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Abstract

Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main
processes herein are boundary assignment and surface segregation, which rely on the integration of global scene
information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by
feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for
figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown.
To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a
feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-
layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual
system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.
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Introduction

Figure-ground segmentation is achieved by assigning visual

elements to either objects or background as a primary step in

visual perception. Two main processes in organizing figure-ground

segmentation are boundary assignment and surface segregation

(Fig. 1). Boundaries are detected based on local contrast of visual

elements, and are assigned to the figural region and not to the

surrounding background region. This assignment is called border-

ownership. For example in figure 1a, when the visual system

assigns the contrast borders to the light grey area a vase is

perceived on a black background. If the same contrast borders

belong to the black regions two monkey faces are perceived and

the light grey area becomes background. Surface segregation is

based on the comparison of locally identified visual features across

space. The surface is segregated from background by grouping

operations according to Gestalt principles where similar elements

are grouped into coherent objects. For example in figure 1b, the

individual orientated line segments in the centre are grouped

together because they have the same orientation and they are

segregated from the elements in the surrounding region as they

differ in orientation. Consequently a textured figure overlying a

homogeneous background is perceived. So a key factor for figure-

ground organization is the combination of local with global scene

information. In the visual cortex contextual influences on neuronal

activity have been interpreted as the neural substrate of figure-

ground perception [1].

Intrinsic horizontal connections that connect surrounding

neurons convey information from beyond the classical receptive

field and can provide contextual information of the target stimulus.

However, it has been shown that contextual suppressive effects

come from large regions (4–7mm), while the horizontal spread of

axons is limited (up to 3.5–4.5 mm radius in V1 monkey).

Together with the slow conductance velocities (typically 0.1–

0.2 m/sec) of these fibers, these observations cast doubt on a role

for horizontal connections in perceptual integration. Feedback

projections from higher visual areas to lower areas are more

suitable to provide the contextual information necessary for figure-

ground segmentation. Feedback projections have high conduc-

tance velocity (,3–10 m/sec), have large spread in V1, and

influence surround mediated responses in V1. Finally, theoretical

and most, if not all, computer models explain figure-ground

segmentation by recurrent processing through horizontal and/or

feedback connections.

Yet several arguments are inconsistent with a leading role of

feedback projections in producing contextual effects and figure-

ground segmentation. For instance, V2 is the main contributor of

feedback to the primary visual cortex, though inactivation of V2

has no effect on centre-surround interactions of neurons in the

primary visual cortex [2]. Surround effects are primarily

suppressive but blockade of intra-cortical inhibition does not

reduce significantly surround suppression [3]. Surround suppres-

sion is fast and may arrive even earlier than the feedforward

triggered excitatory classical receptive fields response [4,5]. This

timing is inconsistent with contextual modulation by late feedback.

Also surround suppression in the monkey LGN emerges too fast

for an involvement from cortical feedback [6].

In contrasts, apart from carrying the sensory information, a role

of feed-forward projections in producing surround effects related
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to figure-ground segmentation is unknown. Many findings,

however, point out that contextual effects may modify the

feedforward signal and extra-classical surround suppression is

present at the first stages of sensory processing in the retina, LGN

and V1. The aim of this study is therefore to have a better

understanding of the role of feedforward connections in figure-

ground organization, in particular in surface segmentation and

border-ownership coding. For that reason we constructed a purely

feedforward spiking model omitting horizontal and feedback

connections (fig. 2) and tested the model for figure-ground

segregation of textures (figs. 3,4) previously used in primate [7,8]

and computational [9,10] studies. By means of feedforward

surround inhibition, our simple 3-layered model performs figure-

ground segmentation and one-sided border-ownership coding.

Figure 1. Examples of a Rubin vase (A) and a textured figure overlying a background (B). A: Bi-stable percept of a flower vase or two
monkey faces depending on whether the borders between the luminance regions are assigned to the lighter or to the darker regions. B: The small
centre square segregates from the background on basis of a difference in orientation of the line segments, and is perceived as a figure.
doi:10.1371/journal.pone.0010705.g001

Figure 2. Architecture, connectivity and input scheme of the computational model. A: The model consists of three layers, which are
unidirectional connected. Arrows define feedforward connections. The neural interactions are specific for feature preference. Lower two squares
indicate the input (white regions) of the figure (left) and background (right). B: All layers receive point-to-point (retinotopic) excitatory input. Second
and third layers also receive inhibitory input from all or one preceding neuron(s), respectively. C: The model input may correspond to the figure and
background of a figure-ground texture as illustrated in figure 1b. Dotted lines demarcate the stimuli.
doi:10.1371/journal.pone.0010705.g002

Feedforward Figure-Ground
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Results

Feature representation in layer 1
The figure-ground image is accurately represented (fig. 5)

because the input was mapped onto the first layer. So, only spiking

neurons [11] at the figure location and the background regions, of

the first and second feature map respectively were firing spikes.

Initially these neurons had a higher firing rate (,100ms, 180 sp/s)

and settle to a more constant firing rate (.100ms, 110 sp/s).

Neurons that did not receive input from the figure-ground

stimulus (black regions of the input patterns) showed a slight

hyper-polarization before stabilizing the membrane potential

around 264mV.

Figure-ground segmentation in the second layer
Whereas neurons in the first layer received continuous input

from the figure-ground image, neurons in the second layer

received spiking input from the first layer. Each neuron received

retinotopic excitatory input and global inhibitory input from all

spiking neurons in the first layer. For feature map 1 (the central

figure) the spatial pattern of spiking activity in the second layer

mirrored the excitatory input pattern (figs. 5,6). In contrast, for

feature map 2 (background) the spatial activity pattern changed

compared to the input pattern. Neurons that received excitatory

input became quiescent and neurons that did not receive

excitatory spiking input fired spikes. This result is explained by

rebound spiking as a results of the relative strong global inhibitory

input. So in the second feature map many layer 1 neurons were

activated by the relatively large background region, which

provoked a strong suppression of all layer 2 neurons. For the

neurons located on the background this inhibition neutralized the

retinotopic activation. For the neurons located at the centre

(representing the figure location) this global inhibitory signal was

the sole input resulting in a strong and rapid hyper-polarization of

the membrane potential, which caused rebound spiking of these

cells. Such a phenomenon of surround activation of otherwise un-

stimulated neurons has also been described in primate V1 [12].

Moreover, our observation agrees with the notion of cue invariant

figure-ground segregation in the visual cortex [13,14]. Thus for

both feature maps figure-ground segregation was achieved;

Figure 3. Figure-ground images of filled squares (A) and
frames (B). A,B: White regions depict the input regions and black
regions depict regions that provide no input to the feature specific
neurons of the model. In the left column white squares represent the
figures (A) and frames (B). In the right column the complementary
shapes are illustrated where white regions represent the background.
Dotted lines demarcate the stimuli.
doi:10.1371/journal.pone.0010705.g003

Figure 4. Figure-ground images. Figure-ground images of single
squares (A) and two overlaying squares (B). Squares are shifted from
the centre to illustrate one-sided border-ownership coding. Color
coding is as in figure 3, except for the grey square which depicts an
additional figure. Dotted lines demarcate the stimuli.
doi:10.1371/journal.pone.0010705.g004
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neurons located in the central figural region were active while

background neurons were salient. The activation of layer 2

neurons by global inhibitory input was thus independent of direct

retinotopic sensory input. Note, however, that rebound spiking is

not essential for segregating figure from ground; important here is

that background neurons are silent.

Assignment of border-ownership in the third layer
Besides figure-ground signals, many (18% in V1 and 59% in

V2) neurons in early visual cortex show selective responses to

contour borders [15]. In particular neurons in V2 preferably

respond to the contour when it belongs to one side of a figural

region and not to the other side of the figure; a phenomenon called

one-sided border-ownership assignment. In order to explain one-

sided border ownership, we applied a basic aggregation of separate

sub-regions of receptive fields [16,17] where neurons in the third

layer receive both an excitatory and an inhibitory connection from

two neighboring neurons located in the second layer of the same

feature map. In this way, borders can be detected if the excitatory

sub-region receives feedforward input and the inhibitory sub-

region does not. For example, layer 3 neurons respond when the

excitatory sub-region falls on the figural part and the inhibitory

one falls on the background (fig. 7). In essence, the idea of opposite

receptive field sub-regions is reminiscent of the opponent model

for border-ownership coding as proposed by Zhou et al. [15].

Figure 8 shows the border-ownership coding for a single figure

and for two partially overlapping figures. Here neurons respond

only when the border of the figure is located at the left side of the

receptive field. Activation of both excitatory and inhibitory sub-

regions will not lead to a neural spiking response in the third layer.

So, the surface of the figure is not detected. In the case of two

overlapping figures, the local contrast between the two figures

should be sufficient large to determine border-ownership assign-

ment.

There are 3 types of edge detection cells described: edge

contrast polarity, border-ownership and a combination of them. In

principle our model can reproduce all the different types of

neurons that signal contrast borders by applying different

combinations of sub-regions from the second layer and/or from

the first layer and from the two feature maps. A further product of

such combinations of sub-regions is that neurons coding border-

ownership are orientation selective. This has also been described

in the visual cortex where edge detection is mainly observed for

neurons that have an orientation preference [15].

Figure 5. Model output and firing rates of neurons located on the figural region and on the background region. The light-dark squares
in the centre column represent the NxN matrices of neurons of the model. The coloring of the matrices illustrates the membrane potential where
light grey indicates high activity and dark grey zones low activity level. The white small circles depict neurons located on the figural and background
regions. The arrows originating from them point to the corresponding spike responses of these neurons over time. Note that the activity pattern of
the first layer of the model mirrors the texture input whereas the second layers only neurons at the figural region spike. Lower two BW squares
represent the texture input, Dotted line demarcates the stimulus. Time is from stimulus onset.
doi:10.1371/journal.pone.0010705.g005
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Figure size, number and frames
In the visual cortex, contextual interactions are complex and

heterogeneous and are observed for stimuli far outside the classical

receptive field. For textures stimuli, Zipser [13] reported figure-

ground modulation in V1 for figures up to 10–12u. They further

reported a dependency of modulation strength on the figure size.

Size tuning of surround suppression has also been reported for

drifting sinusoidal gratings up to 10 degrees in V1 and LGN [3].

Similarly, surround effects for uniform stimuli extend 20 degree up

to 40 degrees beyond the classical receptive field [18]. In the case

of border ownership, contextual effects are observed for stimuli

20u from the target stimulus and show only mildly size dependency

[15]. To test the model behavior for stimulus size we applied

different figure sizes. Figures as small as 161 pixels up to figures

sizes of 46646 pixels are detected properly. Compared to small

figures large figures (.32632 pixels) have a ,40% weaker

response modulation than the smaller figures (180 sp/s vs. 145 sp/

s). The same is true for the border-ownership signal in the third

Figure 6. Distribution of spiking neurons after presenting the texture input to the model. A: The light-dark squares in the centre column
represent the NxN matrices of neurons of the model. The coloring is as in figure 5. The lines of small white circles denote an entire column of neurons
of an NxN matrix. We used N-16 to clearly illustrate the distribution of the spiking pattern. T and B signify top and bottom of the matrix, respectively.
Arrows point to the spiking behavior of these neurons. Dotted line demarcates the stimulus. B: The neurons from (A) are here plotted on the y-axis
(small, white circles). Each black and grey dot represents a spike from the corresponding neuron on the y-axis. Spikes from neurons from feature map
1 are in black and spikes from feature map 2 neurons in grey.
doi:10.1371/journal.pone.0010705.g006

Figure 7. Illustrations of subfields of the receptive fields of layer 3 neurons. Each neuron receives an excitatory (+) and an inhibitory (2)
input from neighboring layer 2 neurons. Depending on the combination of neighbors, 8 possible distributions of subfields are possible. Grey shading
indicates part of the figural region and white regions indicate the background. One-sided border ownership can be achieved when layer 3 neurons
receive excitatory input from a layer 2 neuron i.e. when it is located on the figure region, and inhibitory input from a neuron located on the
background. In all other cases layer 3 neurons will be silent or inhibited. The bars/arrows next to each neuron (grey circles) indicate the response.
doi:10.1371/journal.pone.0010705.g007
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layer as it is based on the occurrence of figure-ground signal in

the second layer. These results can be explained by the fact that

inhibition increases by enlarging the figure size thereby lowering

the total input to the neurons (fig. 9). The inhibitory contribution

to the input of layer 2 neurons as a function of figure size is

shown in figure 9. Because the responses of layer 2 neurons to the

change in inhibition do not follow the same rule, figure sizes (e.g.

46646 pixels) larger than background size can still be detected

correctly.

We also tested the model for more than one figure. In figure 10

the results of figure-ground segregation are presented for four

figures. Earlier psychophysical experiments demonstrate that these

textures are not ambiguous, i.e. the multiple squares are perceived

as figures and not as background [19]. For multiple figures, feature

detection occurs in the first layer while figure-ground segregation

is observed in the second layer and border-ownership in the final

layer. We also tested the network performance for the outline of

one or multiple figures. Outlines were 1 pixel wide containing

concave and convex regions. The inner part of the outline was part

of the second feature map, i.e. part of the background. The results

show that for both feature maps, the outline is detected accurately

for a single figure as well as for multiple figures (figs. 11,12).

Figure-ground contrast
We tested the model for different figure-ground contrasts. To do

so, we decreased the input pixels values from 1 to 0, in steps of 0.1.

Lowering the figure-ground contrast causes a gradual weakening

of figure-ground signal; an effect produced by weaker figure

responses and higher background responses (fig. 13a,b). Such a

push-pull operation also takes place during figure-ground

segregation in the monkey visual cortex ([8]; see fig. 13b). Here,

compared to responses to homogeneous textures, responses to

figure elements are enhanced and responses to ground elements,

where a figure is presented outside the receptive field, are

weakened. This push-pull effect becomes less by lowering the

stimulus contrast [8]. Besides stronger response modulations, our

data show that increasing contrast produces a shorter onset latency

of the figure-ground signal (fig. 13c). For a high contrast figure, the

onset latency is about 3 times shorter compared to a low contrast

figure; a phenomenon also observed in the visual system ([20]; see

fig. 13c). Similar results hold true for border-owner assignment

because in our model the occurrence of border-ownership

assignment is directly related to the timing of figure-ground

segregation.

Discussion

The goal of the present study was to examine the role of

feedforward connections in figure-ground operations. We found

that our three layered model of spiking neurons could perform

figure-ground segregation and one-sided border-ownership assign-

ment in a purely feedforward manner. The feedforward

segregation of figure from ground was robust. A decrease of the

input contrast by 80% still yielded figure-ground segregation.

Figure-ground segregation occurred for very small figures (even for

the size of 161 pixel) and for large figures. Since the surround

inhibition depended on stimulus size, figure-ground segregation

failed when the figure size approximated the background size. This

agrees with human figure-ground perception, where small stimuli

are interpreted as figures and larger ones as background. When

figure and background have the same size the assignment of figure

and ground becomes ambiguous (see e.g. [21]).

Figure-ground segregation & one-sided
border-ownership assignment

The first layer transformed the figure-ground texture input into

a spike map, which was send to the layer 2 neurons. In the second

layer, neurons received retinotopic excitatory input and global

inhibitory connections from all the spiking neurons in the

preceding layer of the corresponding feature map. In the first

feature map only a minority of the total number of neurons, those

at the figure location, contributed to the global inhibitory effect.

Consequently each neuron in the second layer received relatively

weak inhibition, which was not sufficiently strong to cancel out the

Figure 8. One-sided border-ownership assignment. A: A neuron spikes when the border of the figure is on the left side of the receptive field.
B: When the border is on the right side of the receptive field, the neuron does not spike. C: One-sided border-ownership for two partially overlapping
figures. The neuron spikes when the border belongs to the figure at the left and not when it belongs to the right figure. Note that the receptive field
stimulations are identical in both conditions. Small white circles indicate the location of the receptive field of the neuron. Dotted line demarcates the
stimulus. Time is from stimulus onset.
doi:10.1371/journal.pone.0010705.g008

Figure 9. Total inhibitory input as a function of figure size. A: The total amount of inhibitory input that a neuron receives increases for larger
figures for neurons located on the figure. For neurons located on the background, the total inhibition decreases with figure size. B: Here the
difference between inhibition for neurons located on the figure and for neurons on the background is plotted. Vertical dotted lines indicate the
maximal figure size that the model correctly segregates.
doi:10.1371/journal.pone.0010705.g009
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excitatory activation of the neurons at the figure location. Neurons

outside the central figure region only received global inhibition

and remained silent (fig. 14). In the other feature map however,

the numerous layer 1 neurons receiving background input

produced together a strong global inhibitory input to each second

layer neuron. This inhibitory input was strong enough to cancel

out the excitatory activation, thereby silencing the background

neurons if the second layer. For those layer 2 neurons that did not

receive excitatory input, i.e. the ones at the central figure location,

the strong global inhibition resulted in rebound spiking (fig. 14).

Thus, in the second feature map layer 2 neurons at the figure

location fired and neurons at the background were silent. Hence,

also here the model segregated figure from ground. Note that the

important point for figure-ground segregation to take place is not

the fact that the figure neurons of the second feature map spike but

that the background neurons are silent (or fire few spikes). In the

third layer, neurons received one excitatory and one inhibitory

connection from two neighboring neurons in the second layer.

Such a combination of spatially separated receptive field sub-

regions reproduced one-sided border-ownership assignment (see

fig. 8).

Can figure-ground segmentation occur without
feedback?

Feedback projections from higher visual areas to lower areas are

believed to provide the contextual information necessary for

figure-ground segmentation. Yet several studies indicate that

feedback projections may not be the sole component for producing

contextual effects and figure-ground segmentation. For instance,

V2 is the main contributor of feedback to the primary visual

cortex, though inactivation of V2 has no effect on centre-surround

interactions of neurons in the primary visual cortex [2]. Surround

effects are primarily suppressive but blockade of intra-cortical

inhibition does not reduce significantly surround suppression [3].

Surround suppression is fast and may arrive even earlier than the

feedforward triggered excitatory classical receptive fields response

[4,5]. This timing is inconsistent with contextual modulation by

feedback. Also surround suppression in the monkey LGN emerges

too fast for an involvement from cortical feedback [6].

Moreover, removing feedback (including V3, V4, MT, MST,

but not V2) to V1 impairs figure-ground perception, but does not

affect visual detection of textured figure-ground stimuli [22]. This

finding implies that figure-ground segmentation occurs without

Figure 10. Distribution of spiking neurons after presenting four figures to the model. A: The lines of small white circles denote an entire
column of neurons of an NxN matrix. We used N-16 to clearly illustrate the distribution of the spiking of neurons. Arrows point to the spiking pattern.
The light-dark squares in the centre column represent the NxN matrices of neurons of the model. The coloring is as in figure 5. Dotted line
demarcates the stimulus. B: The neurons from (A) are here plotted on the y-axis (small, white circles). Each black and grey dot represents a spike from
the corresponding neuron on the y-axis. Spikes from neurons from feature map 1 are in black and spikes from feature map 2 neurons in grey.
doi:10.1371/journal.pone.0010705.g010

Figure 11. Distribution of spiking neurons after presenting an outline to the model. A: The lines of small white circles denote an entire
column of neurons of the NxN matrix of the model from the different layers. We used N-16 to clearly illustrate the distribution of the spiking pattern.
Arrows point to the spiking behavior of these neurons. Coding is as in figure 5. Dotted line demarcates the stimulus. B: The neurons from (A) are here
plotted on the y-axis (small, white circles). Each black and grey dot represents a spike from the corresponding neuron on the y-axis. Spikes from
neurons from feature map 1 are in black and spikes from feature map 2 neurons in grey.
doi:10.1371/journal.pone.0010705.g011

Feedforward Figure-Ground

PLoS ONE | www.plosone.org 8 May 2010 | Volume 5 | Issue 5 | e10705



feedback from these extra-striate areas, and without producing

visual awareness. This agrees with the belief that figure-ground

organization is an automatic process [23]. For example, preserved

figure-ground segregation is observed in neglect patients [24] and

surface segregation signals evolve independent of attention [19].

Similarly, the assignment of border-ownership precedes object

recognition and the deployment of attention [23,25]. Further-

more, the short onset latencies and sometimes incomplete cue

invariance suggest that border-ownership assignment is not

generated in higher level visual areas but within the lower visual

areas [15]. In addition, figure-ground segmentation depends on

the size of the figure region and drops with increasing figure sizes

(.8u–12u). This size dependency argues against segregation by

feedback since termination fields of feedback projections cover

large regions of visual space in V1. Finally, an intriguing finding is

that contextual neural interactions corresponding to perception

are observed at sub-cortical levels in the LGN and even in the

retina [26] and that competition for object awareness is fully

resolved in monocular visual cortex [27]. So, there is considerable

evidence against a unique role of feedback in figure-ground

segregation and supports the idea for a feedforward component in

figure-ground segmentation.

Possible correspondence of the model architecture to
the visual system

Visual information entering the retina produces graded

potentials which are converted by ganglion cells into action

potentials. Our model neurons in the first layer convert continuous

texture input into spikes, and therefore the first layer can

correspond to the ganglion cell layer of the retina. The second

layer of the model may represent the LGN as the main recipient of

ganglion connections. The retinotopic excitatory connections

mimic the powerful synaptic excitatory contacts that each LGN

neuron receives from one to three retinal ganglion cells [28]. The

same retinal ganglion cells also provide inhibitory postsynaptic

currents [29]. The influence of inhibition in the LGN however

comes from a larger retinal region than that from excitation.

Likely this is because retinal ganglion cell activate inter-neurons

resulting in inhibition beyond those directly activated by ganglion

cells [29]. This feedforward inhibition is fast; it takes place at the

very beginning of an event related response [5,29]. For instance,

some types of IPSC faithfully follow the EPSC with a latency of

1 ms and they are tightly locked to visual stimulation [29]. In our

model we reproduced the fast surround inhibition seen in the

retinogeniculate system by combining in time the retinotopic

excitatory and the global inhibitory input. If our second layer

indeed corresponds to the LGN, then figure-ground segregation,

particularly for contrast-defined figures, does not start in the cortex

but already in the thalamus. Although the existence of figure-

ground signals in the LGN are not known, contextual responses

matching perception, and attention signals are described in the

LGN (e.g. [26]).

Alternatively, the second layer of our model may correspond to

V1. In this case, LGN present just a relay of retinal information. In

a previous version we successfully tested this by adding an extra

layer representing the LGN. The thalamocortical connections are

highly convergent maintaining the retinotopic mapping in V1. In

V1, they synchronously activate layer 4 spiny cells, which in turn

activate directly the upper layer neurons. Furthermore, thalamo-

cortical synapse specifically and strongly excite the fast spiking

network [30]. Fast spiking neurons form an inhibitory network

connected through electric synapses and mediate thalamocortical

feedforward inhibition [31]. In the visual cortex feedforward

inhibition can suppress large regions [3,4,31,32] and is fast where

it can arrive even earlier to the target neuron than excitatory

signals [4]. Within the cortex, conductance of fast spiking

interneuron onto spiny layer 4 neurons is ,10 fold greater than

that of excitatory conductance [32] and fast spiking cells mediate

strong and fast (,,6 ms) thalamocortical feedforward inhibition

that can shunt thalamocortical excitation [31,32]. Intra-cortical

surround inhibition, on the other hand is rather slow, tens of

milliseconds [33]. In our model the combination in time of

excitatory and strong inhibitory inputs mimic the synchronous

activation and the strong and fast feedforward inhibition described

in the visual system. Finally, inhibition from the surround has been

shown to be orientation or direction selective [34–38]. In our

model, surround inhibition is also feature, e.g. orientation, specific.

The last layer may represent V2, which receives its main

feedforward input from V1. Neurons in V2 aggregate V1 receptive

fields at similar but not identical topographical locations. In such a

design V2 neurons show spatial in-homogeneity in the two-

dimensional receptive field structure. V2 receptive fields contain

sub-regions that are tuned to similar or dissimilar orientations

[16,17]. Accordingly, the response properties of V2 neurons are

principally determined by the distribution of the aggregation of V1

Figure 12. Distribution of spiking neurons after presenting four outlines to the model. A: The lines of small white circles denote an entire
column of neurons of the NxN matrix of the model from the different layers. We used N-16 to clearly illustrate the distribution of the spiking pattern.
Arrows point to the spiking behavior of these neurons. Coding is as in figure 5. Dotted line demarcates the stimulus. B: The neurons from (A) are here
plotted on the y-axis (small, white circles). Each black and grey dot represents a spike from the corresponding neuron on the y-axis. Spikes from
neurons from feature map 1 are in black and spikes from feature map 2 neurons in grey.
doi:10.1371/journal.pone.0010705.g012

Feedforward Figure-Ground

PLoS ONE | www.plosone.org 9 May 2010 | Volume 5 | Issue 5 | e10705



receptive fields. A further complexity added to V2 receptive fields

is that V2 neurons combine both excitatory and inhibitory parts of

separated receptive fields of V1 neurons [17]. Many of the

interactions between the sub-regions are inhibitory, which might

be of V2 intra-cortical origin or inherited from V1 [17]. By

applying two antagonistic sub-regions of V2 receptive fields we

reproduced a simple form of sub-field aggregation of V1 receptive

fields. Such a design explains border-ownership assignment.

Alternatively input to V2 may come from LGN cells, in particular

the non-standard cells, which project directly to V2. This idea is

supported by the observation of V1–V2 correlograms that are

centered on zero indicating coincidence of firing by common

input. However, the LGN-V2 connection and its functions are yet

poorly described.

Onset latencies of figure-ground signal and border-
ownership coding

A notable outcome of our model is that the figure-ground signal

pops-out immediately after receiving the first spikes, both at the

border and at the centre of the figure. Also border-ownership

assignment occurred at similar time as figure-ground segregation.

At first glance this may seem odd compared to the often reported

late onset of figure-ground segregation in the visual cortex.

General, non-specific surround suppression is one of the earliest

contextual effects, which takes about 7 ms to develop after

response onset [39]. The orientation specific modulation of

responses to centre-surround stimuli occurs a bit later, around

15–20ms after the response onset [39]. Lamme showed onset

Figure 13. Responses to figure and ground as a function of
stimulus contrast. A: Average firing rate to figure and ground. B:
Modulation strength (figure minus ground responses). Grey squares
represent the modulation strength for different figure-ground textures
observed in visual cortex of monkeys. C: Onset latencies of figure-
ground modulation. Grey squares represent onset latencies for different
figure-ground textures observed in monkey visual cortex. The high
contrast stimulus used by Supèr (Supèr et al., 2001) is set here to 100%
for comparison.
doi:10.1371/journal.pone.0010705.g013

Figure 14. Scheme illustrating the mechanisms of figure-
ground segregation by the model. A neuron located on the figure
region (left panels) receives weak global inhibitory input together with
retinotopic excitatory input. As a result the neuron fires spikes. In the
case when a neuron receives strong global inhibition and no excitation,
rebound spiking occurs. Neurons on the background region (right
panels) are silent. The strong global inhibitory input cancels the
excitatory drive and weak inhibitory input does not produce rebound
spiking.
doi:10.1371/journal.pone.0010705.g014
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latencies for figure-ground modulation of 60–120 ms after

stimulus onset, which equals to 30–60 ms after response onset

[40]. In another study, early textured figure–ground segregation

was seen to occur at 40–80 ms after stimulus onset [41] and was

not different between V1 and V2 neurons. In this study, figure–

ground segregation started 20–60 ms after the response onset.

Border-ownership assignment for color and grey stimuli starts at

,70 ms after stimulus onset, both in V1 and V2 [15]. This is

within 10 ms in V1 and within 25 ms in V2 after response onset.

Thus, although frequently described as having a late onset, neural

signatures of figure-ground segregation and assignment of border-

ownership can arise fast (as fast as 10–20 ms after response onset)

both in V1 and V2. So at a closer look, our findings of 5 ms after

stimulus onset agree with the fastest reported onset latencies of

figure-ground signals. Moreover, in the visual system features, like

orientation needs first to be computed before figure-ground

segregation can take place. So the time that is needed to process

features is included in the described onset latencies for the

occurrence of figure-ground modulation. In our model however

feature specificity was implicitly encoded and thus did not add

extra time to the onset time of figure-ground segregation. So, when

corrected for a latency of ,10 ms for orientation tuning to take

place, our figure-ground latencies are close to the observed ones in

the visual system.

Segregation of boundary and surface of the figure
Boundary detections and surface filling-in are other issues

related to the onset of figure-ground segregation. Neurophysio-

logical observations show that figure-ground modulation occurs

first at the border of the figure followed by modulation for the

center region of the textured figure [40–42]. These findings can be

interpreted as a filling-in process or, alternatively, as two

independent processes of border detection and a grouping

operation where surface responses simple lag behind the responses

to border. The finding that surface signals and not boundary

signals are reduced by extra-striate lesions [40] argue for two

distinct mechanisms. Also, the finding that the onset of the

modulated responses across the whole surface is the same [40]

argues against a gradual filling-in process of textured stimuli over

time and favors independent mechanisms for boundary and

surface detection. Our data shows that the whole figure popped-

out instantaneously and no filling-in process of the figural region

took place. Therefore, our model data fit the idea of two

independent mechanisms for local border and surface detection.

Local border detection, however, is absent in our model. The

absence of border detection is explained by the fact that border

detection is based on the comparison of local features, where

discontinuities form a boundary. To detect local discontinuities

interactions between features are needed. In our model such

interactions were not implemented and thus boundary detection is

not possible.

Other models on figure-ground segregation
Many computational models exists explaining figure-ground

segregation and border-ownership. Most, if not all, computer

models [9,10,43–57] explain figure-ground segmentation by

recurrent processing through horizontal and/or feedback connec-

tions, as suggested in the neurophysiological literature.

One model [58] may appear to be feed forward. However, their

conductance based model does not use DEQs. Therefore, it can

easily be re-defined and interpreted as a feedback model. More

importantly is that the Sakai & Nishimura 2006 model is based on

surround fields (iso-orientation suppression and cross orientation

facilitation). These surround fields were not explicitly modeled but

numerous (hundreds) different positions and sizes of surround

fields were designed and tested. The neural origin of these

surround effect are based on the information within V1 [35,36]. It

has been demonstrated that in the visual system surround effects

are mediated by long range horizontal connections [59]. In fact

some models rely on lateral connections for figure ground

organization [49] and thus agree with the Sakai & Nishimura

2006 model. Thus on the first sight the model of Sakai &

Nishimura 2006 may give the impression of a pure feed forward

connectivity scheme. However, taking into account the surround

fields, the Sakai & Nishimura 2006 model implicitly includes

lateral connections.

Most of the models are conductance based models excluding the

rich and complex response behavior of neurons. Some models rely

on lateral connections for figure ground organization [49] and

demonstrate that feedback is in principle not necessary. However,

lateral latencies in the visual cortex are too long to explain

contextual effects in figure-ground organization. Other studies add

feedback projections to improve the performance of the model.

The role of feedback is to suppress noise and to enhance figure-

ground effects [48,54,55]. These results fit the idea that top down

control has a push-pull effect where relevant signals are enhanced

and irrelevant signals suppressed.

Limitations and predictions of our model
Our intention was to test feedforward segregation of textures

that previously had been studied in primates and computer

models, and which are believed to depend on recurrent processing.

The model was not designed for complex or natural images,

neither was the intention to obtain state of the art figure-ground

segmentation. On the contrary, to understand the role of

feedforward connections in figure-ground segregation we con-

structed a minimalistic feedforward architecture. Therefore, we

deliberately omitted recurrent processing, thereby severely con-

straining the possible outcomes of the model. For example, feature

interactions are not possible with the current network because the

lack of horizontal connections. Nevertheless, our simple network

advocates a feedforward organization of figure-ground. According

to our model data, one-sided border-ownership coding does not

depend on local feature contrast but is based on surface

segregation of the figure. Thus, our model predicts that local

border detection and border ownership coding employ different

neural mechanisms. Furthermore, in our model we modeled

global inhibition by adding a negative weight to the feedforward

connections and not by introducing local inhibitory cells at layer 2.

In this way the combination in time of excitatory and strong

inhibitory inputs mimic the synchronous activation and the strong

and global inhibition described in the early visual system. Further

studies should reveal how figure-ground segregation occurs by

including inhibitory cells. Finally, considering the simplicity of our

model figure-ground segregation may occur already at the earliest

stages of visual processing.

Conclusion
In the visual system it is not possible to separate axonal circuits

and to analyze their function in isolation. Computational modeling

of neural networks offers a complementary role to allow dissecting

axonal circuits. Using biophysical realistic spiking neurons, we

tested to what extent feed-forward connections contribute to the

neural mechanisms underlying figure-ground organization. Our

simple, 3 layered feed-forward spiking model performs figure-

ground segmentation and one-sided border-ownership coding. It

turns out that global inhibition and rebound spiking are important

ingredients for figure-ground organization. We conclude that
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figure-ground organization includes besides feedback also a

feedforward component.

Methods

Model architecture
The model is composed of three layers, each containing two

arrays of N6N units or neurons of the Izhikevich type ([11]; see

fig. 2). For all layers, we used N = 64. Lower and higher values of

N were also tested and did not affect model performance. The two

separate arrays of each layer represent two neuronal cell

populations with opposite preference for a single feature.

Connections
The feedforward connections between the layers are divided

into excitatory and inhibitory connections (fig. 2b). All excitatory

connections are retinotopic (point-to-point connections) where

neuron Nij in one layer solely connects to neuron Nij in the next

layer. Thus the excitatory part of a neuron’s receptive field has size

one. The pattern of inhibitory connections differs between layers.

Neurons in the first layer do not receive inhibitory signals from the

texture input. In the second layer all neurons of a feature map (see

below Inputs) receive inhibition from all neurons located in the

same feature map of the first layer. In the third layer, a neuron Nij

receives feature specific inhibition from a neighbor of neuron Nij

located in the second layer. In principle, there are eight neighbors;

for simplicity we chose only one (see fig. 2b). Inhibition is achieved

by assigning negative weights to the connections. Neither intra-

laminar connections, i.e. horizontal connections between neurons

within or across feature maps, nor feedback connections, i.e.

connections from higher layers to lower layers, are included in the

network architecture.

Inputs
The studied textured figures are arrays of N6N pixels, with N as

in the model, containing one or four centered squares (fig. 2c,3a).

Input arrays are binary (0 or 1) and correspond to the preference

of a single visual feature, like luminance, orientation, direction of

motion, color etc. In other words, 1 stands for optimal tuning

whereas 0 is the opposite. For every shape its binary complemen-

tary is also included (fig. 2c,3a). The complementary input thus

represents the reverse preference of the visual feature. These two

arrays are referred to as feature map 1 and feature map 2. For

instance, the first one corresponds to the orientation of line

segments in the centre square of figure 1b and the second to the

surrounding line segments, which have the opposite orientation

(see fig. 2c). Together they form the figure-ground texture. The

two feature maps are processed by separated neuronal pathways

(channels). We also used the outlines of the figures as input (fig.3b).

For border-ownership coding single squares were placed to either

the left or the right side for clarifying the side preference (fig. 4a).

Also two partially overlapping squares were used for border-

ownership (fig. 4b). In this case, the two small squares (figures)

belong to one feature map. The pixel values of the additional

square were 0.3.

Neuronal cell type
Hodgkin–Huxley models are too slow for network operation

and integrate-and-fire models are unrealistically simple and

incapable of producing rich spiking and bursting dynamics

exhibited by cortical neurons. We opted to use the spiking

neurons of Izhikevich [11]. These neurons combine the biolog-

ically plausibility of Hodgkin–Huxley-type dynamics and the

computational efficiency of integrate-and-fire neurons, and are

capable of producing rich firing patterns exhibited by real

biological neurons. We choose the neurons to be phasic bursting

because feedforward connections rely on bursting neurons, which

report the beginning of the stimulation by transmitting a burst. In

the brain bursts are important to overcome the synaptic

transmission failure and reduce neuronal noise. Also they can

transmit saliency of the input and bursts can be used for selective

communication between neurons.

Model dynamics
Cell dynamics is described by the ‘simple’ spiking model of

Izhikevich (1, 2)

dv

dt
~0:04v2z5vz140zI ð1Þ

du

dt
~a bv{uð Þ,

supplemented with the after-spike reset rule

if v§vij ,then
v/c

u/uzd:

�
ð2Þ

v, u, I, t are dimensionless versions of membrane voltage, recovery

variable, current intensity and time. Further, a is a time scale, b

measures the recovery sensitivity, c is the reset value for v, and d is

the height of the reset jump for u. For all our simulations a = 0.02,

b = 0.25, c = 255, d = 0.05, and vij = 30. These values correspond

to the phasic bursting type of the Izhikevich neuron [11]. In the

evolution law for V (eq. 1), a capacitance factor C was omitted

[11]. When dimensions are reintroduced, voltages are read in mV

and time in ms. As initial conditions at t0 = 0 we set

v t0ð Þ~c, u t0ð Þ~bv t0ð Þ

for all the positions in our arrays (since we deal with two-

dimensional objects, equations (1) and (2) are actually meant for

v?vij , u?uij , I?Iij , i,j = 1, …, N, and condition (3) is in fact

applied to vij ,uij ,Vi:j . We used the Euler method with

Dt = 0.20 ms. The input current I in (1) is the result of summing

different matrix contributions of the form

Iij~IexcijzIinhij ð4Þ

where ‘exc’ stands for ‘excitatory’, ‘inh’ for ‘inhibitory’, and i,j are

spatial indices. Further, for layers 1 and 2,

Iexc~wexcF , Iinh~winh

1

N2

X
i,j

Fij

 !
1NxN ð5Þ

F is either the two dimensional figure itself or the binary array

defined by the presence of spikes, i.e., with ones where condition

(2) is satisfied and zeros elsewhere. The 1NxN symbol denotes an

NxN matrix containing just ones. Since excitatory receptive fields

have size one, excitatory signals are point-by-point (retinotopic)

copies of F itself, multiplied by the corresponding weight. The

inhibitory part, whose associate receptive field has the same size as

F, produces a spatially constant term –hence the 1NxN matrix-

which is proportional to the normalized sum of all the F

coefficients times the inhibitory weight. Thus, all layer 2 units
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within a feature map received the same inhibitory input. In our

design, the employed weights are wexc = 3, winh = 0 for the texture

input and wexc = 400, winh = 2900 for the signals from layer 1 to

layer 2. The weights values are a result of a heuristic process, and

can be changed without critically affecting the model performance.

The path from layer 2 to layer 3, where border-ownership

assignments take place, may be described in terms of two receptive

sub fields, inhibitory and excitatory, both of size one and next to

each other. Their working is more easily expressed by means of the

convolution

I3~w3 F2 � tBO ð6Þ

I3 indicates the total input to layer 3, w3 is the weight (w3 = 200),

F2 means the spike map at layer 2, and the applied filter is given

by the 261 matrix tBO~
{1

1

� �
.
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2. Hupé JM, James AC, Girard P, Bullier J (2001) Response modulations by static

texture surround in area V1 of the macaque monkey do not depend on feedback
connections from V2. J Neurophysiol 85: 146–163.

3. Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, et al. (2004) Relationship
between excitation and inhibition underlying size tuning and contextual

response modulation in the cat primary visual cortex. J Neurosci 24: 1428–1438.

4. Bair W, Cavanaugh JR, Movshon JA (2003) Time course and time-distance
relationships for surround suppression in macaque V1 neurons. J Neurosci 23:

7690–7701.

5. Webb BS, Tinsley CJ, Vincent CJ, Derrington AM (2005) Spatial distribution of

suppressive signals outside the classical receptive field in lateral geniculate
nucleus. J Neurophysiol 94: 1789–1797.

6. Alitto HJ, Usrey WM (2008) Origin and dynamics of extraclassical suppression

in the lateral geniculate nucleus of the macaque monkey. Neuron 57: 135–146.

7. Lamme VAF (1995) The neurophysiology of figure-ground segregation in

primary visual cortex. J Neurosci 15: 1605–1615.
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