey_,;=1V1+A% In the other limiting case, the
We set the coupling constagtequal to —1 in HO units. chemical potential lies between two single-particle levels
For ®Li atoms with a scattering length=-216G, this cor-  (closed shejl ©=Ng+2, and the twist mode corresponds to
responds to a trapping frequency @F=27x817 Hz. (We  the excitation of two quasiparticles having each the energy
chose a stronger coupling than in the previous section irENF=ENF+1=\51/4+A2.
order to be able to study the case of strong pairing, which Moreover, as one can also observe in Fig. 2, the excitation
would be possible only for extremely large numbers of par-mode becomes less collective and, due to pairing, more and
ticles if g=—0.4) We shall consider two cases for the trappedmore damped and fragmented if one goes fibr0.13 to 0.
gas: (@) a small system with around 1800 atorfweak- In the latter case pairing correlations are more intense and
pairing regime, A <#Q); (b) a big system with around 3.6 the loss of collectivity and the Landau damping are conse-
X 10* atoms(strong-pairing regimeA >#%). For both cases quently more important. A similar Landau damping effect
we will take into account different temperatures and analyzelue to superfluidity has been found in RES] for the spin-
how the twist mode evolves when the critical temperaliye dipole mode in the weak-pairing regime.
of the phase transition is approached and crossed. Another interesting effect to notice is the strength below
Before passing to consider the two cases we would like taw=1 which appears belo. but disappears at=0. Obvi-
mention that in atomic nuclei, which are the only systems forously this effect is due to the second term in E5), which is
which the twist mode has been observed so far, one is alwaysqual to zero aT=0.
in the weak-pairing regime, the relatich<<#() being al- (b) Strong pairing regime. Let us consider now the case
ways satisfied. with about 3.6< 10* atoms(u=40). We present in Fig. 3 the
(a) Weak-pairing regime. The chemical potentialn this  strength function at four temperature=0, 2, 5, and 6.5
case is chosen equal to 16. We show in Fig. 2 the strengt{from top to botton. In the four cases the central values of
function for three values of the temperatufe:0 (top), 0.13  the pairing field areA\(r=0)=12.7, 12.5, 9.6, and 0, respec-
(middle), and 0.15(bottom). The three cases correspond to tively. In the latter cas¢normal phasewe observe a unique
values of the pairing field in the center of the trapXir  peak centered at about=1.2. Again, the energy is higher
=0)=0.67, 0.26, and 0, respectiveliy HO unit9. In the last  with respect to Fig. 1 and with respect to the cé®dFig. 2)
case(bottom of the figurgthe gas is in the normal phase: we due to the stronger coupling. A fragmented structure with a
observe that in the normal phase the strength function igsery low strength exists in the energy region fram 2 up to
concentrated at about=1.12(this is slightly higher than in 4. When we lower the temperature, we cross the superfluid
Fig. 1 because of the stronger coupling, which leads to @ransition(see upper panel of Fig.)4At T=5 the system is
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one decreases the temperature belguthe number of “nor-
mal” quasiparticles is reduced and therefore the strength of
the twist mode becomes smaller. On the other side, the en-
ergy spectrum of the normal quasiparticles is modified, lead-
ing to a destruction of coherence between quasiparticles
moving in the same directidr28]. It follows that the mode is
more and more damped when one approache8. Obvi-
ously, this effect will strongly depend on the strength of pair-
ing correlations, and this is why it is more important in the
strong-pairing regime.

Let us now discuss the relationship between the strength
of the twist response function and the normal-fluid compo-

FIG. 3. Strength functiorS(w) (X105 in HO units in a gas nent .of the system in a more qugntitative way. To thgt e.nd we
with about 3.6< 10* atoms at four different temperaturésom top conslder the inverse-energy weighted sum rule., which is pro-
to botton): T=0, 2, 5, and 6.5w andT in units of Q and#Q/ks, portional to the real part of the response functiorwatO:

respectively. o 1
f da)M = - —T1I(0). (8
superfluid: we observe that the main peak still exists, even if 0 2

w
the excitation mode is less collective than in the normalwithin the two-fluid model it can be shown explicitigee

phase case. Also, the fragmented structure towsse®—3 ; . e )
gets more strength than in the previous case. The fragment he Appendix _that this quantity is related to the density of
e normal-fluid component of the system, by

tion becomes much stronger and extends uptdl0 when
the temperature is lowered further, as can be seen in the case 87 (*
T=2. However, the peak at abowt=1.2 is still visible. Fi- I1(0) = - 1—5f dr rép(r). 9
nally, if we look at theT=0 case, where the pairing correla- 0
tions are the strongest, we observe that the main collectivgy Fig. 4 (bottom) we show numerical results for the depen-
peak completely disappears, while a very fragmented strucdence of the sum rule on temperature. The solid line repre-
ture with a low strength remains in the energy region besents the full HFB calculation, while the dashed line corre-
tweenw=2 and 10. We can thus conclude thatTatO the  sponds to Eq(9). The agreement is very satisfactory except
collective twist mode does not exist any more. The samet extremely low temperature, where quantum finite-size ef-
conclusion has been drawn in R¢8] for the spin-dipole  fects (corrections iniw/A, see Ref[27]) lead to a nonvan-
mode in the strong pairing regime. ishing value of the sum rule, whereas the two-fluid model

Actually, once the irrotational flow limitstrong pairing  predicts that the sum rule should go to zero at zero tempera-
is reached 26,27, the superfluid current has an irrotational tyre because of the vanishing normal-fluid component. How-
velocity field, and the only possible excitations of the supereyer, the overall good agreement confirms our interpretation
fluid are density-fluctuation modes. In the language of a twothat only the normal-fluid part of the system participates in
f|UId mOdel, a." the Other eXCitationS of the gaS, SUCh as th%e tW|St motion. In Order to recognize more eas”y the re-
twist and the spin-dipole modes, have to be related to itgions where the gas is superfluid and normal, and to observe
normal component, as was discussed in Re#8,29. When  how pairing correlations decrease by increasing the tempera-
ture, we also plot in Fig. 4top) the value of the gap at the
12 1 center of the trapA(0). Note that the temperature depen-
8t ] dence ofl1(0) differs considerably from that ai(0).

To conclude this section, we remark that our approach is
only valid in the regime where collisions between atoms can
be neglected. Following Ref7], this means that the mean

AO)

IS

o

R time between collisionsr=pa?vg(T/ er)? (Wherep, vg, and
%4 €r are the density, Fermi velocity, and Fermi energy, respec-
2l ] tively), must be much larger than the oscillation period in the
o L& trapping potential, /(). Expressed in HO units, we obtain
0 S 6 QOr/(2m)=67°/(gT)% In the case off=6.5 this ratio gives

still 4.4, i.e., an atom performs more than four oscillations
FIG. 4. Temperature dependence of the gap in the center of theefore it collides with another one. Consequently, all cases

trap, A(0) (top; A and T in units of 2Q and#{)/kg, respectively,  we considered are well in the collisionless regime.
and of the static response functiohl¢0) (bottom; x107® in HO
units), which is equal to twice the inverse-energy weighted sum

rule, for a gas with 3.& 10* atoms. In the lower figure, we show V. SUMMARY AND OUTLOOK

for comparison the result of the HFB calculati¢solid line) to-

gether with the result obtained within the two-fluid model, E9). In this article we have studied the twist mode of an atomic
(dashed ling Fermi gas trapped by a spherical harmonic potential in the
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couple to the twist operator, we analyzed this excitation by

calculating the free quasiparticle response function. APPENDIX: RELATION BETWEEN THE SUM RULE
We have analyzed the twist mode without pairing corre- AND THE NORMAL COMPONENT

lations by settingA=0 in the Bogoliubov—-de Gennes equa- |, this appendix we will briefly show how a relationship
tions. We observed that the strength function is concentratefetweenl1(0) and the normal-fluid component of a system
around an energy higher thas=1. This shift(with respect  \yith strong pairing/A>1 in HO unit9 can be established. A

to the case of a noninteracting H@& due to the Hartree (etailed discussion of some of the topics mentioned here can
potential and depends on the sign of the coupling congtant pe found in Ref[27].

We have also observed a fragmentation of the strength which As mentioned in Sec. IV, the inverse-energy weighted
describes the transitiomg | —n,l+1 andn,| —n+1,/-1. sum rule is proportional to the respon¢0) of the system

In the case of pairing correlations we have shown that theo a static perturbation with a perturbation Hamiltonidp
excitation mode starts losing its collectivity below the criti- «zL,. By taking the# — 0 limit of the time-dependent HFB
cal temperaturd@.. When the temperature is lowered frdm  equations, one can derive equations similar to the Vlasov
toward T=0, the strength function becomes more and moreequation for the superfluid phage our case, of course, the
damped and fragmented. In the weak-pairing regitde time dependence does not play any yolEhe resulting de-
<#Q) this effect is less pronounced than in the strong-viation of the Wigner functiorp(r,p) from its equilibrium
pairing regime(A>#0Q). In the weak-pairing case the col- value reads
lective twist mode still exists at zero temperature. With in-
creasing strength of the pairing correlations, the collective pa(r,p) =<
peak is shifted to higher energies, and at the same time it
becomes more and more broad and fragmented and itgith
strength decreases. Finally, in the strong-pairing limit it com- -
pletely disappears at=0. In fact, it can be predicted that the E(r,p) = [h(r,p) T + A%(r), (A2)

P(/)vrls;th;nc;detceases to EX.'St once _the Flj?l'”ngl.'sifgozng enougWhere h(r,p) andhy(r,p) denote the Wigner transforms of
ystem to reac its |rrotat|qna ow linii26,27. Ho+WI(r) andH,, respectively. Sinc&l(0) is defined as the
It should be pointed out that, in the normal phase, the . .
twist mode can only exist in the collisionless regime, Sinceex_pectatlon value ot in the perturbed system, we can
the restoring force for this collective oscillation comes en—erte
tirely from the Fermi surface deformatidi3]. This means d® d3p( df(E)
that detecting the twist mode in the normal phase would be a ~ H(0)=2 W(E)
signal that the system is in the collisionless regime. This T E=E(T.p)
might be of importance since the evidence for the superflu- (A3)
idity obtained in recent experimer{id] relies on the assump-
tion that the system is in the collisionless regime. The sub
sequent disappearance of the twist mode at lowe
temperatures would be a clear signal that the superflui
phase has been reached. Concerning the possibility to excite df(E)
the twist mode experimentally we refer to REE9]. pa(r) = p(r) f df(‘ E)
Recently, the twist mode has been measured in open-shell
finite nuclei such as®Ni [17]. In the existing theoretical is the density of the normal-fluid component within the two-
studies of the twist mode in nuclei pairing correlations havefluid model.
not been taken into account, i.e., these studies are essentially Note that the temperature dependence of(Byis differ-
restricted to closed-shelinagio nuclei. Although nuclei are ent from that of the number of normal particles, since in Eq.
in the weak-pairing regime, we think that a theoretical study(9) the r® factor weights very strongly the surface of the
of the twist mode in nuclei taking into account pairing cor- system, where\(r) is smaller and where consequently the
relations could be very interesting. Work in this direction is normal-fluid fractionp,,/p is higher than in the center of the
in progress. trap.

df(E)

hy(r,p), Al
dE )EzE(r,p) 1(r,p) (A1)

(zxp - zyp)>.

Assuming spherical symmetry and a strongly peaked Fermi
surface(i.e., A, T< u) it is straightforward to derive Eq9),

(A4)

E=VE2+A2(r)
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