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Collective and single-particle excitations of a trapped Bose gas
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The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions
of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We
show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range
of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover
from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly
explored by studying the frequency of the surface mode as a function of their angular momentum. The
applicability of the semiclassical approximation for the excited states is also discussed. We show that the
semiclassical approach provides simple and accurate formulas for the density of states and the quantum
depletion of the condensafes1050-294@7)05111-1

PACS numbes): 03.75.Fi, 67.40.Db

[. INTRODUCTION mation and we show that it provides simple and useful for-
mulas for both the density of states and the quantum deple-
The collective modes of a Bose-condensed gas confineion of the condensate.
by an external potential have been the object of extensive
work in the last months. The successful agreement between
experimental result§l,2] and theoretical prediction3—8§]

for the collective frequencies at low temperature has stimu- The elementary excitations of a degenerate Bose gas are
lated intensive research activity. Though only the modegssociated with the fluctuations of the condensate. At low
with low multipolarity and frequency have been detected iniemperature they are described by the time-dependent Gross-

experiments, the excitations at higher energy and angulgsitaeyskii(GP) equation for the order parameféiO]:
momentum are also very important because they determine

the statistical behavior of the system, including thermody-
namics, transport phenomena, and superfluid effects. . 4d

The excited states at high energy are expected to have % 7 ¥ (I\1)= _W+Vext(r)+g|q'(r't)|2 W,
single-particle nature. However, the transition from collec- (1)
tive (phononlikg to single-particle excitations in an inhomo-
geneous system can differ significantly from the case of a
uniform Bose gas. In fact, the presence of a surface allow#here [dr[W|?=N is the number of atoms in the conden-
for the occurrence of single-particle states even at low ensate. At zero temperatufé coincides with the total number
ergy (lower than the chemical potentiallhese states, of low Of atoms, except for a very small differené®&l<N due to
energy but high multipolarity, are localized near the surfacethe quantum depletion of the condensate. The coupling con-
where the condensate density becomes small. This behavigtantg is proportional to thes-wave scattering lengtia
represents a peculiar and interesting feature of these confinéroughg=4m42a/m. In the present work we will discuss
systems; in a uniform Bose gas, in fact, only phonons aréhe case of positive scattering lengé;> 0, as in the experi-
present at low energy. In a recent paf@rwe have already ments with rubidium and sodium, but the same formalism
pointed out the effects of these single-particle states on thean be also applied to systems with negative scattering
thermodynamic properties of the trapped gases. length. The trap is included througl.,:, which is chosen

In the present work we solve the equations for the excitediere in the form of an isotropic harmonic potential:
states of a weakly interacting gas in a spherical trap at zer¥e,(r) = (1/2)mwfor?. The harmonic trap provides also a
temperature within Bogoliubov theory. The main purpose istypical length scale for the system, o= (%/Mwyo) Y% Ac-
to investigate the collectivgphononlike and single-particle tually, the experimental traps have cylindrical symmetry,
character of the elementary excitations. This is accomplishedith different radial and axial frequencies, but the choice of
by calculating key quantities, such as the density of statesy spherical trap, as we will discuss later, is not expected to
the frequency of the surface modes, and the quantum depleffect the main conclusions of the present work, while reduc-
tion of the condensate, and by comparing the predictions ohg greatly the numerical effort.
Bogoliubov theory with the ones of different approxima- The normal modes of the condensate can be found by
tions, like Hartree-Fock theory and the hydrodynamic modellinearizing the GP equations, i.e., looking for solutions of the
Finally we check the accuracy of the semiclassical approxiform

II. BOGOLIUBOV THEORY
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W(r,ty=e WA W (r)+u(r)e “+o*(r)e, (2)
whereu is the chemical potential and functionsandv are

the “particle” and “hole” components characterizing the
Bogoliubov transformations. After inserting in E¢l) and
retaining terms up to first order m andv, one finds three
equations. The first one is the nonlinear equation for the
order parameter of the ground staid],

[Ho+gWa(n1W¥o(r)=puWo(r),
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where Hy=— (%A2/2m)V2+V,,(r), while u(r) and v(r)
obey the following coupled equation:

hou(r)=[Ho—pu+2g9¥2lu(r)+g¥u(r), (4)

©)

Numerical solutions of these equations have been recently
found by different authorg4—§]. In the present work, we use
them to calculate the density of states, the frequency of the

—hwv(r)=[Ho—u+2g¥3]v(r)+g¥au(r).

T

5

surface modes, and the quantum depletion of the condensate,

e (units of hvy)

in order to clarify the different roles played by excitations
having collective and single-particle character.

When the dimensionless parameléa/ayg is large, the
kinetic energy term in the ground-state equati8nbecomes

FIG. 1. Excitation spectrum of 10000 atoms 8fRb in a
spherical trap witha,o=0.791x 10" * cm. The vertical bars have
length (2+1). The upper spectrum corresponds to the numerical
solution of Egs.(4) and (5); the lower one is the spectrum of the

negligible with respect to the mean-field term and one 9et$¥artree-Fock Hamiltoniafl1). Two energy scales are also shown

the Thomas-Fermi approximation:

TF_v/_(r)| 2
\Ing(r)=(MTGXt()) , (6)
with
TF:ﬁwHO Na “ 7)
H 2 aHo

In the same limit the equations of motigd) and (5) coin-
cide with the equations of the hydrodynamietD) of super-

in the figure: the chemical potentigl=8.41, fixed by the solution
of Eq. (3), and the critical temperature for a noninteracting gas in
the same trapkgT.=20.26.

atoms of rubidium(scattering lengtla=110a,, wherea, is

the Bohr radius For the spherical trap we have chosen the
frequency wyo=2myo=2m187 Hz, which is the average
who= (wwyw,) " of the axial and radial frequencies of Ref.
[1]. It corresponds to the oscillator length
ay0=0.791x10 *cm. Energy is given in unitéwyo and

the chemical potential is 8.41 in these units. The vertical bars
have length (2°+ 1), so that the angular momentum of each

fluids [3,11,13. In the spherical case their eigenfrequenciesstate can be inferred from the figure. One clearly sees that, at

take the analytic fornj3]

o(n,/)=wpo(2n?+2n/+3n+ /)2, (8)
where/ andn are the angular momentum quantum numb
and the number of nodes in the radial solution, respectivel
The deviations from the predictions of the noninteracting
harmonic oscillatofHO) model,

o(n,/)=wyo(2n+/), 9)
point out the effects of two-body interactions. These are par
ticularly important for the so-called “surface” modes
(n=0), where the HO predictiom=/"wyg is significantly
lowered to the hydrodynamic value= \/7wHo. In general
the HD prediction turns out to be very accurate for the low-

energy excitations of the system, while the ideal gas predicThe density of statesg(e)

el

y

energy much larger than the chemical potential, the excited
states tend to be grouped into levél®, o apart, as in the
noninteracting HO model. Conversely, the energy of the
lowest modes is close to the prediction of the HD equations
3]. For instance, the lowest=2 and/=0 modes differ by
less than 3% from the hydrodynamic valugd and /5,

respectively.

Ill. DENSITY OF STATES

_ Once the spectrum of excited states is calculated, one can
count the number of states below a given enetgy

> (2/+1).

w<e

N(e)=_ (10

is simply the derivative

tion is expected to be valid in the opposite case of highd9t(e)/de. Note that the quantit§i(e) is well defined even

excitation energies. The exact solutions of E@s.and (5)
provide the correct interpolation between the two limiting
regimes.

A typical spectrum obtained from Eq$4) and (5) is
given in the upper part of Fig. 1 for a gas bf=10 000

for a discretized spectrum, while the density of states implies
averaging the number of states within small but finite energy
intervals.

In Fig. 2 we show the quantit)(e) obtained by counting
the levels in the spectrum of Fig. 1. For comparison the
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FIG. 2. Number of state$i(e) vs energy. The Bogoliubov FIG. 3. Frequencyin units of wyc) of then=0 excited states as

(points and Hartree-Fock(solid line) predictions, obtained by 3 function of their angular momenturfi for N atoms of8’Rb in a
counting the states in Fig. 1, are compared with the ones of th@pherical trap witta,,o=0.791x 10 * cm. The hydrodynamic pre-
noninteracting harmonic oscillatqdashed ling and of hydrody-  diction is shown as a dashed line.

namic equationgdot-dashed ling

except for the excitations having lowest angular momenta,

y i.e., shortest bars in the figure. Those collective excitations
the hydrodynamic mode) are also shown. The effects of 5o ingtead correctly reproduced by the hydrodynamic
the repulsive interatomic forces are clearly responsible for ap, 4ol The corresponding Hartree-Fock prediction for the
enhancement of the density of states with respect to the ideabanti;cy M(e) is also given in Fig. 2 as a solid line. The

gas. Howeveni(e) remains well below the HD approxima- a4reement with the results of Eqd) and (5) is remarkable
tion, the latter being soon inadequateeaisicreases. Indeed " the whole range of energy. The figure shows the case of

hydrodynamic theory accounts for collective phenomena ang oo atoms but a similar agreement is found for all values

prO\_/id(_as an excellent description of the low-lying elementary ¢ \ relevant for the experimentsi= 103~ 10). The above
excitations of the systeni3,8], but completely

INOreS - hahavior represents a major difference with respect to the

single-particle effects. This is exactly the oppqs.ite of Whatcase of a homogeneous Bose gas where phonons have a cru-
Hartree-FockHF) theory does. For this reason it is interest- cial effect on the density of states.

ing to compare the results of Bogoliubov theory with the
predictions of HF theory in which one determines the eigen-
states of the single-particle Hamiltonifih3,14] IV. SURFACE EXCITATIONS

_ 2 2 2 In order to better understand the transition from the col-

Hiup= = (RT12M)V74 Vex(r) = p+2gWo(r). (11 lective to the single-particle regime, we have explored in

The lowest eigenstates of the HF Hamiltonian are expectegletail the evolution of the excitation energy for the surface
to be localized near the surface of the condensate. To undefodes (=0) as a function of their angular momentufi
stand this point better, let us take the lafgdimit. In this ~ as predicted by the solution of Eqgl) and(5). As already

case one can use the Thomas-Fermi approxime(ﬁ())rfor mentioned, the effects of the interaction are particularly im-

the ground-state density. The HF Hamiltonian then takes thgortant for such modes and are responsible for a significant
simple form lowering of their frequency. In Fig. 3 we plot the quantity

w, 1/, in units wyg, for different numbers of atoms in the
same trap. This ratio has an important physical meaning be-
cause, according to Landau’s criterium for superfluidity, it
provides the rotational frequency at which tHgh surface
where R=[2"F/(mw?c)1Y? is the classical radius of the excitation becomes unstable. The hydrodynamic prediction
condensate. The HF potential has a pronounced minimum &8) is shown as a dashed line, the curve going asymptotically
R. This potential well near the boundary persists in the HRto zero for large/. The figure shows that the Bogoliubov
Hamiltonian even for smaller values bf. states first follow the HD curve, but, rather soon, they devi-
It is worth stressing that, in general, Hartree-Fock theoryate from it, approaching asymptotically the noninteracting
is expected to be correct for energies larger than the chemicshlue w /7= wyo. The deviation from HD takes place at
potential. For these trapped bosons, however, it accounts al$arger values of/ if N is increased, revealing that the HD
for the low-energy excitations close to the boundary, wherepproximation becomes applicable to a larger number of
the density of the condensate is small. This can be seen #tates in this limit.
Fig. 1, where the Hartree-Fock and Bogoliubov spectra are A simple estimate of the typical value of at which the
compared. One notes that the two spectra are rather simil&D picture starts failing, one can tak&5] /' .=Rp. where
even below the chemical potentigh=8.41 in this case R is the radius of the condensate, proportionaNtd, and

results of the noninteracting harmonic oscillaf®y and of

1
Hue=— (R22m)V?+ Smofor’~R?, (12
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FIG. 4. Critical rotational frequencgin units of wyg) for pro- (@)
ducing a quantized vortesolid line) or surface state@ashed ling 2
as a function of the number of rubidium atoms in the spherical trap
p. is of the order of the inverse of the surface thickness
d=[a}/(2R)]¥?[16—-18. For larger values of, the wave- 1.5
length of the excitations becomes shorter tlthrmand one
explores microscopic details of the boundary that cannot b i
described by the Thomas-Fermi approximati@ and by N
the HD equations. This yieldg (R/ayo)**xN¥5 corre- &
sponding to an excitation enerdy»=N%'> smaller than the
chemical potential, which instead behaves\#8. This ex-
plains why the crossover from the HD to the single-particle 0.3
regime takes place at energies smaller tpan
For each value oN, the curves in Fig. 3 exhibit minima
and one can define a critical frequencys=min(w, /7). 0 '
For rotational frequencies larger th&, the surface excita- 0.5 1 1.5 2
tions become unstable. It is interesting to compare this valu: () /KT,

with the critical frequency needed to generate a vofie}.

This is done in Fig. 4 where we compare the two critical
frequencies as a function &f. We find that the lowest in-

FIG. 5. Ratio9(€)/N vs ¢, in unitskgT.. In (a), the squares
correspond to counting the states in the Bogoliubov spectrum of

stability is always associated with the creation of a vortexFig. 1, while the solid line is the corresponding semiclassical ap-
Note, however, that in order to generate a vortex one needyoximation (13). The latter is indistinguishable from the formula

to transfer to the system a huge angular momenopal to
N#), which is much higher than the valué required to

create a surface excitation.

V. SEMICLASSICAL APPROXIMATION

AND SCALING BEHAVIOR

(16), valid in the scaling regim&la/ayo>1. In (b), the semiclas-
sical prediction(16) is given for different values of the scaling
parameters,.

corresponds to the semiclassical dispersion law. Here the
quantityng(r)=¥3(r) is the condensate density. In Figab
we compare the semiclassical result #8¢e)/N (solid line)

A good approximation for the density of states can bewith the one obtained from Eq&}) and(5) (squaresfor 10*

obtained by solving Eqs(4) and (5) in the semiclassical

atoms of rubidium in the same trap of Fig. 2. Here the energy

approximatior{9,20,21. In this approximation, which is ex- is given in unitskgT= 7 wpo N/£(3)]*3, which is the criti-
pected to hold for excitation energies much larger than theal temperature for an ideal Bose gas in a harmonic trap; the

oscillator energyt wyg, the quantityt(e) is a continuous

function of e defined by

€ drdp ,
‘ﬁ(e)Zfode f W&(e —e(r,p)), (13

where

2 2

e(f,p)=[

p
ﬁ+vext(r)_ﬂ+29no(r)> —g%n(r)

1/2

(14

value for 10 atoms iskgT.=20.261wyo as shown also in
Fig. 1. The accuracy of the semiclassical approximation
turns out to be very high also for relatively low valueseof

The use of the semiclassical approximation allows one to
carry out the analysis of the density of states in a systematic
way and to exploit the dependence on the relevant param-
eters of the system. In fact, when the number of atoms in the
condensate is large enough to make the Thomas-Fermi ap-
proximation(6) accurate, the statistical properties of the sys-
tem can be expressed in terms of a single scaling parameter
7 given by the ratid22]



3844 F. DALFOVO et al. 56

(15 in the calculation of Fig. &) correspond to a spherical trap
with =0.407. As pointed out in Ref22], quite different
experimental conditionéshape of the trap, value of, etc)

between the chemical potentiél), calculated at zero tem- can correspond to very similar values gf In terms of the

perature in the Thomas-Fermi approximation, and the criticagcaling parameter  and the dimensionless energy
temperaturekgT.. The ratio » depends on the deformation €= e/(kgT.), the number of stateSi(e) predicted by the
of the trap only through the geometrical average of the osBogoliubov semiclassical theory becomes

w't 7( Nl’ﬁa) 215 cillator frequenciesoo= (wywyw,) . The parameters used
15

ano

\/[x2+('E’)2/772]1/2—X

€'y
Vx2+(€")? 9?

N(e < 4
(e)zj’orz' fldx\/l—x +(€")2\x+nle"|. (16)
0 0

N m{(3)

This result has been obtained by using the Thomas-FernNa/a,,>1, where the TF approximation holds, the semi-

approximation(6) for the condensate density in Eq43)  classical approximation provides the simple analytic [@lv
and (14); this allows one to split the space integral into an

inside region(first term in the square bracketnd anoutside 3

region (second term It is worth stressing that Eq.16), ﬂ: Y —~0.098/° (19
which is expected to hold in the scaling regie/a o> 1, N 6v27(3) '

provides a very good estimate of the semiclassical expres-

sion (13) even for relatively smalN. For instance, the two
predictions are indistinguishable in Fig(ah being repre-
sented by the same solid line. In Fighbwe show the pre-
dictions for the density of states given by the semiclassic
approximation(16) for three different values of;. The pa-

with 7 given in Eq. (15). Since the available experiment
corresponds tgy=0.4, the quantum depletion turns out to be
aless than 1%, as already pointed out in Re%s7]. In Fig. 6

we show the quantum depletion for 10 000 and 50 000 atoms
rameters of the recent experiments at Jithand MIT [2], of rubidium obtained by summing over the Bogoliubov spec-

. : : trum up to a given energy (solid lineg. We compare it with
diff tt f )
tj(;ag.%g.ery ifterent traps, correspondsaanging from 0.39 the prediction of the semiclassical expressid8) (dashed

Expression(16) can be also expanded at low energy,"nes?' while the arrows _inc_iicate 'ghe asymptotic vall(é§),_
e<kgT., still compatible with the assumptioss % oy . holding in the scaling limit. An important result emerging
one fincds the Iavm(e)/NOCESIZ- This differs from the usual from the numerica_l c_alculation is t_he very slow convergence
€2 law typical of the phonon regime, revealing the differentOf the sum(17)t.hTh|s IS not a surpnsle, S|gce also !ént;lhomo-
behavior exhibited by these systems with respect to the hdleneous gas the convergence is slow due to th n

mogeneous Bose gas.
1.0 T T

VI. QUANTUM DEPLETION

In the last part of the paper we calculate the quantum
depletion of the condensate, which, according to Bogoliubov
theory, is given by

ON 1
WZN; fdr|Uj(r)|21 17

The “hole” components; can be obtained by solving Egs.
(4) and (5). In the semiclassical approximatigf] one re-
places the sum over all the discrete states with the integral

over p of the function 0 . .
0 5 10 15
p2 energy (units of kT,)
vApN)= 5 (2_+Vext(r)_ﬂ+29no(r)+€(p:r) , |
e(p,r) \2m FIG. 6. Quantum depletion for 10 0Q@vo lower curve} and

(18) 50 000 (two upper curvesatoms of’Rb in a spherical trap with
a,0=0.791x10"* cm. The depletion is plotted as a function of the
wheree(p,r) is the single-particle energil4). In a uniform  maximum energy considered in the siih7). Solid lines:|v|? from
gas this expression yields the most famous resulthe solution of Eqs(4) and(5); dashed lines: from the semiclassical
SN/N=(8/3)(nya® )2 In the trapped gas and in the limit approximation(18). Arrows: asymptotic scaling valug&9).
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the momentum distribution at high momenta and one has ttrapped gas shows an important particlelike behavior even at
go up toe=100u in order to saturate 90% of the suh7).  low energy. This fact has been here explored in detail. We
The agreement between the quantum depletion obtainduave compared the results of Bogoliubov theory for the den-
from the discretized surfl7) over the Bogoliubov states and sity of states with the ones of Hartree-Fock theory, finding a
from the semiclassical approximatidh8) is satisfying and very good agreement on a wide range of energy. We have
was not obviousa priori. Figure 6 shows a discrepancy of studied the behavior of surface modes, emphasizing the
the order of 5% between the two predictions fo=10 000, crossover from the low-energy regime, well described by the
while for largerN the two curves tend to coincide. It is worth hydrodynamic model, to the single-particle regime. This
noticing that the two solid lines in Fig. 6 require the summa-crossover provides also a critical frequency associated with a
tion of fdr|v,—(r)|2 over up to 15000 different values of rotational instability and we have compared this frequency
(n,?) in the Bogoliubov spectrum; the calculation is thenwith the one needed to create a quantized vortex. Another
much heavier than the semiclassical one. The good accuradyportant result emerging from our analysis is the high ac-
of the semiclassical approach makes it useful in practicaturacy exhibited by the semiclassical approximation for the
situations. This is especially true for the simple form{i),  excited states. Finally, we have calculated the quantum
which includes the case of anisotropic traps through the awdepletion of the condensate by summing the “hole” compo-
eraged frequency o= (w,w,,)*® entering the Thomas- nent/dr|v(r)| over all the states in the excitation spectrum
Fermi chemical potentiakTF and, hence, the scaling param- of Bogoliubov theory. The convergence of the sum turns out
eter 7. to be very slow, as expected by the analogy with the case of
Finally, the largeN semiclassical formul&19) shows the the uniform gas. Again we find excellent agreement with the
rather strong dependence of the depletion on the scatterirgyedictions of the semiclassical approximation. In the limit
length parametea. If the magnetic tuning of the scattering Na/ayo>1, the latter provides the simple and useful formula
length will become available, it will be possible in the future SN/N=0.098,°, in terms of the scaling parameter
to increase significantly the value gfand consequently ex- 7=1.57(N"®a/ay0)?°.
plore Bose gases where the quantum depletion is much
larger.
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