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Chapter 1

Abstract and outline

Graph theory has been a wide area of study of discrete mathematics since the
publication of the Königsberg bridge solution by Leonard Euler in 1736. Despite its
historical background and very exciting developments since its birth, graph theory
was unable to prove useful when studying complex networks. These networks contain
large amounts of vertices and edges, and the sheer quantity of data that has to be
handled makes the classical approach not optimal at best and impossible in most
cases.

The last decade has seen an uprising of the random network theory, which at-
tempts to study the topology of these complex networks via a statistical approach.
This theory has proven very successful at modeling these networks, particularly
when applied to the degree distribution of the vertices of the graphs.

This manuscript will attempt to summarize the two most important models from
a historical point of view. First, we will describe the model created by Paul Erdös
and Alfréd Rényi in 1960, which is considered one of the first to attempt to describe
these networks. The second model was introduced by Lázlo Barabási and Réka
Albert in the late 1990s. This model can be considered the spiritual successor of
the Erdös-Rényi model, while expanding it with some additional properties that
were not considered at first. It is particularly important because it motivates a
new wave of scientific study about complex network due to essentially two factors.
First, there was more data available on complex networks compared to the times
when the Erdös- Rényi model was proposed. Lastly, computers were now capable of
handling the calculations required to model these networks and were available to the
majority of the scientific community, which made the topic much more accessible
for new research to be conducted.

This manuscript is organized as follows.

Chapter 2 will present the basic definitions of graph theory and other concepts
that are essential for the understanding of the manuscript.

Chapter 3 will present the Erdös-Rényi model (ER model) [11, 12], the first pro-
posed model to analyze random networks. We begin with a set number of isolated
vertices and we add edges following a predetermined probability. We will prove that
a graph constructed this way will have a degree sequence that follows a Poisson
distribution (Theorem 3.1). Further, this graph will also contain a giant connected
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component (Theorem 3.4), whose size (Theorem 3.5) and evolution (Theorem 3.6)
will also be studied. We will also create a computer simulation and test the theo-
retical results with it. Finally, at the end of the chapter we discuss the small-world
property and the small-world experiment.

Chapter 4 will present the Barabási-Albert model [5, 6], an evolution of the pre-
vious one that adds the properties of growth and preferential linking of the network.
We start with one vertex and a loop, and we add more vertices and edges, with
highly connected vertices being more likely to get and edge than the less connected
ones. We will prove that a graph constructed this way has a degree sequence that
follows a power law distribution (Theorem 4.2). Finally, we will create a computer
simulation to test the theoretical results.

Chapter 5 will present some example cases to exhibit the utility and potential of
using random network theory to study some real life networks, such as the citation
network [15], the metabolic network [14] and the WWW [1, 7]. We also comment
some other case studies and future improvements on the established models.
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Chapter 2

Introduction to graph theory and
additional preliminaries

2.1 Graph Theory. Definitions and notations

This chapter is intended to serve as a brief introduction to some elementary graph
theory concepts and properties, which will appear throughout the manuscript and
are needed to understand most of what will be exposed. For a more in depth study
of these concepts, as well as some extra results, see [9, 13].

Definition 2.1. A graph Gn
m = (M,N) consists of a pair of sets M and N , such

that N 6= ∅ and M is a set of pairs of elements of N . The set M has m elements,
and the set N has n elements.

Definition 2.2. We call the elements of N the vertices and the elements of M the
edges. We also say that the edges connect the vertices.

Definition 2.3. A subgraph of a graph G is a graph that has vertices and edges
from the graph G.

Definition 2.4. A loop is an edge that connects a vertex with itself.

Definition 2.5. If two or more edges connect the same vertices, we call them
multiple edges.

Definition 2.6. A simple graph is a graph that has no loops and no multiple edges.

Definition 2.7. An ordinary or undirected graph is a graph where the edges are
defined in terms of unordered vertices, i.e., the edge (1, 2) is equivalent to the edge
(2, 1).

Definition 2.8. A directed graph is a graph where the edges are defined in terms of
ordered vertices, i.e., the edge (1, 2) and the edge (2, 1) are considered as different
edges. We call them directed edges.

Remark 2.9. We will make no distinction between directed edges and “normal”
edges, and we will simply call them edges.
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Definition 2.10. Given a directed edge (n1, n2), we say that the edge starts at n1

and ends at n2.

Definition 2.11. Given a directed graph, the indegree of a vertex is the number of
edges that end in the vertex. Similarly, the outdegree of a vertex is the number of
edges that start in the vertex.

Definition 2.12. The total degree of a vertex is the number of edges that connect
that vertex with another, i.e., the sum of the indegree and outdegree of the vertex.
In an undirected graph, we call it simply the degree of the vertex.

Remark 2.13. Loops add 1 to the indegree and to the outdegree, and 2 to the total
degree of the vertex.

Definition 2.14. The degree sequence of a graph is the sequence obtained by or-
dering all the degrees of all the vertices of the graph, in a growing order.

Definition 2.15. We say that two vertices v1, vk are connected by a path if we
can find a sequence of edges (v1, v2), (v2, v3), (v3, v4), . . . , (vk−1, vk). It is noted as
c = v1v2v3v4 . . . vk−1vk.

Definition 2.16. We say that a graph is weighted if there exists a function such
that w : M(Gn

m)→ R+, that is, w assigns a weight to the edges of the graph.

Definition 2.17. The length of a path c = v1v2 . . . vk in a weighted graph is defined
as:

Lw(c) =
k−1∑
i=1

w((vi, vi+1))

Remark 2.18. Throughout the manuscript we will assume that all edges have
weight 1. This means that the length of a path is simply the number of edges that
form the path.

Definition 2.19. A geodesic between 2 vertices is the path with the least length
that connects those 2 vertices.

Definition 2.20. The diameter of a graph is the maximum length of all the geodesics
in the graph, i.e., the maximum minimal length between all the vertices in the graph.

Example 2.21.

1 2

34

c

a

b

e

d

fg
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• There are 4 vertices, N = {1, 2, 3, 4}, labeled from 1 to 4.

• There are 7 edges, M = {(1, 2), (1, 2), (1, 2), (2, 2), (2, 3), (3, 2), (4, 1)}, labeled
from a to g.

• The edges a, b and c, described as (1,2), are multiple edges.

• The edge d, described as (2,2), is a loop.

• Two subgraphs of this graph could be:

1 2
b

d

1 2

4

a

c

g

• This graph is directed, since edges e and f are not the same: edge e is (2,3)
and edge f is (3,2).

• Edge a, (1,2), starts at vertex 1 and ends at vertex 2.

• Vertex 1 has indegree 1, outdegree 3 and total degree 4.

• The degree sequence of this graph is (1, 2, 4, 7).

• Vertices 4 and 3 are connected, since we can create the path {(4, 1), (1, 2), (2, 3)}
through edges g, a and e.

Definition 2.22. A tree is an undirected graph in which any two vertices are con-
nected by exactly one path.

Definition 2.23. A connected graph is a graph where there exists a path connecting
any given pair of vertices. If a graph is not connected, we call it a disconnected graph.

Example 2.21 is an example of connected graph.

Definition 2.24. Given a disconnected graph, a connected component is a subgraph
in which any two vertices are connected, and which is connected to no additional
vertices in the graph.
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Example 2.25.

1 2

34

5

6 7

a

b

c

d

e

• This graph contains 2 trees, {1, 2, 3, 4} and {5, 6, 7}.

• This graph is disconnected, since there are no paths connecting vertices from
the first tree to the second one.

• Both trees are connected components of this graph, and hence it has 2 of them.

2.2 Additional preliminaries

In this section we will list all definitions (mainly from probability theory) that
cannot be listed under graph theory but are important throughout the manuscript
nonetheless. For a more in depth study of these concepts, as well as some extra
results, see [2, 3, 10].

Definition 2.26. We say that two non zero functions f and g are proportional if

f

g
= constant.

We denote it as f ∝ g.

Definition 2.27. We say that a function f(x) is asymptotically equivalent to g(x),
and we denote it by f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1.

Definition 2.28. A random variable X : Ω → E is a measurable function from
the set of possible outcomes Ω to some set E, typically E = R. Intuitively, it is a
variable whose value is subject to variations due to chance. A random variable is
discrete if it takes values from a countable list of values, and is continuous if it takes
values from an interval or a collection of intervals.

It should be assumed that, unless stated otherwise, random variables are discrete
throughout the manuscript.
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Figure 2.1: Representation of P (X = k) = λke−λ

k!
, using λ = 25.5.

Definition 2.29. A discrete random variableX is said to have a Poisson distribution
with parameter λ > 0 if, for k = 0, 1, 2, . . . the probability of X is given by

P (X = k) =
λke−λ

k!
.

Figure 2.1 shows a graphical representation of a Poisson distribution.

Definition 2.30. The expectation or expected value of a random variable X is the
probability-weighted average of all possible values. We denote it by E(X).

If we assume that X is a discrete random variable that can take value xi with
probability Pi, i ∈ N, then the expectation is defined as

E(X) =
∑
i∈N

xiPi

Example 2.31. Let X represent the outcome of a roll of a six-sided dice. Assuming
that it’s a fair dice, Pi = 1

6
and xi = i, i = 1, 2, 3, 4, 5, 6. Therefore, we have:

E(X) =
1

6
+

2

6
+

3

6
+

4

6
+

5

6
+

6

6
=

7

2
.
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Definition 2.32. The conditional expectation of a random variable X given an event
H is another random variable equal to the average of the former over all possible
outcomes in H. We denote it by E(X|H).

It should be noted that the same idea can be applied to the conditional ex-
pectation of a random variable X over a discrete random variable Y , denoted by
E(X|Y ).

Definition 2.33. A scale-free network is a graph whose degree sequence follows a
power law distribution. That is, the fraction P (k) of nodes in the network having k
connections to other nodes goes as

P (k) ∼ k−γ ,

when the network has a big enough amount of vertices.

Figure 2.2 shows a graphical representation of a power law distribution.

Figure 2.2: Representation of P (X = k) = k−γ, using γ = 2.7. Note that the axis
are in logarithmic scale.

Definition 2.34. Given a probability space (Ω, F, P ) and measurable space (S,Σ),
an S-valued stochastic process is a collection of S-valued random variables on Ω,
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indexed by a totally ordered set T , called time. That is, a stochastic process X is a
collection

{Xt : t ∈ T},
where each Xt is an S-valued random variable on Ω. The space S is then called the
state space of the process.

Definition 2.35. A discrete-time stochastic process is one for which the index
variable takes a discrete set of values.

Definition 2.36. A discrete-time martingale is a discrete-time stochastic process
that satisfies, for any given n ∈ N,

E(|Xn|) <∞, E(Xn+1 | X1, . . . , Xn) = Xn.

That is, the conditional expected value of the next observation, given all the past
observations, is equal to the last observation. Due to the linearity of expectation,
this second requirement is equivalent to:

E(Xn+1 −Xn | X1, . . . , Xn) = 0

or
E(Xn+1 | X1, . . . , Xn)−Xn = 0,

which states that the average “winnings” from observation n to observation n + 1
are 0.

Example 2.37. We shall show an example called de Moivre’s martingale. Let us
suppose and “unfair” coin with probability p of heads and probability q = 1− p of
tails. Let

Xn+1 = Xn ± 1,

with + in case of heads and - in case of tails. Let

Yn =

(
q

p

)Xn

.

Then, {Yn : n ∈ N} is a martingale with respect to {xn : n ∈ N}. We can see that:

E(Yn+1|X1, . . . , Xn) = p(q/p)Xn+1 + q(q/p)Xn−1

= p(q/p)(q/p)Xn + q(p/q)(q/p)Xn = q(q/p)Xn + p(q/p)Xn

= (q/p)Xn = Yn.

Definition 2.38. Let f and g be two functions defined on some subset of the real
numbers.

• We write
f(x) = O(g(x)) as x→∞

if and only if ∃x0 ∈ R such that ∀x ≥ x0, ∃M > 0 such that

|f(x)| ≤M |g(x)|.
This is referred to as big O notation.

9
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• We write
f(x) = o(g(x)) as x→∞

if and only if ∀M > 0,∃x0 such that ∀x ≥ x0,

|f(x)| ≤M |g(x)|.

This is referred to as little o notation.

Note the difference between the definitions: while big O notation has to be true
for at least one M , little o notation must hold for all M > 0, however small. In this
sense, little o notation makes a stronger statement than big O notation.

Definition 2.39. Let x be a real number.

• The floor function is a function bxc : R → Z that maps a real number x to
the largest previous integer.

• The ceiling function is a function dxe : R→ Z that maps a real number x to
the smallest following integer.

Theorem 2.40. (Weak law of large numbers). The weak law of large numbers states
that the sample average converges in probability towards the expected value

Xn
P−→ µ when n→∞.

That is to say, for any ε > 0,

lim
n→∞

P
(
|Xn − µ > ε|

)
= 0.

Theorem 2.41. (Stirling’s formula)

n! =
√

2πn

(
n

e

)n(
1 +O

(
1

n

))
.
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Chapter 3

The Erdös-Rényi model

Contemporary science has seemingly stumbled upon an insurmountable wall: com-
plexity. Its inability to describe complex systems, particularly those composed of
non-identical elements, with diverse interactions between them, currently cripples
development in many disciplines, ranging from social studies to computer science
and molecular biology. The fact that complexity appears in such unrelated topics is
interesting on itself, and any breakthrough in its study may provide tools to solve a
wide range of problems in multiple disciplines.

The main difficulty lies in the system’s topology: due to the size and complexity
of these networks, it is mainly unknown. During several years, many models have
been presented to try and establish some main properties about these systems’
topology.

The Erdös-Rényi model (from now on, ER model) is probably the oldest and
most studied model to date; its approach is mainly probabilistic. Introduced in
1959 [11] and deeply studied in 1960 [12], this model constructs a random network
by adding edges to a graph consisting of N isolated vertices. Each edge has the
same probability of being added to the graph, which is one of the main assumptions
of the model.

While this approach would be proved too simplistic, it is nevertheless worth
considering, if only because its finding would motivate and influence future research
in the topic.

In this chapter we shall describe the simplified version of the ER model, as well
as the most important results about the random network connectivity: the degree
sequence distribution and the biggest connected component.

3.1 The model

There are multiple models that can be called ER models, but since they coincide as
N →∞, we shall describe the one that is more suited for analytical calculations.

We start with a graph with N vertices and no edges and a fixed probability
0 < p < 1. For each pair of vertices, we will add an edge that connects them with
probability p. For simplicity, we will not allow loops or multiple edges. We do this
once for every pair of vertices until all of them have been tried.

11
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• We start with 5 vertices for this example, and we set p = 0.5.

1 2

3

4

5

• We start by checking the edge (1, 2). For this example, we will toss a coin. If
we get heads, we will add the edge. Otherwise, we don’t add any edge to the
graph and proceed to the next pair. Note that this graph is not directed, so
checking for the edge (1, 2) is the same as checking for the edge (2, 1). We flip
it and get heads, so we add the edge and move to the next pair of vertices.

1 2

3

4

5

• We repeat this process for every pair of vertices.

1 2

3

4

5

Note that there are a lot of different random graphs that can be generated
with these parameters (5 vertices, p = 0.5), since every iteration will probably
generate a different graph.

12
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3.2 Degree sequence and Poisson distribution

The most studied property of random networks is the degree sequence, since it is
one of the easiest to calculate. From the analysis of this sequence we can determine
essentially all of the significant statistical properties of the graph. In [12], the
following theorem sums up the most important result about the degree sequence in
random graphs, and will motivate future works in [5, 6, 8]. As we will see in the
next chapter, this result is not accurate, since random graphs don’t generally follow
it, but it is important within the model nevertheless.

Theorem 3.1. Let dn,N(n)(Pk) denote the degree of the vertex Pk in Gn
N(n) (i.e., the

number of vertices of Gn
N(n) which are connected with Pk by any edge). Put

dn = min
1≤k≤n

dn,N(n)(Pk) and dn = max
1≤k≤n

dn,N(n)(Pk).

Suppose that

lim
n→+∞

N(n)

n log n
= +∞.

Then, we have for any ε > 0

lim
n→+∞

P

(∣∣∣∣∣dndn − 1

∣∣∣∣∣ < ε

)
= 1.

Further, for N(n) ∼ cn and for any k

lim
n→+∞

P(dn,N(n)(Pk) = j) =
(2c)je−2c

j!
(j = 0, 1, . . . ).

Proof. The probability that a given vertex Pk shall be connected by exactly r others
in Gn

m is (
n−1
r

)((n−1
2 )

N−r

)
((n2)
N

) ∼
(2N
n

)re−
2N
n

r!
.

Thus if N(n) ∼ cn the degree of a given vertex has approximately a Poisson distri-
bution with mean value 2c. The number of vertices having the degree r is thus in
this case approximately

n
(2c)re−2c

r!
(r = 0, 1, . . . ).

If N(n) = (n log n)wn with wn → +∞ then the probability that the degree of a

vertex will be outside the interval 2N(n)
n

(1− ε) and 2N(n)
n

(1 + ε) is approximately∑
|k−2wn logn|>2εwn logn

(2wn log n)ke−2wn logn

k!
= O

(
1

nε2wn

)

and thus this probability is o
(
1
n

)
, for any ε > 0. Thus the probability that the

degrees of not all n vertices will be between the limit (1±ε)2wn log n will be tending
to 0. Thus the theorem is proven. �
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This essentially means that the probability that a vertex has k edges follows a
Poisson distribution (Definition 2.29)

P (X = k) =
e−λλk

k!
,

where λ is the mean value of the degrees in the graph, that is:

λ =
1

n

n∑
k=1

dn,N(n)(Pk)

3.3 Biggest connected component

Another important result from [12] is the study of the biggest connected component
in the random graph, called simply the giant component. The existence, size and
evolution of this component is described in the next 3 theorems. First, we prove the
following Lemma.

Lemma 3.2. Let a1, a2, . . . , ar be positive numbers such that
r∑
j=1

aj = 1.

If max1≤j≤r aj ≤ α, then there is a value k, (1 ≤ k ≤ r − 1) such that

1− α
2
≤

k∑
j=1

aj ≤
1 + α

2

and
1− α

2
≤

n∑
j=k+1

aj ≤
1 + α

2
.

Proof. Put Sj =

j∑
i=1

ai, (j=1, 2,. . . ,r). Let j0 denote the smallest integer for which

Sj > 1/2. If Sj0−1/2 > 1/2−Sj0−1, we define k = j0−1. If Sj0−1/2 ≤ 1/2−Sj0−1,we
define k = j0. In both cases we have∣∣∣∣∣Sk − 1

2

∣∣∣∣∣ ≤ aj0
2
≤
α

2
,

which proves our lemma. �

We need one last theorem before we proceed.

Theorem 3.3. Let V (n,m) denote the number of vertices of a given graph Gn
m that

belong to an isolated tree contained within Gn
m. Let us suppose that

lim
n→+∞

m(n)

n
= c > 0.

14
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Then, we have

lim
n→+∞

M[V (n,m(n))]

n
=


1 for c ≤ 1

2

x(c)

2c
for c > 1

2

where m(n) is a function of n, M[V (n,m(n))] is the mean value of V (n,m(n)) and
x(c) is the only root of the equation

xe−x = 2ce−2c

that satisfies 0 < x < 1. We can also obtain x(c) as

x(c) =
∞∑
k=1

kk−1

k!
(2ce−2c)k. (3.1)

Proof. We shall need the well known fact that the inverse function of the function
y = xe−x, with 0 ≤ x ≤ 1, has the power series expansion

x =
∞∑
k=1

kk−1yk

k!
, (3.2)

convergent for 0 ≤ y ≤ 1
e
. Let τk denote the number of isolated trees of order k

contained in Gn
m. Then, we clearly have

V (n,m) =
n∑
k=1

kτk,

and thus

M[V (n,m(n))] =
n∑
k=1

kM(τk).

Then [12], we have that

lim
n→∞

1

n
M(τk) =

1

2c

kk−2

k!
(2ce−2c)k,

and thus, for c ≤ 1
2
,

lim inf
M[V (n,m(n))]

n
≥

1

2c

s∑
k=1

kk−1(2ce−2c)k

k!

for any s ≥ 1. Therefore, we can also claim that

lim inf
n→∞

M[V (n,m(n))]

n
≥

1

2c

∞∑
k=1

kk−1(2ce−2c)k

k!
. (3.3)

15
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But according to (3.2), for c ≤ 1
2

we have

∞∑
k=1

kk−1(2ce−2c)k

k!
= 2c.

It follows from (3.3) that for c ≤ 1
2

lim inf
n→∞

M[V (n,m(n)]

n
≥ 1.

On the other hand, V (n,m(n)) ≤ n and thus

lim sup
n→∞

M[V (n,m(n))]

n
≤ 1.

All of these combined yield that, for c ≤ 1
2
,

lim
n→∞

M[V (n,m(n))]

n
= 1.

We now consider the case c > 1
2
. Similarly as with the previous case, we can obtain

M[V (n,m(n))] =
n2

2m

n∑
k=1

kk−1

k!

(
2m(n)

n
e−
−2m(n)

n

)k

+O(1),

where the bound of the term O(1) depends only on c. Since

∞∑
k=n+1

kk−1

k!

(
2m(n)

n
e−
−2m(n)

n

)k

= O(n−
3
2 )

for m(n) ∼ cn with c > 1
2
, it follows that

M[V (n,m(n))] =
n2

2m(n)
x

(
m(n)

n

)
+O(1),

where x = x

(
m(n)

n

)
is the only solution of the equation

xe−x =
2m(n)

n
e−

2m(n)
n

with 0 < x < 1. Thus, if (3.2) holds with c > 1
2
, we have

lim
n→∞

M[V (n,m(n))]

n
=
x(c)

2c
,

with x(c) defined in (3.1). �
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We can now proceed to prove the existence of the giant component.

Theorem 3.4. (Existence) Let Hn,m(A) denote the set of those vertices of Gn
m which

belong to components of size > A, and let hn,m(A) denote the number of elements of
the set Hn,m(A). If m1(n) ∼ n(c−ε), where ε > 0, c−ε ≥ 1/2 and m2(n) ∼ cn then,
with probability tending to 1 for n → +∞, from the hn,m1(n)(A) vertices belonging
to Hn,m1(n)(A), more than (1 − δ)hn,m1(n)(A) vertices will be contained in the same
component of Gn

m2(n)
for any δ with 0 < δ < 1 provided that

A ≥
50

ε2δ2
.

Proof. From Theorem 3.3 we can see that the mean value of the number of vertices
belonging to trees of order ≤ A is, with probability tending to 1 for n→ +∞, equal
to

n

(
A∑
k=1

kk−1

k!
[2(c− ε)]k−1e−2k(c−ε)

)
+ o(n),

where we have changed c→ (c− ε) and the sum only extends up to A, since that is
the maximum order we are looking for.

On the other hand, the number of vertices of Gn
m1(n)

belonging to components of

size ≤ A and containing exactly one cycle is o(n) for c− ε ≥ 1/2 (with probability
tending to 1 [12]), while it is easy to see, that the number of vertices of Gn

m1(n)

belonging to components of size ≤ A and containing more than one cycle is also
bounded with probability tending to 1. Let E

(1)
n denote the event that

|hn,m1(n)(A)− nf(A, c− ε)| < τnf(A, c− ε), (3.4)

where τ > 0 is an arbitrary small positive number which will be chosen later and

f(A, c) = 1−
1

2c

A∑
k=1

kk−1

k!
(2ce−2c) > 0,

and let E
(1)

m denote the contrary event. It follows that

lim
n→+∞

P(E
(1)

n ) = 0.

We consider only such Gn
m1(n)

for which (3.4) holds. Now, it is clear that Gn
m2(n)

is obtained from Gn
m1(n)

by adding m2(n) − m1(n) ∼ nε new edges at random to
Gn
m1(n)

. The probability that such new edge should connect two vertices belonging

to Hn,m1(n)(A) is, at least, (
hn,m1(n)

(A)

2

)
−m2(n)(

n
2

)
and thus by (3.4) is not less than (1− 2τ)f 2(A, c− ε), if n is sufficiently large and
τ sufficiently small. As these edges are chosen independently from each other, it
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follows by the law of large numbers (Theorem 2.40) that denoting by vn the number

of those of the m2 −m1 new edges which connect two vertices of Hn,m1 and by E
(2)
n

the event that
vn ≥ ε(1− 3τ)f 2(A, c− ε)n (3.5)

and by E
(2)

n the contrary event, we have

lim
n→+∞

P(E
(2)

n ) = 0.

We consider now only such Gn
m2(n)

for which E
(2)
n takes place. Now let us consider

the subgraph gnm2(n)
of Gn

m2(n)
formed by the vertices of the set Hn,m1(n)(A) and only

those edges of Gn
m2(n)

which connect two such vertices.

Let the sizes of the components of gnm2(n)
be denoted by b1, b2, . . . , br. Let E3

n

denote the event
max bj > hn,m1(n)(A)(1−δ)

and E
(3)

n the contrary event. Applying Lemma 3.2 with α = 1 − δ to the numbers

aj =
bj

hn,m1(n)
(A)

it follows that if the event E
(3)

n takes place, the set Hn,m1(n)(A) can

be split in two subsets H1
n and Hn

n containing h1n and hnn respectively, such that
h1n + hnn = hn,m1(n)(A) and

hn,m1(n)(A)
δ

2
≤ min(h1n, h

n
n) ≤ max(h1n, h

n
n) ≤ hn,m1(n)(a)

(
1−

δ

2

)
. (3.6)

Further, no vertex of H1
n is connected with a vertex of Hn

n in gnm2(n)
. It follows that

if a vertex P of the set Hn,m1(n)(A) belongs to H1
n then all other vertices of the

component of Gn
m1(n)

to which P belongs are also contained in H1
n. As the number

of components of size > A of Gn
m1(n)

is clearly <
hn,m1(n)(A)

A
the number of such

divisions of the set Hn,m1(n)(A) does not exceed 2
1
A
hn,m1(n)

(A). This is also true for

Hn
n . If further E

(3)

n takes place then every one of the vn new edges connecting vertices
of Hn,m1(n)(A) connects either two vertices of H1

n or two vertices of Hn
n . The possible

number of such choices of these edges is clearly((h1n
2

)
+
(
hnn
2

)
vn

)
.

As by (3.6), (
h1n
2

)
+
(
hnn
2

)(
hn
2

) ≤
δ2

4
+

(
1 +

δ

2

)2

= 1− δ +
δ2

2
≤ 1−

δ

2

it follows that

P(E
(3)

n ) ≤ 2
1
A
hn,m1(n)

(A)

(
1−

δ

2

)ε(1−3τ)f2(A,c−ε)n
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and thus by (3.4) and (3.5),

P(E
(3)

n ) ≤ exp

[
nf(A, c− ε)

(
(1 + τ) log 2

A
−
ε(1− 3τ)f(A, c− ε)δ

2

)]
. (3.7)

Thus, if
Aεδ(1− 3τ)f(A, c− ε) > (1 + τ) log 4

then
lim

n→+∞
P(E

(3)

n ) = 0.

In case c − ε > 1/2 we have f(A, c − ε) ≥ G(c − ε) > 0 for any A, while in case
c− ε = 1/2 we have

f

(
A,

1

2

)
= 1−

A∑
k=1

kk−1

k!ek
=

∞∑
k=A+1

kk−1

k!ek
≥

1

2
√
A

if A ≥ A0

the inequality (3.7) will be satisfied provided that τ < 1/10 and A > 50
ε2δ2

. �

Clearly, the giant component of Gn
m2(n)

the existence of which has now been

proven, contains more than (1 − τ)(1 − δ)nf(A, c − ε) vertices. By choosing ε, τ
and δ sufficiently small and A sufficiently large, (1 − τ)(1 − δ)nf(A, c − ε) can be
brought as near to G(c) as we want. Thus, we have also proven the following.

Theorem 3.5. (Size) Let ln,m denote the size of the greatest component of Gn
m. If

N(n) ∼ cn where c > 1/2 we have, for any δ > 0,

lim
n→+∞

P

(∣∣∣∣∣ ln.N(n)

n
−G(c)

∣∣∣∣∣ < δ

)
= 1,

where G(c) = 1 −
x(c)

2c
and x(c) =

∞∑
k=1

kk−1

k!
(2ce−2c)k is the solution satisfying 0 <

x(c) < 1 of the equation x(c)e−x(c) = 2ce−2c.

The last theorem indirectly refers to the evolution of the component, which grows
by absorbing smaller connected components, which ultimately can be simplified as
isolated trees.

Theorem 3.6. (Evolution) The probability that an isolated tree of order k which
is present in Gn

m1(n)
where m1(n) ∼ cn and c > 1/2 should still remain an isolated

tree in Gn
m2(n)

where m2(n) ∼ (c + t)n, with t > 0, is approximately an exponential
distribution with mean value n

2k
and is independent of the “age” of the tree.

Proof. The probability that no vertex of the tree in question will be connected with
any vertex is

m2(n)∏
j=m1(n)+1

((
n−k
2

)
− j + k(

n
2

)
− j

)
∼ e−2kt.

�
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Hence it is proven that these trees do not tend to survive and are therefore
absorbed by small components. Ultimately, we have established that there is a
giant connected component in the graph that tends to grow by absorbing smaller
components.

3.4 Computational model

We will now simulate the theoretical model. The code for the ER model is the
following, using R as the programming language:

require(igraph)

er_vertices<-150 #We can put any positive integer here

er_edges<-er_vertices*(er_vertices-1)/3

er_matrix<-integer(er_vertices*er_vertices)

dim(er_matrix)<-c(er_vertices,er_vertices)

er_degree<-integer(er_vertices)

for(i in 1:er_edges){

er_rowcol<-sample(1:er_vertices,2)

if(er_matrix[er_rowcol[1],er_rowcol[2]]==0){

er_matrix[er_rowcol[1],er_rowcol[2]]<-1

er_matrix[er_rowcol[2],er_rowcol[1]]<-1

er_degree[er_rowcol[1]]<-er_degree[er_rowcol[1]]+1

er_degree[er_rowcol[2]]<-er_degree[er_rowcol[2]]+1

}else{

i<-i-1

}

}

er_k<-0:(er_vertices-1)

d1<-dpois(er_k,mean(er_degree))

plot(density(er_degree),xlab=expression(italic(k)),

ylab=expression(italic(P(k))),col="red",main = "ER Model")

lines(er_k,d1,col="green")

dev.copy(png,paste(’ER_dist_’,er_vertices,’.png’))

dev.off()

er_graph<-graph.adjacency(er_matrix,mode="undirected")

plot.igraph(er_graph,layout=layout.circle)

dev.copy(png,paste(’ER_graph_’,er_vertices,’.png’))

dev.off()

Note that we have to define how many vertices and edges we want to add in the
graph, and those are the two only variables that we can modify. The amount of
edges cannot be bigger than n(n−1)

2
, with n being the amount of vertices of the

graph. These can be modified at will to produce new simulations.
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3.4.1 Degree distribution

We can compare the degree distribution with a Poisson distribution. Here, we take
λ as the mean value of the degree of all vertices. Sadly, we are unable to get past 105

vertices using this algorithm and our computer, although it yields a nice correlation
with the theory. Figure 3.1 shows some of the resulting graphics (red is our model,
green is the associated Poisson distribution).

Figure 3.1: Probability distribution for graphs with 40, 100, 1000 and 10000 vertices,
constructed via the ER model.

We can see that for low number of vertices the distributions are similar, although
there are significant differences between them, particularly around the mean value,
where the computational model has a much higher probability than expected. Nev-
ertheless, the theoretical results are proven for a high amount of vertices, and we
can see that the correlation between the two distributions gets “better” as we use
more and more vertices, until we get to 10000 vertices, where the lines are almost
the same.

It should also be noted that we have chosen a very high number of edges when
modeling, although similar results are found when reducing that number by a factor.
For a low vertex count, it is not that interesting to test the simulation with fewer
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edges, since there are few edges to begin with, hence the reduced value remains very
similar to the original.

A much more interesting approach is to reduce the amount of edges for 10000
vertices, which is shown in Figure 3.2.

Figure 3.2: Probability distribution for graphs with 10000 vertices and a decreasing
factor of 5, 10, 25 and 50 edges, constructed via the ER model.

We can observe that the prediction from the theory still holds even when sig-
nificantly reducing the amount of edges to add. Sadly, even when this reduction
significantly drops the simulation time, adding more vertices again yields the com-
putation impossible for our computer, hence we stop the study of the distribution
at this point.
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3.4.2 Graph Plot

The igraph package allows us to draw graphs, however even with a low number of
vertices (≤ 30) the graphs become unreadable. Nevertheless, it can be instructive
to visualize the structure of the graphs with few vertices. Figure 3.3 shows some
examples for graphs with few vertices and a high edge count.

Figure 3.3: Graphs with 10, 15, 20 and 25 vertices generated through the ER model.

These graphs appear very clustered, and it can be interesting to see the structure
of the graphs with less edges. Figure 3.4 shows graphs with the same number of
vertices as the previous figure, but with an edge count 5 times smaller.

For the graphs with 20 and 25 vertices, we can go one step further and reduce
the number of edges by a factor 10. Figure 3.5 shows this.
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Figure 3.4: Graphs with 10, 15, 20 and 25 vertices generated through the ER model,
but with 5 times less edges.

Figure 3.5: Graphs with 20 and 25 vertices generated through the ER model, but
with 10 times less edges.
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3.5 Diameter and the small world property

A small world network is a type of graph in which the majority of nodes have low
degree, but most nodes can be reached from every other node in the graph by a
small length path. More specifically, if D is the average length of the path between
any two vertices of the graph (i.e., the diameter), then the graph is a small world
network if

D ∝ log n,

where n is the number of vertices of the graph. Another property typical of these
networks is a high clustering coefficient, that is, a tendency of the nodes of the
network to cluster together and create groups. The nodes that are contained in
these groups or “cliques” have a high density of links between them, so that most
of the nodes of the group are directly connected.

The small world networks were introduced by Watts and Strogatz [16] to attempt
to model the social networks and the Internet connectivity. Although it does account
for many of the networks properties, it produced an unrealistic degree distribution
that did not match the observed power law distribution that was later modeled with
the BA model. Nevertheless, the small-world properties are still hugely relevant,
since they are also prevalent in most social networks. Especially important is the
small-world experiment carried by Milgram [21], as is one of the first to address the
small-world properties of the social network.

Milgram’s experiment attempted to measure the probability that two random
people knew each other. In practice, however, this was implemented by measuring
the average path length between any two people. The experiment’s procedure is as
follows:

1. We create a correspondence chain, with Nebraska and Kansas as the starting
points, and Boston as the end point. (These were thought to represent a big
distance in the U.S., both geographically and socially).

2. We send letters to “randomly selected people” from the starting points. The
letter contains an explanation of the experiment and the basic information
of a target person in Boston, as well as a paper to write their names in and
business reply cards pre-dressed to Harvard.

3. If the person knew the target, they were to send the letter directly at them.

4. On the likely case that they did not know the target, they were to think about
another person they knew that might know the target, and send them the
letter, as well as a postcard to Harvard to keep track of the chain.

5. When and if the letter arrived at their destination, the length of the path could
then be analyzed. Also, for the letters that never reached their destination,
the tracking allowed to identify the break points.

As expected, reality (and humanity) were not keen on collaborating, and 232 of the
296 letters never reached their destination solely because the last receiver refused
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to keep the chain going. From the remaining letters that did arrive, the estimated
diameter was around 5.5.

Several problems and critiques arose despite the experiment’s ingenuity. For
instance, the reported path length was an average, not a maximum or a minimum.
There is also no reason to believe that all the successful chains were in fact the
shortest. Given that the participants had no access to the complete social network,
they could be extending the path length by sending the letter away from the receiver.
Some critics also pointed out the fact that some communities are isolated, and even
when “discovered” their relationship with the outside world is almost nonexistent.
These communities disrupt the global chains and are to be taken into account.

A better (and theoretical) approximation can be reached through the following
theorem:

Theorem 3.7. Let G be a connected graph, ∆ the biggest degree of any vertex of
G, and D the diameter of G. Then, if n is the number of vertices of G, we have:

n ≤ N(∆, D) :=
∆(∆− 1)D − 2

∆− 2

Proof. We pick a vertex v from the graph. By hypothesis, there are at most ∆
vertices connected to v. For each of those vertices, there are at most ∆ − 1 new
connected vertices, and therefore there are ∆(∆−1) new vertices. On the next step,
at distance 2 from v, we find at most ∆(∆ − 1)2 new vertices. Since the diameter
of G is D, at most we can iterate this process D times, at which point we will have
all of the vertices of G. To summarize:

• Distance 0: We have 1 vertex, v.

• Distance 1: We have 1 + ∆ new vertices.

• Distance 2: We have 1 + ∆ + ∆(∆− 1) new vertices.

• Distance D: We have 1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)D−1 new vertices.

After summing this amount, we get that, for distance D, the amount of vertices is:

1 + ∆
1− (∆− 1)D

1− (∆− 1)
=

∆(∆− 1)D − 2

∆− 2

which proves the result. �

From this equation, we can deduce:

D ≥
log

[
n(∆− 2) + 2

∆

]
log(∆− 1)

.

If we take n = 6 · 109 as the number of people on Earth, we can see that a value of
only ∆ = 50 yields D ≥ 6, somewhat consistent with the results from Milgram.
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The small-world experiment inspired other analysis, focused on subsets of the
world population graph. One case, which will be discussed in chapter 5, studies the
citation network, i.e., the graph created by all the publications of scientific articles.
In this network, two articles are connected if one of them cites the other. Within
this network we can define the Erdös number [22] as the minimum distance between
any article written by Erdös and the article of another author. Hence, Erdös is the
only one with Erdös number 0, all of his collaborators have Erdös number 1, and so
on.

A similar network is the one created by the actors and actresses of the film
industry, where two actors are connected if they appear in the same movie. Here,
the number we can define is the Bacon number, which measures the distance between
the actor and Kevin Bacon.

A more recent experiment based on the email network, where two people are
connected if one of them is in the contacts list of the other one [23]. Although
it started as a scientific initiative, the idea behind the website inspired the new
social media websites, such as Friendster, MySpace and, more recently, Facebook
and Twitter.
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Chapter 4

The Barabási-Albert model

One of the major flaws about the ER model was that, at the time, there was not
enough data to check if the model could hold for larger N . As more and more data
on the complex networks became available and better computers were developed,
it became clear that the ER model was too simple and could not replicate the
experimental results. The assumption that all edges were equally likely was not in
agreement with most of the results from real networks. Further, growth was not
contemplated in the ER model, which severely crippled its predictive power. A
new model was then proposed in 1999 by Barabási-Albert [5, 6], (from now on BA
model), that covered both these flaws:

• Growth: The ER model assumes that the number of vertices is constant,
however most networks evolve with time and this must be taken into account
to be more accurate. Therefore, in the BA model the number of vertices can
increase and decrease during the network’s lifetime.

• Preferential Attachment: The ER model assumes that the probability of link-
ing is always the same, however real networks show signs of preferential at-
tachment, that is, new vertices are more likely to link to a vertex with a large
number of edges.

Both of these additions yield a scale-free network model (Definition 2.33), that
is, P (k) follows a power law distribution that is scale-free.

We shall explain in more detail an extended version of this model, described by
Bollobás et.al. [8], which allows the existence of loops and multiple edges, and prove
the result. The proof can be difficult to follow, and we add a second “heuristic” proof
that yields the same result, but with a different approach.

It should be noted that, although the BA model succeeds in predicting the power
law nature of the scale-free networks, it fails when predicting the value of γ for the
data that was available. Models that consider additional properties, such as erasing
edges or vertices, have yielded more accurate results.

In this chapter we shall describe the model, as well as prove that the degree
sequence of the network follows a power law distribution.
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4.1 The model

Let dG(v) be the degree of vertex v in the graph G. We consider a fixed sequence
of vertices v1, v2, . . . We shall inductively define a random graph process (Gt

1)t≥0 so
that Gt

1 is a directed graph on {vi : 1 ≤ i ≤ t}, as follows. We shall start with G1
1,

the graph with one vertex and one loop. Given Gt−1
1 , form Gt

1 by adding vt along
with an edge directed from vt to vi, such that vi is chosen randomly following the
probability

P (i = s) =


dGt−1

1
(vs)

2t− 1
, 1 ≤ s ≤ t− 1,

1

2t− 1
, s = t.

To simplify, when we add the vertex, we send an edge from this vertex to another
existing vertex in the graph, where the probability of linking is proportional to its
total degree at the time. This model can be easily expanded to adding m edges per
step instead of one, but we take m = 1 for simplicity and because it will not affect
our results.

• We start with t = 1, a vertex with a loop. The number above the loop is the
probability that this is the edge we add to the graph.

1

1

• For t = 2, we add vertex number 2 and we can add an edge from 1 to 2 or we
can add a loop on vertex 2.

1 2

1/3

1 2
2/3
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• For t = 3, we add vertex number 3 and we can add an edge from 3 to 1, from
3 to 2 or we can add a loop on vertex 3.

1 2 3

3/5

1 2 3
1/5

1 2 3

1/5

1 2 3

2/5

1 2 3
2/5

1 2 3

1/5

We should note that in the BA model the biggest connected component has little
interest, since by construction most of the nodes are connected to each other and
only a small portion of nodes can become isolated (those that add loops and are then
never connected to any other node) or create smaller connected components. This
last case is very unlikely, since the biggest connected component will most likely
contain most of the higher connected vertices, and as such it acts as a black hole for
new edges.
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4.2 Degree sequence and power law distribution

We want to analytically calculate the probability P (k), that is, the probability that
a vertex has degree k. This will allow us to determine the exact value of the scaling
exponent γ. For that purpose, we need the following lemma [4]:

Lemma 4.1. (Azuma-Hoeffding inequality). Let (X)nt=0 be any martingale with
|Xt+1 −Xt| ≤ c for t = 0, . . . , n− 1. Then,

P (|Xn −X0| ≥ x) ≤ exp

(
−

x2

2c2n

)
.

This result will help us in proving the following:

Theorem 4.2. Let m ≥ 1 be fixed, and let (Gn
m)n≥0 be the random graph process

defined in the BA model. Let

αm,d =
2m(m+ 1)

(d+m)(d+m+ 1)(d+m+ 2)
,

and let ε > 0 be fixed. Let #n
m(d) be the number of vertices with indegree d (i.e.

total degree m+ d). Then, with probability tending to 1 as n→∞, we have

(1− ε)αm,d ≤
#n
m(d)

n
≤ (1 + ε)αm,d,

for every d in the range 0 ≤ d ≤ n1/15.

Proof. As mentioned, the results for general m follow from those of m = 1. Let Dk

be the sum of the first k degrees; we want to find its distribution and the distribution
of the next degree, dGn1 (vk+1), given Dk. We show that Dk is concentrated about
a certain value and hence find approximately the probability that dGn1 (vk+1) = d.
Summing over k gives us the expectation of #n

1 (d), and concentration follows from
Lemma 4.1. We must first note that the expectations of the distributions of the
total degrees are easy to calculate:

E
(
dGt1(vt)

)
= 1 +

1

2t− 1
.

Also, for s < t,

E
(
dGt1(vs)|dGt−1

1
(vs)

)
= dGt−1

1
(vs) +

dGt−1
1

(vs)

2t− 1
,

which yields the iterative formula

E
(
dGt1(vs)

)
=

2t

2t− 1
E(dGt−1

1
(vs)).

32



Random Graphs Adrià Parés

Thus, for 1 ≤ s ≤ n,

E
(
dGn1 (vs)

)
=

n∑
i=s

2i

2i− 1
=

4n−s+1n!2(2s− 2)!

(2n)!(s− 1)!2
=
√
n/s(1 +O(1/s)),

using Stirling’s formula (Theorem 2.41):

n! =
√

2πn

(
n

e

)n(
1 +O

(
1

n

))
.

If every degree was equal to its expectation we would end here. Unfortunately,
degrees can be far from their expectations. Let us write di for dGn1 (vi). We aim to
describe the distributions of the individual di. Let us consider their sums, Dk =∑k

i=1 di.
Consider the event {Dk− 2k = s}, 0 ≤ s ≤ n−k. This is the event that the last

n− k vertices of Gn
1 send exactly s edges to the first k vertices. This corresponds to

pairings P in which the kth right endpoint is 2k + s. Consider any pairing P with
this property. We shall split P into two partial pairings, the left partial pairing L
and the right partial pairing R, each consisting of some number of pairs together
with some unpaired elements. For L we take the partial pairing on {1, . . . , 2k + s},
induced by P , for R that on {2k + s + 1, . . . , 2n}. From the restriction on P , in L
the element 2k+ s must be paired with one of {1, . . . , 2k+ s− 1}, precisely s of the
remaining 2k + s − 2 elements must be unpaired, and the other 2(k − 1) elements
must be paired off somehow. Any of the

(2k + s− 1)

(
2k + s− 2

s

)
(2k − 2)!

2k−1(k − 1)!

partial pairings obtained in this way may arise as L. Similarly, for R there are(
2n− 2k − s

s

)
(2n− 2k − 2s)!

2n−k−s(n− k − s)!

possibilities. Any possible L may be combined with any possible R to form P by
pairing off the unpaired elements of L with those of R in any of s! ways. Multiplying
together and dividing by the total number (2n)!/(2nn!) of n-pairings we can see that
for 1 ≤ k ≤ n and 0 ≤ s ≤ n− k,

P (Dk − 2k = s) =
(2k + s− 1)!(2n− 2k − s)!n!2s+1

s!(k − 1)!(n− k − s)!(2n)!
.

We can deduce a concentration result for Dk. For k with 1 ≤ k ≤ n let us write
ps = ps,k for the probability defined above, and let

rs =
ps+1

ps
= 2

(2k + s)(n− k − s)
(s+ 1)(2n− 2k − s)

.
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Note that rs is a decreasing function of s. Allowing s to be a real number, the
unique positive solution to rs = 1 is given by

s = −2k +

√
4kn− 2n+

1

4
+

1

2
.

Thus, s0 = d−2k +
√

4kn− 2n+ 1
4

+ 1
2
e is one of the at most two most likely

values of Dk − 2k. Also, for n larger than some constant we have

rs+1

rs
=

(
1−

2k − 1

(s+ 2)(2k + s)

)(
1−

n− k
(2n− 2k − s− 1)(n− k − s)

)

≤

(
1−

2k − 1

2n2

)(
1−

n− k
2n2

)
≤ exp

(
−

2k − 1

2n2

)
exp

(
−
n− k
2n2

)

≤ exp

(
−

1

2n

)
.

As rs0 ≤ 1 it follows that rs0+x ≤ exp(−x/(2n)) for x > 0 and therefore ps0+x ≤
exp(−x(x− 1)/(4n)). A similar bound on ps0−x shows that

P
(
|Dk − (2k + s0)| ≥ 3

√
n log n

)
= o(n−1).

In fact, since |s0 − (2
√
kn− 2k)| ≤ 2

√
n for each k, we obtain

P
(
|Dk − 2

√
kn| ≥ 4

√
n log n

)
= o(n−1). (4.1)

We now take a look to the probability that dk+1 = d + 1, i.e., that the indegree of
vk+1 is d, given Dk. Suppose that 1 ≤ k ≤ n− 1 and 0 ≤ s ≤ n− k, and consider a
left partial pairing L as above. We have already seen that each such L has

s!

(
2n− 2k − s

s

)
(2n− 2k − 2s− 1)!!

extensions to an n-pairing. Such an extension corresponds to a graph with dk+1 =
d+1 if and only if 2k+s+d+1 is a right endpoint, and each of 2k+s+1, . . . , 2k+s+d
is a left endpoint. We note here that the element paired with 2k + s + d + 1 must
be either of the unpaired elements in L or one of the 2k+ s+ 1, . . . , 2k+ s+ d, and
that s− 1 + d pairs start before 2k + s+ d+ 1 and end after this point, each L has
exactly

(s+ d)(s+ d− 1)

(
2n− 2k − s− d− 1

s+ d− 1

)
(2n− 2k − 2s− 2d− 1)!!

such extensions, and for 0 ≤ d ≤ n− k − s, we have

P (dk+1 = d+ 1 | Dk − 2k = s) = (s+ d)2d
(n− k − s)d

(2n− 2k − s)d+1

, (4.2)
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where we write (a)b for a!
(a−b)! . This also applies when k = s = 0, yielding

P(d1 = d+ 1) =
d2d(n)d

(2n)d+1

.

For k ≥ 1, we shall use (4.1) and (4.2) to estimate the expectation of #n
1 (d), the

number of vertices of Gn
1 with indegree d. Let M = bn4/5/ log nc, let k = k(n) be

any function satisfying M ≤ k ≤ n−M , and let d = d(n) be any function satisfying
0 ≤ d ≤ n1/15. For any D with |D − 2

√
kn| ≤ 4

√
n log n we can use (4.2) to write

P(dk+1 = d+ 1|Dk = D) as

(2
√
kn− 2k +O(

√
n log n))2d

(n+ k − 2
√
kn+O(

√
n log n))d

(2n− 2
√
kn+O(

√
n log n))d+1

Using the bounds on d and k, we find that the ratio of n+ k− 2
√
kn = (

√
n−
√
k)2

to d
√
n log n tends to infinity as n → ∞, as does (2n − 2

√
kn)/(d

√
n log n). Also,√

n log n = o(2
√
kn− 2k), so the probability above is equal to

(1 + o(1))
2
√
kn− 2k

2n− 2
√
kn

(
2(
√
n−
√
k)2

2(n−
√
kn)

)d

∼
√
κ(1−

√
κ)d,

where κ = k/n. As this estimate applies uniformly to P (dk+1 = d+ 1 | Dk = D)
for all D with |D − 2

√
kn| ≤ 4

√
n log n, we see from (4.1) that

P(dk+1 = d+ 1) = o(n−1) + (1 + o(1))
√
κ(1−

√
κ)d.

Keeping n and d fixed and varying k in the range M ≤ k ≤ n−M , as the estimate
above is uniform in k we find that the expected number of vertices vk+1, M ≤ k ≤
n−M , with degree equal to d+ 1 can be written as

o(1) +
n−M∑
k=M

(1 + o(1))

√
k

n

1−

√
k

n

d

.

As all terms in the sum are positive, it follows that

E(#n
1 (d)) = O(M) + o(1) + (1 + o(1))

n−M∑
k=M

√
k

n

1−

√
k

n

d

. (4.3)

Writing f =
√
κ(1−

√
κ)d, we have

1

f

df

dκ
=
κ−1

2
−
d

2

κ−1/2

(1− κ1/2)
.

Provided nκ and n(1−κ) tend to infinity, the proportional change in f as κ changes
by 1/n is thus o(1) uniformly in κ. It follows that the sum in (4.3) can be written
as

(1 + o(1))n

∫ 1−M/n

(M+1)/n

√
κ(1−

√
κ)ddκ ∼ n

∫ 1

0

√
κ(1−

√
κ)ddκ.
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Substituting κ = (1− u)2 we obtain

E(#n
1 (d)) = O(M) + (1 + o(1))

4n

(d+ 1)(d+ 2)(d+ 3)
∼

4n

(d+ 1)(d+ 2)(d+ 3)
,

which is the required form of the distribution.
Let us return to the general case m ≥ 1. Suppose that m is a fixed constant and

let d′k be the degree of vk in the graph Gn
m. We shall estimate P(d‘k+1 = d + m),

keeping the notation dK for degrees in the graph Gnm
1 from which Gn

m is obtained.
We look at the distributions of dK+1, . . . , dK+m in GN

1 , where K = mk and N = mn.
The argument giving the conditional probability estimate (4.2) also applies to the
conditional probability given the entire sequence of earlier degrees. For M ≤ k ≤
n−M and d ≤ n1/15 our earlier estimates show that, provided no |DK′ − 2

√
K ′N |

is too large,

P(dK+j+1 = d+ 1 | d1, d2, . . . , dK+j) ∼

√
K + j

N

1−

√
K + j

N

d

which can be written as

P(dK+j+1 = d+ 1 | d1, d2, . . . , dK+j) ∼
√
κ(1−

√
κ)d,

when N � j, with κ = k/n = K/N . Thus, using (4.1),

P(d′k+1 = d+m) = o(n−1) + (1 + o(1))
∑

a1+···+am=d

m∏
j=1

√
κ(1−

√
κ
aj)

= o(n−1) + (1 + o(1))

(
d+m− 1

m− 1

)
κm/2(1−

√
κ)d.

Proceeding as before we can express the expectation of the number #n
m(d) of vertices

of Gn
m with indegree d in terms of∫ 1

0

κm/2(1−
√
κ)ddκ = 2

∫ 1

0

(1− u)m+1uddu = 2
(m+ 1)!d!

(d+m+ 2)!
,

where we have again substituted κ = (1− u)2. We find that, for 0 ≤ d ≤ n1/15,

E(#n
m(d)) ∼

2m(m+ 1)n

(d+m)(d+m+ 1)(d+m+ 2)
(4.4)

uniformly in d. Let us consider again the graph Gn
m as one from the process (Gt

m)t≥0.
We fix m ≥ 1, n ≥ 1 and 0 ≤ d ≤ n1/15, and consider the martingale

Xt = E(#n
m(d) | Gt

m),

for 0 ≤ t ≤ n. We have Xn = #n
m(d), while X0 = E(#n

m(d)). We claim that the
differences |Xt+1−Xt| are bounded by 2. To see this, note that whether at stage t we
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join vt to vi or vj does not affect the degrees at later times of vertices vk, k /∈ {i, j}.
More precisely, the joint distribution of all other degrees is the same in either case.
Since we are just counting vertices with a particular degree, no matter how much
the degrees of vi and vj are changed in Gn

m, this changes #n
m(d) by at most 2.

Applying Lemma 4.1, we find that for each d with 0 ≤ d ≤ n1/15 we have

P
(
|#n

m(d)− E(#n
m(d))| ≥

√
n log n

)
≤ e− logn/8 = o(n−1/15).

Noting from (4.4) that, in this range,

E (#n
m(d)) ∼

2m(m+ 1)n

(d+m)(d+m+ 1)(d+m+ 2)
,

and that this is much larger than
√
n log n, the result follows. �

A more simplistic proof [6] can be obtained by analyzing the time dependence
of the connectivity of a given vertex. This can be calculated analytically using a
mean-field approach.

We define m0 as the initial ammount of vertices of the graph. At each step,
we add a vertex and m(≤ m0) edges that don’t have to originate from the added
vertices. After t steps, we have N = m0 + t vertices and mt edges.

We want to calculate the probabilty that a vertex has k edges, P (k). Let us as-
sume that k is continuous. Then, the probability that a new vertex will be connected
to vertex i at any given step,

Π(ki) =
ki∑
j kj

with ki being the degree of vertex i, can be interpreted as a continuous rate of change
of ki. Hence, for a vertex i, we can write

∂ki

∂t
= AΠ(ki) = A

ki∑m0+t−1
j=1 kj

. (4.5)

Taking into account that
∑

j kj = 2mt and the change in connectivities at a timestep
is ∆k = m, we obtain that A = m, which leads to

∂ki

∂t
=
ki

2t
.

The solution of this equation, with the initial condition that vertex i was added to
the system at time ti with connectivity ki(ti) = m is

ki(t) = m

(
t

ti

)0.5

.

We can observe that the last equation essentially means that there is a “rich-gets-
richer” kind of phenomenon, where older vertices (i.e., those with small ti) increase
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their degree at the expense of the younger vertices (i.e., those with large ti). This
property can be used to calculate γ analytically. This in turn means that the
probability that a vertex has connectivity ki(t) smaller than k, P (ki(t) < k) can be
written as

P (ki(t) < k) = P

(
ti >

m2t

k2

)
.

Assuming that we add the vertices at equal time intervals to the system, the prob-
ability density of ti is

Pi(ti) =
1

m0 + t
.

Substituting this into equation (4.5) we obtain that

P

(
ti >

m2t

k2

)
= 1− P

(
ti ≤

m2t

k2

)
= 1 +

m2t

k2(t+m0)
.

Finally, we can obtain the probability density for P (k) by using

P (k) =
∂P (ki(t) < k))

∂k
=

1

k3
2m2t

m0 + t
, (4.6)

predicting γ = 3, independent of m and m0. This means that no matter how many
vertices we start with or how many edges we add at every step, we eventually get
P (k) ∼ Ak−3. Furthermore, equation (4.6) also predicts that the coefficient A is
proportional to the square average connectivity of the network (the average degree
of the vertices in the network)

A ∝ m2.

We note that this last model was the original one proposed by Barabási-Albert in
1999. We can observe, however, that starting with no edges essentially yields the
probability to add any vertex equal to 0, which is why Bollobás et.al. expanded it
by starting with one vertice and a loop. As we have already seen, the value of γ is
not dependant on the initial number of vertices m0 or the amount of edges added
per step m. Hence, it is easier to use the case where m0 = m = 1, which is the way
we originally described the model at the beggining of the chapter, and for which we
have proven Theorem 4.2.

4.3 Computational model

We will now simulate the theoretical model, adding only one edge per step. The
code for the BA model is the following, using R as the programming language:

require(igraph)

ba_vertices<-10 #We can put any positive integer here

ba_matrix<-integer(ba_vertices*ba_vertices)

dim(ba_matrix)<-c(ba_vertices,ba_vertices)
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ba_matrix[1,1]<-1

ba_degree<-integer(ba_vertices)

ba_degree[1]<-2

for(j in 2:ba_vertices){

cont<-cont+1

aux<-j

ba_rand<-sample(1:(2*j-1),1)

for(i in 1:aux){

if(ba_rand-ba_degree[i]<=0){

ba_matrix[i,aux]<-1

ba_degree[i]<-ba_degree[i]+1

ba_degree[aux]<-ba_degree[aux]+1

ba_rand<-0

break

}else{

ba_rand<-ba_rand-ba_degree[i]

}

}

if(ba_rand==1){

ba_matrix[j,j]<-1

ba_degree[j]<-ba_degree[j]+2

}

}

ba_dseq<-integer(ba_vertices+1)

for(k in 1:(ba_vertices+1)){

for(i in 1:ba_vertices){

if(ba_degree[i]==k){

ba_dseq[k]<-ba_dseq[k]+1

}

}

}

ba_dseq<-ba_dseq/ba_vertices

ba_k<-1:(ba_vertices+1)

ba_p<-ba_degree[1]*ba_k^(-3)

matplot(ba_k,cbind(ba_dseq,ba_p),type="l",col=c("red","green"),

lty=c(1,1),log="xy",

xlab=expression(italic(k)),ylab=expression(italic(P(k))),main="BA Model"))

dev.copy(png,paste(’BA_dist’,ba_vertices,’.png’)

dev.off()

ba_graph<-graph.adjacency(ba_matrix)

plot.igraph(ba_graph,layout=layout.circle)

dev.copy(png,paste(’BA_graph’,ba_vertices,’.png’))

dev.off()
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4.3.1 Degree distribution

We compare the degree distribution with the expected power law

P (k) = Ak−3

where A is a correction value that added to make the lines appear closer in the
graphic. Figure 4.1 shows some of the results (red is our model, green is the associ-
ated power law distribution).

Figure 4.1: Degree distribution for graphs with 10, 100, 1000 and 10000 vertices
constructed via the BA model. The graphs are centered on the low values of k and
have been amplified to observe the correlation between the two lines.

At low vertices, the two lines are similar, although this can vary significantly
when making new simulations. For illustration purposes, we have added the better
ones. The model gets more consistent as we increase the number of vertices up to
10000, and all simulations are essentially the same, with few noticable variations.
The slopes of the lines with a high number of vertices are still not exactly as pre-
dicted. This can be explained because the number of vertices that was considered
should go much higher, around 8 ·105, at which point we expect better results, as we
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can observe in [6]. Here, we have the same problem as before, where our computer
cannot go further, although these simulations show that the trend is pretty accurate.

4.3.2 Graph plot

In contrast with the ER model, the BA model allows for good plotting of graphs up
to 35 vertices. Past that point, the clustering of the nodes makes the graph difficult
to read. We should especially note that, as expected, the number of loops is very low
compared to the amount of steps that we are simulating, emphasizing the fact that
their effect is negligible when analyzing the graph. Figure 4.2 shows some examples.

Figure 4.2: Graphs with 10, 20, 30 and 35 vertices generated through the BA model.
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Chapter 5

Applications

It is now time to check how our models hold when faced with real networks. There
is a massive number of situations that can be studied via simulations, so we shall
try to analyze a diverse sample to emphasize the flexibility of random graph theory.
In each case we will identify the elements that will act as vertices and as edges, why
is the problem important and what kind of advantages we can gain by using random
networks to study that particular situation.

We should, however, approach these examples with caution. We have selected
them for its historical significance, and some of them are outdated or their data is
no longer available, so that we cannot access it to use for our simulations. More-
over, we have focused our attention on proving the theoretical models and getting a
good computational simulation to check them, so we will not go too in-depth when
analyzing them. These examples have been selected to show the potential of the
theory, and that random graph theory can be applied in a lot of diverse cases.

Except for the first example, whose data is still available, the rest of the examples’
figures are created just to illustrate and complement the text. This means that we
“trust” the results of the original authors of the different cases, and explain them
accordingly. Other examples also show that, although the models we have proved
in previous chapters give a good approximation of the real networks, they fail when
approaching dynamic networks. We will extend on this concept at the end of the
chapter.

5.1 The paper citation distribution

The amount of citations that a paper has (i.e., the number of times that an article
is cited in a paper) is usually assumed to represent the “influence” of the paper. It
is also an important factor when considering merits of the author, both in regard
to the academic career of the author and in merit-based considerations, such as
grants and partnerships. Despite the importance of the citation network, little to
no research has been conducted on quantifying scientific research, its correlation
with productivity and the impact of some papers in the network. Further, most of
the studies conducted about the subject are either based on heuristic arguments and
give no numerical values, or use an insufficient amount of data to extract significant
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results.

We will focus on the distribution of citations, i.e. the number of papers with
x citations, N(x). In [15], this model is analyzed using two databases: papers
published in 1981 in journals catalogued by the Institute of Scientific Information
(ISI) (+780,000 papers) [19] and papers published during 20 years of publications
in Physical Review D (PRD), volumes 11–50 (+24,000 papers) [20]. The elements
of the network are as follows:

• Vertices: The articles or publications.

• Edges: The citations: if an article A is cited in another article B, the edge
goes from B to A. This graph is directed.

Analysis of the citation case. The fundamental distribution that we analyze
here is the number of articles that have been cited a total of x times, N(x). It
should be noted that the data only matches a power law distribution for big values
of x (as should be expected, since we have only proved the results asymptotically).
Figure 5.1 represents the ISI data (yellow), the PRD data (red), together with a line
of slope -3 (green) and slope -2.8 (blue).

Figure 5.1: The number of articles cited x times, for the ISI and PRD database.
Two lines of slope -3 and -2.8 are added as guideline.
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We can therefore assume that N(x) follows a power law distribution, N(x) ∝
x−α. Finally, let M be an ensemble of M publications and the corresponding number
of citations for each of these papers in rank order Y1 ≥ Y2 ≥ ... ≥ YM , then we define
the number of citations of the k-th most cited paper, Yk, as∫ ∞

Yk

N(x)dx = k. (5.1)

In other words, there are k articles out of M that are cited at least Yk times in the
database. Figure 5.2 displays Yk vs k for the PRD set.

Figure 5.2: The left graphic shows Yk vs k in red, with a line of slope −0.48 in green.
The right graphic shows a closer look for Yk > 8000.

From this representation, we can see that the highly-ranked citations provide a
good representation of the asymptotic tail of the citation distribution (those with
low k). This data is pretty linear, and a least square data fit yields an exponent
of about −0.48. Let us now assume without a loss of generality that N(x) = x−α.
Then, by (5.1), we have that∫ ∞

Yk

x−αdx =

[
x1−α

1− α

]∞
Yk

= k.

Now, we assume α > 1 and we have that

−Y 1−α
k = k(1− α)
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which finally yields

Yk = [(α− 1)k]
1

1−α .

Since the exponent was approximately −0.48, we have that

1

1− α
= −0.48 =⇒ α = 1 +

1

0.48
≈ 3.08,

which is in agreement with the theory.
We should note that, as the author points out, this data is somewhat inaccurate

(a simple review of the data shows that the total number of citations to individual
articles is 524 when there are only 426 articles in the dataset. Even with the dis-
parity, the smoothness of the distribution suggests that these have little influence
in the final results).

5.2 The World Wide Web

It is indisputable that the Internet has changed the world. The world wide web plays
a fundamental role in a lot of aspects of our daily life and has become the mainstream
medium to exchange information worldwide. Despite its massive importance, the
huge complexity of the network and the fast and unregulated growth it presents
makes the study of the web a rather unappealing and intimidating effort. It is easy
to imagine that we could model the web as a graph:

• Vertices: The HTML documents or “the web page”.

• Edges: URLs that point to one document. This graph is therefore directed.

The topology of this graph would yield impressive results, such as the connectivity
of the web, and consequently how efficiently we can locate information on it. A
complete mapping of the web would allow an omniscient agent to interpret all the
links and choose the optimal path to navigate the web, thus becoming the ultimate
search engine. Although this is unachievable nowadays, the results would neverthe-
less significantly improve the power of the robots, since they rely on a matching
string method that can prove limited in numerous occasions.

Unfortunately, the size of the Internet has been estimated to be no less than 8·108

documents [1], with more modern calculations setting the number around 4 · 1012.
These numbers must be handled with caution, since the algorithms used to calculate
them are often not that reliable and tend to overestimate. Also, indexing the web
is not an easy task by any means, since the uncontrolled growth of the web makes
it a very dynamic network, with vertices and edges appearing and disappearing
constantly. Thus, local analysis is not optimal, and instead a large-scale approach is
more suitable for a first glance at the infrastructure of the Internet, and therefore we
go back to obtaining the topology of the network. A lot of effort is being put in an
indexation of the web, with various projects and databases attempting to provide a
good approximation, most of them englobed in CAIDA. The indexation of the web
is analyzed in a P2P manner, with Skitter [18] and its successor, Ark [17], being the
main projects.
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Analysis of the WWW case. The analysis will consist on 2 parts.

Distribution. We can use the data to determine the probabilities Pout(k) and
Pin(k) that a document has k outgoing and incoming links [7]. Both follow a power
law over several orders of magnitude, as shown in Figure 5.3.

Figure 5.3: Distribution of the links on the World Wide Web, outgoing links and
incoming links. The data is in red, the power law distribution is in green. The tail
of the distributions follow a power law with γout = 2.45 and γin = 2.1.

The model predicts γ = 3, while the obtained results yield γout = 2.45 and
γin = 2.1, significantly different values. We will discuss the reasons behind this
discrepancies at the end of the study.
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Diameter. A particularly important quantity in a search process is the shortest
path between two documents, D, defined as the smallest number of URL links that
must be followed to navigate from one document to the other [7]. As Figure 5.4
shows, we find that the average of D over all pairs of vertices follows

〈D〉 = 0.35 + 2.06 log(N),

indicating that the web forms a small-world network. (See Section 5 of Chapter 3).

Figure 5.4: Average of the shortest path between two documents vs the size (N) of
the system. The data is in red, and we add the line 〈D〉 = 0.35 + 2.06 log(N) in
green.

For N = 8 · 108, this yields 〈Dwww〉 = 18.59. This means that, on average,
it takes 19 clicks to go from one random document to another in the web. Even
more important than that is the logarithmic dependence of 〈D〉 with N , since the
enormous predicted growth of the Internet will barely affect 〈D〉. To illustrate, a
growth of 1000% over a few years would yield a 〈Dwww〉 = 21.

This result, however, provides no real advantage for matching strings robots.
Assuming that such a robot could locate a document at distance 〈D〉, it would need
to search around 10% of the whole web to do so. This unbearable costly, and as such
new search engines are to be developed to take advantage of this high connectivity
of the web.
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It should be noted however that the web is a much more complex network than
this. The BA model, although it gives a good first glance at the infrastructure, makes
huge omissions on its premises that, when applied to the web, cannot faithfully
describe the topology of the web. As we have already commented, the edges (links)
of this graph appear and disappear constantly, which is not considered in the model.
Similarly, vertices (documents) are not stable: they are often removed, modified or
even change domain. To top it off, web pages are structured in domains, which
gives a complex hierarchical structure and promotes clustering, which is also not
accounted for in the model.

These discrepancies are notable when analyzing the degree distribution where the
obtained values are significantly different than the expected ones. This discrepancy
is being studied as of now, and more precise and complex models will surely yield
better predictions.

Remark 5.1. It should be noted that this article is older than Google and the newer
search engines. Inspired by this article’s results (among others), they produced faster
and more efficient search algorithms.

5.3 Metabolic networks

In a cell or organism, the processes that sustain life are integrated in a complex net-
work of cellular constituents and reactions. Despite the key roles of these metabolic
pathways to sustain cellular functionality, their large scale structure and properties
are essentially unknown. Understanding this could not only provide very valuable
and perhaps even universal structural information, but also lead to a better un-
derstanding of the processes that generated the network itself, i.e., a mathematical
approach to evolution. In [14], the topological properties of the core metabolic
network of 43 different species are analyzed based on the data gathered at WIT.
Unfortunately, this database has been made inaccessible and thus the results are
not to be reproduced.

• Vertices: The enzymes or substrates that produce the metabolic processes.

• Edges: The actual metabolic processes. Since under physiological conditions a
large number of biochemical reactions are favored towards one direction, this
is a directed graph.

Analysis of the metabolic case. As always, we display the probability of a node
to have k links, P (k) in Figure 5.5.
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Figure 5.5: P (k) vs k. In red, the outgoing links. In blue, the incoming links.

The results suggest that the probability that a given substrate participates in k
reactions follows a power law distribution. For instance, in Escherichia coli the prob-
ability that a substrate participates in k metabolic reactions follows Pin(k) ∼ k−2.2,
and similarly the probability that a substrate is produced by k different reactions is
Pout(k) ∼ k−2.2. We can see that the scale-free network is suited to describe all of
the organisms analyzed.

Another important aspect is the diameter of the metabolic network. We find
that the average diameter is the same for all 43 organisms, independently of the
number of nodes of the network, with a few highly linked metabolites acting as the
connection between most pathways. These nodes provide important (and already
known) biological facts:

• Resistance to random errors Random errors can appear when copying DNA
sequences, and thus modify the protein and metabolic structure of the cells.
These random mutations can be modeled as eliminating nodes from the net-
work. The diameter remains unaffected after random removal of some non-high
linked metabolites, indicating a strong resistance to random errors. This could
show an adaptation of these organisms to the fact that random mutations are
unpredictable and unavoidable, and ensure that the cell can remain functional
even with these deletion.
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• Importance of some central metabolites On the other hand, the removal of the
highly linked nodes yields a dramatic increase of the diameter, and usually
the network becomes disconnected and not functional. This would represent
the effect of fatal mutations, where the high connection metabolite cannot be
produced by the cell anymore, and thus renders it unable to function normally,
since some of the metabolic pathways are now not connected.

Another interesting fact that we obtain is that the ranking of the most connected
substrates is practically identical for all 43 organisms. Moreover, only 4% of all sub-
strates that are found in all 43 organisms are present in all species. These represent
the most highly connected nodes found in any individual organism, suggesting that
the use of these substrates is pretty generic among species. To contrast with this
fact, most of the species-specific differences arise from the less connected substrates.
To sum it up, most species have the same highly connected nodes to develop “essen-
tial” metabolic processes, while the species-specific processes (i.e., specialization) are
carried by less connected metabolites, which are typically exclusive to that species.

5.4 Other models

There are many more examples that can be studied applying random graph theory.
Networks such as the neuron connectivity in the nervous system, brain structure,
social networks and social media, protein structure, economic models, the calling
network of phones,...

Although most of these can be analyzed using the BA model, we have seen that
the last two examples have yielded γ 6= 3 by a significant, although small, amount.
This can be due to various factors. First of all, most networks are not deliberate
constructions, and as such will show some differences (sometimes, these are too big
to ignore and a different model has to be used). Also, throughout this manuscript
we have left aside those models that make use of rewiring of edges (edges being
erased or repositioned), or the possibility of vertices disappearing. These factors
offer a degree of non-linear evolution to the networks that the BA model does not
take into account, and as such it will fail when applied to networks with these
characteristics. To summarize, the BA model is pretty accurate when predicting
a power law distribution on this random networks, but is still not good enough to
predict the correct γ. More research into these models will help shed light to the
topic.
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