

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques
Universitat de Barcelona

MOTION CAPTURE WITH KINECT

Marc Girones Dezsènyi

Director: Oriol Pujol

Realitzat a: Departament de

Matemàtica Aplicada i

Anàlisi. UB

Barcelona, 20 de junio de 2013

2 Figures and tables

Agradecimientos
Agradecer a Oriol Pujol por darme la oportunidad de poder trabajar en este proyecto
y por ayudarme en todas las dudas que se han ido planteando a lo largo del
desarrollo del proyecto.

3 Figures and tables

Index
Figures and tables .. 4
1. Introduction ... 5

1.1. Project Environments .. 7
1.2. Project Motivation ... 9
1.1. General Aims and Objects ... 11
1.2. Organization of the document ... 12

2. Background knowledge .. 13
2.1. Projection .. 13
2.2. Method to calculate the joint angles (Angular kinematics) 16
2.3. Technologies .. 18

3. Methodology ... 21
3.1. General analysis of the approach of motion capture 21
3.2. Specify analysis of the approach of motion capture 22

3.2.1. Capture the space.. 22
3.2.2. Apply the kinematics method .. 25
3.2.3. Apply the human motion into the virtual character....................... 29

4. System Analysis and Design ... 32
4.1. Use cases ... 32

4.1.1. Use case 1(UC1) ... 32
4.1.2. Use case 2(UC2) ... 33
4.1.3. Use case 3(UC3) ... 33
4.1.4. Use case 4(UC4) ... 34

4.2. Domain model of the application .. 35
4.3. Class diagrams ... 37
4.4. Sequence diagram ... 38

4.4.1. Sequence diagram 1 .. 38
4.4.2. Sequence diagram 2 .. 40
4.4.3. Sequence diagram 3 .. 40
4.4.4. Sequence diagram 4 .. 41

5. Simulation and validation .. 42
5.1. Movement and positioning validation ... 42
5.2. Limitation .. 46

6. Conclusion and future line to continue .. 47
7. Bibliography ... 48
8. Annex .. 49

Annex I: Installation, minim requirement ... 49
Annex II: User guide to develop .. 50
Annex III: User guide ... 52

4 Figures and tables

Figures and tables
Figure 1: Magnetic and mechanical motion capture system 9
Figure 2: Orthographic projection vs. perspective projection 13
Figure 3: Orthographic projections with projection plane z = 0 14
Figure 4: Perspective viewing 15
Figure 5: Orthographic projection vs. perspective projection 15
Figure 6: Relative angles vs. absolute angles 16
Figure 7: Calculate the absolute angles 17
Figure 8: Calculate rotation between two vectors 17
Figure 9: Microsoft Kinect for Windows 19
Figure 10: Motion capture by Jernej Barbic 20
Figure 11: High level layout diagram 21
Figure 12: Detailed layout diagram of the first component 22
Figure 13: Segmented user from background and his skeleton 22
Figure 14: Adwin adaptive window algorithm pseudo code 23
Figure 15: Displacement along the “X” axis 24
Figure 16: Displacement along the “Y” axis 24
Figure 17: Detailed layout diagram of the second component 25
Figure 18: Hierarchical graph of skeleton join 27
Figure 19: BVH file, motion section 27
Figure 20: Detailed layout diagram of the third component 29
Figure 21: Automatic rigging method 29
Figure 24: Approximate Medical Surface 30
Figure 25: Packed Spheres 30
Figure 22: Constructed Graph 30
Figure 23: Original and reduced skeleton 30
Figure 26: The human discrete embedding and skin attachment 31
Figure 27: Common problem with linear blend skinning 31
Figure 28: Domain model of the application 35
Figure 29: Simplified class diagram 37
Figure 30: Sequence diagram 1 38
Figure 31: Sequence diagram 1.2 39
Figure 32: Sequence diagram 1.3 39
Figure 33: Sequence diagram 2 40
Figure 34: Sequence diagram 3 40
Figure 35: Sequence diagram 4 41
Figure 36: Meshes of the application 42
Figure 37: Left and right tibia simulation 43
Figure 38: Left and right complete leg movement simulation 44
Figure 39: Rotation and complete arm simulation 45
Figure 40: User seated position 45
Figure 41: Open project on Visual Studio 48
Figure 42: Open the “.SLN” file 48
Figure 43: Project file tree 49
Figure 44: Build folder with the NITE and OpenNI files 49
Figure 45: Application GUI 50

5 Abstract

Abstract

Motion capture, motion tracking or mocap are the terms used to describe the

process of recording movement and translating that movement onto a digital model,

it is used in military, entertainment, sports, and medical application. In film making it

refers to recording actions of human actors, and using that information to animate

digital character models in 3D animation.

Unfortunately, most motion capture systems on today's market are prohibitively

expensive for educational institutions and small businesses. My goal is to develop a

relatively low-cost competitive motion capture system. So in this research I’m looking

for the answer how can create an optical mocap player with a single camera.

Current motion capture methods use passive markers that are attached to different

body parts of the subject and are therefore intrusive in nature. In applications such

as pathological human movement analysis, these markers may introduce an

unknown artifact in the motion, and are, in general, cumbersome. So the other key

challenge is to produce a system that allows marker-less real-time tracking or near

the real time.

My ultimate objective is to build a visual system that can integrate the above

mentioned components, wherewith can display the user’s movement into an avatar

in the virtual space.

Finally, I will propose a validation system to validate the user movements. I will
evaluate the different postures or complete movements. Moreover, I want to go
future and show the result in different ways, such as different viewing angles,
different meshes or mesh with illumination.

6 Introduction

1. Introduction

Recognition of human motion stream from 3D motion capture systems can find wide
application in many situations, such as surveillance video systems, 3D animation
and simulation-based training, gait analysis and rehabilitation and gesture
recognition. Marker-less motion capture is a challenging problem, in particular when
only monocular video is available.

The aim of this project is to study the viability of creating a human capture system
with a single depth and colour camera. I will research some methods wherewith I will
be able to create the human motion capture system with the single depth camera.
This involves the analysis, design and implementation of an application to verify
whether my approach is correct or not.

Finally, I will propose a validation system to validate the user movements. I will
evaluate the different postures or complete movements. Moreover, I want to go
future and show the result in different ways, such as different meshes or mesh with
illumination.

7 Introduction

1.1. Project Environments

The aim of this project is find the answer if it is possible to build a human capturing
system with a single depth and color camera. I will present many methods,
algorithms wherewith I will able to create the human motion capture system. Finally, I
will propose a validation methodology to validate the user movements. I will evaluate
the different postures or complete movements. Moreover, I show the result in
different ways, such as different meshes or mesh with illumination.

Motion tracking or motion capture started as a photogrammetric analysis tool in
biomechanics research in the 1970s and 1980s. The idea was to record human body
movement (or other movement) for immediate or posterior mapping of the human
motion onto the motion of a computer character. The mapping can be direct, such as
a human arm motion controlling a character’s arm motion, or indirect, such as human
hand and finger patters controlling a character’s skin color or emotional state.

Disney studio was a first who was traced animation over film footage of live actors

playing out the scene. So, any virtual character got convincing motion (e.g. Snow

White). This method called "rotoscoping" has been used successfully since then.

In 1970, when he began to be possible to animate characters by computer,

Animations have adapted traditional techniques, including the "rotoscoping". Today,

technology is catching is good and diverse, we can classify them into three broad

categories: mechanical, optical and magnetic motion capture.

Today, motion capture is really effective, and it is used in a wide variety of

applications, such as surveillance video systems, 3D animation and simulation-

based training, gait analysis and rehabilitation and gesture recognition. The

application is aimed to non-expert users e.g. this technology can be adopted in

health applications. We can imagine that physicians learn surgical techniques from

each other form a huge distance. They are able to check key moves from different

perspectives. But this technology can also be used in sports. For instance, coaches

and athletes could be able to analyse their opponents' techniques, see every posture

from difference perspective. So we may take a conclusion that today this technology

is one of the major challenge that can radically change the human lives.

Finally, I am referring to the related courses from the Computer Science curriculum.

This project is strictly related to the subject of Image Processing and Graphics and

Data Visualization, which try and give the first steps in graphics applications, basic

knowledge about how to position an objects in a scene and able to view them in a

viewport, as well as pipelines and basic frameworks that can help us achieve the

goals of the course.

8 Introduction

The other signatures which has a relation with the Image Processing and Graphics

and Data Visualization, like:

 Programming I: Where introduced to the basis of programing.

 Programming II. Where introduced advanced knowledge of programing.

 Introduction to Scientific Computing: Where introduce the basics of

programming computer science.

 Algorithms: Where introduced where the algorithms and the importance of

computational costs.

 Design Software: Where introduced to the methodologies followed for the

proper design and further development of the software.

 Data Structure: Where introduced when and how to use different data

structures.

 Operating Systems I and II: Where introduce the necessary skills to manage

the various resources available to a computer and how to manage

concurrency.

9 Introduction

1.2. Project Motivation

3D human body models are used in a wide spectrum of application that require
images of human replicas. It is used in military, entertainment, sports and medical
application, and for validation of computer vision and robotics. In filmmaking and
video game development, it refers to recording actions of human actors, and using
that information to animate digital character models in 2D or 3D computer animation.

In the Graphics and Data Visualization course we work on how we can render a
virtual scene which is composed of one or several object viewed through the
perspective or parallel projection. In the Image Processing course different
techniques wherewith we can segment the one image were shown and, finally, in the
Computer Vision course tracking techniques were introduced. I got a wide
knowledge during the last four years and raised the question of how I can combine
these things to get a revolutionary new thing. The answer for this question was found
in the motion capturing field.

So I found the topic, but it remained to choose the most appropriate devices. The
motion capture system can be divided into magnetic, mechanic and optical.

Magnetic systems use electromagnetic sensors placed on joints of moving limbs,
and each sensor record 3D position and orientation (right image of figure 1). The
sensors connected with the computer which can process 3D data in real time, which
means the system restricts movement due to cabling. This system’s advantage is
that the processing time has a low cost.

Mechanical systems use special suits with integrated mechanical sensors that
register the motion of articulation in real-time (center and left image of figure 1). Each
sensor placed on joints of a moving limb, but the system only capture the data,
without processing them.

Figure 1: Magnetic and mechanical motion capture system

http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=6DspVFQK-GlsDM&tbnid=8gaD_kMTkgih4M:&ved=0CAUQjRw&url=http://www.xsens.com/en/company-pages/company/human-mocap&ei=cBKtUYrDDquk0AWqjIC4Dw&bvm=bv.47244034,d.ZG4&psig=AFQjCNF0SeGfynQV4lm0lG8AvAzTTWwQ_g&ust=1370383312399099

10 Introduction

Finally, the optical systems are based on photogrammetric methods. Optical systems
provide high accuracy with complete freedom of movement and support the
possibility of interaction between different actors. But the system has an elevate
processing time and it has not a mature technology. The quality is not as good as
other capturing technologies. Most motion capture systems based on optical
techniques need a relatively large number (4-8) of camera views to give effective
results. And it requires multiple synchronization because video cameras observing
the subject from several different directions.

My computer science interest focus on the visual appearance and in the future I
would like to broaden my knowledge in this sector. So there was no question that I
will choose the optical system. But in my opinion the system with multiple cameras is
too expensive and too hard to implement for a small developer team. So the aim is
find the answer if it is possible to create the human captures system with a single
depth and colour camera.

The other challenge of the project is a virtual character rig. Because the human

motion is too complex and able a many combination of the movement, it was not a

possible solution to create the pre-recorded animation of the virtual character. So the

other aim is find the solution to create the automatic character rigging from the one

static object.

11 Introduction

1.1. General Aims and Objects

The core objectives which have been designated as fundamental to the project are:

 Previous study of the motion capture system

In the previous study do a comparative analysis and study of the existing

algorithms. Research what are the main components of this techniques and

research methods of each component.

 Design a visualization system that allows viewing objects in 3D

Design and implement a system, which allows three dimension views. In

addition the interface to be able to shows the scene from different perspective

view.

 Analysis, design and implementation of full human body control.

Research any API which provides the hardware and software 3D sensing

technologies. Then design and implement the full human body control.

 Analysis, design and implementation of 3D virtual model visualization and 3D

virtual model animation

Research any library or graphics engine which provides the 3D virtual model

visualization and 3D virtual model animation.

 Design how to fusion the two previous result

Here try to fusion the 2 previous implementations. In other words, recording of

human body movement for immediate mapping of the human motion onto the

motion of a computer character.

 Validation of the application.

Try to validate the system from the user movements. Evaluate the different
postures or complete movements.

 Conclusions and future lines to continue

Get the conclusion of the project, the achievement of objectives and
enumeration of future continuation lines. Define what are improvement
elements and research better algorithms to subtract them.

12 Introduction

1.2. Organization of the document

This document is organized into the following chapters:

Chapter 1: Introduction.
The first chapter is the Introduction. In this chapter contextualize the final year
project and defines the problem to subsequently remove the aims of this work.
Moreover, there is other paragraph that refers the personal motivation.

Chapter 2: Background
This chapter will introduce the background of this project, analyse the different
elemental of the system and approaches to carry out the solution.

Chapter 3: Methodology
This chapter cover the analysis of the application. It will start with the general
approach, then step by step go the lower level and explain briefly each level’s
component.

Chapter 4: System Analysis and Design
This chapter cover the system analysis and design of the application through use
cases, class diagrams, sequence diagrams and domain models

Chapter 5: Validation and simulations
Chapter 5 will discuss about the results and validate the user movements. It will
discuss the result of the different postures and result of the complete movements.

Chapter 6: Conclusions and future lines to continue
This chapter details the conclusion of the project, the achievement of objectives and
enumeration of future continuation lines of this project. There is one paragraph,
which explains the future work related to improvement elements of the software.

Chapter 7: References
Party shown external material used

Chapter 8: Annexes
The final chapter list the recommended minimum hardware requirement for the
application, explain how to install the application on the PC and explain usage and
develop usage.

13 Background knowledge

2. Background knowledge

The purpose of this chapter is to analyse the different elemental component of the

system. It introduces and explains briefly those basic theories, whose knowledge is

indispensable. Moreover we can place it within a more general context.

This chapter is divided into two sections. Section one will discuss the visual

appearance. It talks over how to create the virtual scene and the methods used to

display this scene. In section two will define the methods to calculate the joint

angles. How we can convert the data from the coordinate features to the BVH

feature.

2.1. Projection

As I told at the aims the project, we would like to map directly a human motion into

the virtual character. To this mapping, it is an essential components to create the

virtual space and visualize one or more 3D component in this space. As in the real

word, the scene has a virtual camera, the virtual scene and projection plane.

Let us begin by considering how to transform the scene into camera coordinates.

Ergo we want to view the scene from the camera's point of view. The fundamental

approach of planar projection there are three steps. Firstly we have to define a plane

in 3D space; this is the projection plane or film plane. Then project scene onto this

plane and finally map to the window a viewport. Although it is important to know how

to create the 3D scene and map to the window a viewport, but in this document I will

not discuss. The only topic what I will dissect is the projection onto the plane.

There are many methods to representing a three-dimensional object in two

dimensions and ones of them is orthographic and perspective projection (Figure2).

Figure 2: Orthographic projection vs. perspective projection

The orthographic projection is a form a parallel projection, where all the projection

lines are orthogonal the projection plane. Mathematically, the orthographic projection

is what we would get if the camera in our synthetic-camera model had an infinitely

long telephoto lens and we could place the camera infinitely far from our object.

Rather than worrying about cameras an infinite distance away, suppose that we start

with projections that are parallel to the positive “z” axis and projection plane at z = 0.

http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=mm3-fOFxLw-rbM&tbnid=L-Az5g92agF4cM:&ved=0CAUQjRw&url=http://www.badlogicgames.com/wordpress/?p=1550&ei=NNCtUc_LOoql0QWB_IGIDg&bvm=bv.47244034,d.ZGU&psig=AFQjCNFHm594BAd9eV8GffMTkzCP1CLyLg&ust=1370431904353216

14 Background knowledge

Figure 3: Orthographic projections with projection plane z = 0

We can observe, that not only are the projections perpendicular or orthogonal to the

projection plane, but we are able to slide the projection plane along the “z” axis

without changing where the projections intersect this plane. The orthographic

viewing we can imagine of there being an orthographic camera that resides in the

projection plane, something that is not possible for other views (Figure 3). In the

other words, this projection takes the point “x”, “y” and “z” and project into the point

(x, y, 0).

In OpenGL, an orthographic projection can be created with the following instruction:

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,

GLdouble near, GLdouble far)

We can observe that all parameters of the function are distances measured from the

camera. The orthographic projection “sees” only those objects in the volume

specified by the viewing volume. Unlike a real camera, the orhographic projection

can include objects behind the camera. Thus, as long as plane z=0 is located

between “near” and “far”, the two dimensional plane will intersect the viewing

volume.

The other method what I would like to discuss is the perspective projection. This is

a form of pictorial drawing that gives the illusion of depth onto a flat surface, very

similar to that of viewing of the object through the human eye.

All perspective views are characterized by reduction of size. When objects are

moved farther from the viewer, their images became smaller. This size change gives

perspective views their natural appearance. However, because the amount by which

line is from the viewer, we cannot make measurements from a perspective view.

Normally, the viewer is located symmetrically with respect to the projection plane.

15 Background knowledge

Figure 4: Perspective viewing

Thus, the pyramid determined by the window in the projection plane and the center

of the projection is a symmetric or right pyramid (Figure 4). This symmetry is caused

by the fixed relationship between the retina and lens of the eye for the human

viewing, or between the retina and lens of a camera for standard cameras, and by

similar fixed relationships on most physical situations.

There is a few different ways to setup the view frustum, and thus the perspective

projection. In my system, I used the symmetrical frustum, so it look at is as follow:

 void glFustrum (GLdouble left, GLdouble right, GLdouble bottom, GLdouble

top, GLdouble near, GLdouble far)

Although, the orthographic and perspective projection look similar, but they not the

same (Figure 5). The most striking different are the parallel lines. While at the

orthographic projection the parallel lines never touch, the at the perspective

projection the parallel lines touch at infinity.

Then the other difference is the size of the object. While at the first projection

everything seems equal, at the perspective projection the closes things seems

bigger.

Figure 5: Orthographic projection vs. perspective projection

16 Background knowledge

2.2. Method to calculate the joint angles (Angular kinematics)

Kinematics is the branch of classical mechanics that describes the motion of points,

bodies (objects) and systems of bodies (groups of objects) without considering of the

causes of motion. Angular motion occurs when all parts of an object move through

the same angle but do not undergo the same linear displacement. The object rotates

around an axis of rotation that is a line perpendicular to the plane in which the

rotation occurs. One example of angular motion are the motion of a bicycle as you

pedal across campus , and the motion of your thigh around your hip as you walk to

class.

An understanding of angular motion is critical to comprehend how we move. Nearly

all human movement involves the rotation of body segments. The segments rotate

about the joint centers that form the axis of rotation for these segments. When an

individual moves, the segments generally undergo both rotation and translation.

So how can we measure the angles? An angle is composed defined between two

lines that intersect at a point called the vertex. In a biomechanical analysis, the

intersecting lines are generally body segments and the vertex is their common joint.

If you consider the longitudinal axis of the shank segment as one side of an angle

and the longitudinal axis of the thigh segment as the other side, the vertex would be

the joint center of the knee.

Angles can be determined from the coordinate points you generated in the previous

lab. Coordinates of the joint centers determine the sides and the vertex of the angle.

For example, an angle at the knee can be constructed using the thigh and shank

segments. The coordinates of the ankle and knee joint centers define the shank

segment, while the coordinate of the hip and knee joint centers define the thigh

segment. The vertex of the angle is the knee joint center.

There are 2 main methods to calculate these

angles: relative angles and absolute angles

(Figure 6). The absolute angles or segment angles,

where the angle between a segment and the right

horizontal of the distal end. In this case it should be

consistently measured in same direction from a

single reference –either horizontal or vertical. The

relative angles or joint angles, where the angle

between the longitudinal axis of two adjacent

segments. Here should be measured consistently

on same joint side.

Figure 6: Relative angles vs. absolute angles

17 Background knowledge

The typical data that we have to work at motion capture system are the “x”, “y” and

“z” initial and final locations points of each limb. In the next section I will analyse how

can get these angles.

Let’s define “ ⃑moved” and “ ⃑anatomical” vector, where “ ⃑moved” is actually situated limb

vector and “ ⃑anatomical” is directional anatomical vector, as the limb naturally situated.

With these 2 vectors we can calculate a rotation value to transform a 3d vector

“ ⃑anatomical” to a 3d vector ⃑moved”. (Figure 7)

Figure 7: Calculate the absolute angles

Mathematically, it can be calculated using the following formula:

 where are vectors normalized.

Algorismically:

This compute (Figure 8) give us the “result” axis-angle row vector, where the first

three elements specify the rotation axis, the last element defines the angle of

rotation.

 epsilon = 1e-12;

 //Normalize a vector

an = sl3dnormalize(vec_anatomical, epsilon);
 bn = sl3dnormalize(vec_moved, epsilon);

 axb = sl3dnormalize(cross_product(an, bn), epsilon);
 ac = acos(dot_product(an, bn));
 result = [axb, ac]

Figure 8: Calculate rotation between two vectors

18 Background knowledge

2.3. Technologies

In this section I will discuss that, what kind of technology tools available today and

which tools I chose for my application. This paragraph is divided into two parts. In

section first will discuss what kind of hardware exists to achieve the motion

detection. In section two discuss the what kind of graphics engines exist and what

are able to visualize the human motion

Kinect device

Motion detection is the process of detecting a change in position of an object relative

to its surroundings or the change in the surroundings relative to an object. Motion

detection can be achieved by both mechanical and electronic methods. (E.g. Infrared

camera, optics like video and camera systems, Radio Frequency Energy likes radar,

microwave and tomographic motion detection … etc.)

Like as I said in the project motivation, this system will base on the optical motion

capture. So till now I will examine only tools which are based on optical system.

In motion capture sessions, movements of one or more actors are sampled many

times per second, early techniques used images from multiple cameras and

calculate 3D positions, motion capture often records only the movements of the

actor, not his or her visual appearance. This animation data is often mapped to a 3D

model so that the model performs the same actions as the actor. This process may

be contrasted to the older technique of rotoscope, such as the Ralph Bakshi 1978

The Lord of the Rings and 1981 American Pop animated films where the motion of

an actor was filmed, then the film used as a guide for the frame-by-frame motion of a

hand-drawn animated character.

Camera movements can also be motion captured so that a virtual camera in the

scene will pan, tilt, or dolly around the stage driven by a camera operator while the

actor is performing, and the motion capture system can capture the camera and

props as well as the actor's performance. This allows the computer-generated

characters, images and sets to have the same perspective as the video images from

the camera. A computer processes the data and displays the movements of the

actor, providing the desired camera positions in terms of objects in the set.

Optical systems utilize data captured from image sensors to triangulate the 3D

position of a subject between one or more cameras calibrated to provide overlapping

projections. Data acquisition is traditionally implemented using special markers

attached to an actor; however, more recent systems are able to generate accurate

data by tracking surface features identified dynamically for each particular subject.

19 Background knowledge

Today, only three popular devices can found on the market: the Microsoft Kinect,

ASUS Xtion and PrimeSense Carmine. All these are based on the same

PrimeSense infra-red technology.

So the basic characteristics of the full-body motion capture are generally the same.

Although each of three stable, but the most common used device is the Kinect. It

widely used by the users and the developers also and two stable API was designed

for this device (Kinect SDK by Windows and OPENNI API). Because many people

use the Kinect device, so many forums, documentation and tutorials was help me,

there was no question; that the most appropriate tool is the Kinect device.

Figure 9: Microsoft Kinect for Windows

Firstly, Kinect has three cameras inside, which allow it to track movement in 3D.

Rather than just capturing a 2D image, and trying to work out who and where you

are in that image, Kinect is a lot more advanced. The first two cameras work

together, to allow Kinect to track a 3D representation of you, and your living room.

An infra-red projector, which bathes your living room in points of infrared light,

coupled with a camera that detects infrared light allows Kinect to “see” in 3D, which,

when coupled with advanced software, allows it to differentiate between items of

furniture, and human beings. The third camera is basically a webcam, which allows it

to capture a video of you.

20 Background knowledge

Graphics engine

A game engine is a system designed for the creation and development of video

games. The leading game engines provide a software framework that developers

use to create games for video game consoles and personal computers. The core

functionality typically provided by a game engine includes a rendering engine for 2D

or 3D graphics, a physics engine or collision detection, animation, artificial

intelligence and a scene graph.

So this engine is a great help to render the

virtual space and virtual character. The only

question is which is the best motor for this

project. In the previous study I was used the

Motion Capture Interpolation project by

Jernej Barbic and Yili Zhao [6]. It was very

useful to understand how works the motion

capture, but it was very rudimentary

graphics engine. Mostly it could be draw a

rudimentary virtual skeleton in a simple

virtual environment. As you see on the figure

10. Soon I was realizing that I can’t reach

my goal with this project. In the second

iteration I was looking for a graphics engine which provides to load any virtual

character and make a rig without the predefined animation.

There are many graphics engine can found on the market, like Unreal, Unity,

CryEngine or Havok. The first and the second motors I had to reject because the

Unreal support the unrealscipt and the Unity support Visual C# and JavaScript.

Although it could made a hybrid system, where a full body tracking written in c++, the

visual appearance written in other programming language and the communication

between the 2 layout via socket. But finally I seemed too complicate solution.

One of the most ideal solutions seemed a Havok engine, but finally I had to reject.

Although it support the rig technology and c++ programing, but it does not let me

“enter” the visual rendering. So I was unable to visualize Kinect color and depth

frame.

Finally the Pinocchio open source SIGGRAPH project was the most appropriate

choice. It was written in C++ and supports the automatic rigging and animation of 3D

characters. In the 3.2.3. Apply the human motion into the virtual character I will

explain in detail how is it works.

Figure 10: Motion capture by Jernej Barbic

https://www.google.es/imgres?imgurl&imgrefurl=http://todops4.com/mas-detalles-sobre-el-nuevo-motor-grafico-havok/&h=0&w=0&sz=1&tbnid=mPW4RZjjpt4fjM&tbnh=144&tbnw=351&zoom=1&docid=ZU02YmoqTfZ18M&ei=afaxUd2bJYHO0QWoq4CgCQ&ved=0CAEQsCU

21 Methodology

3. Methodology

3.1. General analysis of the approach of motion capture

In this section I will make the general analysis of my implementation. The analysis I

will start from the high level and step by step go to the lower level. I’ll explain briefly

each level’s components, its functionality and communication with the other

components.

Let’s start with a quick overview over the whole application. Here we can identify and

distinguish three main layouts (See the figure 11): Layout which captures the space,

one which applies the angular kinematics methods and finally one which apply the

human motion into the virtual character.

In more detail, the first layout communicates with the Kinect device, capture the

space with the color and the depth camera. Then it forwards these frames an API,

which able to get the 3D space coordinates of each human joint from the frames.

In the next step, the previous layer transfer mentioned coordinates to the second

layout. It’s functionality to converts the data from the coordinate features to the BVH

feature. Say with the other words, the layout get the 3D coordinates of the human

joint points and with these values it calculate the individual bone’s transition and

rotation.

Finally, the last layout map the user motion into the virtual character. The input of the

layout is a BVH feature, where each individual is a bone transition and rotation. Now

the layer can warping the static mesh to arrive to the same posture what the human

is.

When the last layer finishes the rendering, then the sequence starts again. This

continuous loop ensures a sequential motion capture appearance.

Figure 11: High level layout diagram

22 Methodology

3.2. Specify analysis of the approach of motion capture

3.2.1. Capture the space

Now I will decompose the overall analysis into minor and detailed components. The

first layout, as mentioned above, its function to gets 3D human joins coordinates

from the depth frame.

Figure 12: Detailed layout diagram of the first component

Firstly the driver communicates with the Kinect device through the computer bus and

gets a synchronized depth and colour frame. (See the figure 12) Then the driver

forwards these frames to the OpenNI and Primesense API, which segment the

human body from the background. Now with this segmented frame, the API able to

determine how is situated the user. This technique calls the full-body tracking. So

now we are able to know the 3D space coordinates of each human joint.

With this technique we can distinguish 15 different body parts, like a head, neck,

shoulders, elbows, hands, torso, hips, knees and foots. (See the figure 13.)

Figure 13: Segmented user from background and his skeleton

http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=JdXIKg90joptAM&tbnid=mhc6QBKrnfIuDM:&ved=&url=http://engineeringsport.co.uk/2011/05/09/kinect-biomechanics-part-1/&ei=jPKtUaHvOMSo0AWPtoHYAg&bvm=bv.47244034,d.d2k&psig=AFQjCNEFXv7s8vX9W9bvpf1Bo7x8DeMh-w&ust=1370440717620184

23 Methodology

However we get the coordinates, but the device precision is not accurate. Map the

space with the infrared camera is a good technique, but it is not 100%. Each

coordinate has an unknown error component, which is difficult to determine exactly.

The measurement results are approximately correct, but sometime are irrelevant. To

remove those irrelevant data and minimize the global registration error, I was

implementing one adaptive stream mining algorithm.

ADWIN

Thus we have a data stream, where almost every data contains an unknown error

value. This stream can contain the weak change (in our case e.g. a body movement)

or may can contain a sudden change (in our case e.g. API give an irrelevant

coordinate). So my goal is find an algorithm, which blurs the data and generate the

relative continuous data stream. It should be taken into account that the most recent

data are more valuable than older value.

The adaptive stream mining algorithms used to solve similar problems. In my

approach I used the adaptive sliding window (ADWIN)[2]. Let details how it is works:

Our algorithm keeps a sliding window “W” with the most recently read “xi“. Let “n”

denote the length of “W”, “ ̂w” the (observed) average of the elements in “W”, and
“µw” the (unknown) average of µt for t ϵ W. So we got two different windows. The
main idea is, when two windows are sufficiently same than show the mean of the
window. When the two windows are sufficiently different, we can be assumed that
the trend has been changed and therefore we can remove the oldest part of the
window. (Figure 14)

Figure 14: Adwin adaptive window algorithm pseudo code

Now we need to calculate the “E” threshold. Our goal the absolute difference
between obtained averages will be greater than the threshold “E”. This value say us,
that these averages are statistically different and therefore we are facing a significant
change that has not been caused by chance. In this context we can use concepts of
statistics to find the threshold. The threshold is based on a statistical test which you
must provide a parameter of trust between 0 and 1. From this and the sizes of the
windows W0 (n0) and W1 (n1) E can be found as follows,

ADWIN0: ADAPTIVE WINDOWING ALGORITHM
 Initialize Window W
 for each t > 0
 do W <- W u {xt} (i.e., add xt to the head of W)
 repeat Drop elements from the tail of W

 until µW0 - µW1 < ϵcut holds
 for every split of W into W = W0 · W1

 output µW

24 Methodology

 √

Finally, in the following two diagrams (figure 15 and 16) can see the result of my
approach. I marked the input coordinates with red and the adwin’s output
coordinates with blue. We observe that the resulting stream is smoother and less
noisy. This stream in the final result cause the user’s continuous movement and his
movement will not be too sharp.

Figure 15: Displacement along the “X” axis

Figure 16: Displacement along the “Y” axis

-1000

-500

0

500

1000

1500

2000

2500

-150

-100

-50

0

50

100

150

200

25 Methodology

3.2.2. Apply the kinematics method

The second layout’s functionality is converts the data from the coordinate features to

the BVH feature. In the other words, the layout get the 3D coordinates of the human

joint points and with these values it calculates the individual bone’s transition and

rotation.

Figure 17: Detailed layout diagram of the second component

Once the system calculated the all limb’s rotation and the translation values, I

forward these data to examine its accuracy. It is a function which check and limited

the minimum and maximum degrees of freedom each bone. (Figure 17)

Calculate the rotation and translation

Let’s start with how to calculate the rotation angle and the translation. Here the

incoming data are the initial and final points of each limb. Let’s define “ ⃑moved” and

“ ⃑anatomical” vector, where “ ⃑moved” is actually situated limb vector and “ ⃑anatomical” is

directional anatomical vector, as the limb naturally situated. E.g. the femur and the

tibia have ⃑ anatomical vector. With these 2 vectors we can calculate a

rotation value to transform a 3d vector “ ⃑anatomical” to a 3d vector ⃑moved”.

This compute give us the “R” axis-angle row vector, where the first three elements

specify the rotation axis, the last element defines the angle of rotation. The

calculation of the angle in this section I will not detail here, because I have already

explained in the previous section. (Go to the section 2.2. Method to calculate the

joint angles).

26 Methodology

In the next step I have to calculate the translation of each bone and the translation of

the avatar in the virtual space. The translation values of each bone are static value,

which are given by the “Pinocchio” [7]. In the second translation I’m looking for how

to “shift” the virtual skeleton so as it completely match with the real user spatial

position.

At this point raise the question that what kind of projection will chose for the virtual

space. As I was analyse in the section 2.1. Projection, in my approach I have to

choose between the orthographic and perspective projection. I was choose the

perspective projection because we don’t just want to create a system where the

avatar has a static position, but rather a system that return the user’s full movement

in space. In this case the reality augmented need to reflect the user distance, so the

“z” cannot be infinite.

Once I have selected the projection type, and then have to find the transformation

that can transform the real space’s coordinates to the virtual space’s coordinates.

One of the most trivial methods is “rule of three”:

Where the is the real word “X” coordinate, the minimum and

maximum possible displacement. The computation is very basic and rudimentary,

what caused in my approach, that the virtual skeleton is not completely match with

the real user spatial position. So the method accuracy is rather vague. Because of

the protracted period of development, I had not time to look for a second, more

accurate method.

Finally, the received bone translation and rotation values have to organize to BVH

hierarch format.

27 Methodology

BVH feature reduction

However we have calculated the rotation and the translation, but I haven’t any

system to converts the data from the coordinate features to the motion feature. It is

important, because the visual system will be able to interpret and play the motion

and gesture.

On the other hand I haven’t any system up to this point, which examined the

accuracy of the data. I noticed that is not enough remove the error component and

blurred the coordinates with the adaptive sliding window. The device and API work

well, but it is not 100%. Its precision is not accurate. There was no question; that I

need to create the system which examines the previous data and controls the bone’s

minimum and maximum values.

At a previous study, I was analysed and discover how to work the most the motion

capture systems [6, 8 and 9]. These systems in order to play human motion; used

the motion capture file. Motion capture file formats can be roughly divided into two

kinds, the Tracker Format and the Skeleton Format. The former only has three-

dimensional location values and accepts the coordinate 3D formats. The latter has

skeleton information as well as three-dimensional location values and accepts the

BVH and ASF/AMC formats. These formats provide skeleton hierarchy information

as well as motion data. In the other words, in the hierarchy section I will define the

skeleton structure of the Avatar (define the total 15 joints). It is composed in such a

way that the hip assumes the role of the root and each segment is jointed toward the

left lower part, right lower part and upper part, in that order. (Figure 18 and 19)

Figure 18: Hierarchical graph of skeleton join

In the motion section is structured with the Euler’s angles applied to each joint.

Figure 19: BVH file, motion section

OFFSET 0.0000 0.0000 0.0000

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT upperback

 {

 OFFSET -0.2975 11.0962 -0.4289

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT thorax

 {

 OFFSET -0.0009 11.0405 -0.3169

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT neck

 {

 OFFSET 0.1944 11.1642 0.0841

 CHANNELS 3 Zrotation Xrotation Yrotation

28 Methodology

With this technique, we placed the coordinate features to the bvh features. Now the

third layout (the visual layout) is able to interpret and play the user’s motion and

gesture.

The last remaining thing is examined the accuracy of the data. The ASF/AMC not

only provides the skeleton hierarchy and the motion data, but it provides for putting

limits on each of the channels. Its calls control the minim and maxim of degrees of

freedom (DOF). For each channel that appears there will be a pair of numbers inside

parenthesis indicating the minimum and maximum allowed value for that channel.

This information is not used for interpreting the motion data; this is useful only for

those applications which might apply motion editing functions that put limits on

rotation. In my approach I used the next values:

Although the y-side minimum and maximum DOF are implemented, but it not used

because the current technic (Kinect and OpenNI) only allow to calculate the “x” and

“z” rotation.

 (rx, ry, rz) in
degrees

(rx, ry, rz) in radian

Clavicle
Min and max DOF

(null, -20, 0) (null, -0.3490, 0)

(null, -10, 20) (null, -0.1745, 0.3490)

Humerus
Min and max DOF

(-90, -90, -90) (-1.5707, -1.5707, -1.5707)

(60, 90, 90) (1.0471, 1.5707, 1.5707)

Radious
Min and max DOF

(-10, null, null) (-0.1745, null, null)

(170, null, null) (2.9670, null, null)

Hip
Min and max DOF

(null, -90, null) (null, -1.5707, null)

(null, 90, null) (null, 1.5707, null)

Femur
Min and max DOF

(-160, -70, -70) (-160, -1.2217, -1.2217)

(20, 70, 60) (0.3490, 1.2217, 60)

Tibia
Min and max DOF

(-10, null, null) (-0.1745, null, null)

(110, null, null) (1.9198, null, null)

Foot
Min and max DOF

(-45, null, -20) (-0.7853, null, -0.3490)

(90, null, 70) (1.5707, null, 1.2217)

Table 1: Table of the min and max DOF

29 Methodology

3.2.3. Apply the human motion into the virtual character

This layout’s functionality is applying the human motion into the virtual character. We

have to note, that the human motion is too complex and each body position consider

a certain limbs displacement and rotation. So it was not possible solution to create

the pre-recorded animation of the virtual character. Achieve this; I had to use the

automatic character rigging methodology from the one static object.

The difficulty of this part is very high, so for this part I used the Pinocchio [7] open

source SIGGRAPH project, which provides the 3D virtual model visualization and 3D

virtual model animation. To kit the two projects, it was necessary a detailed

knowledge of the “Pinocchio” project. Now I’ll briefly detail how it is works the

“Pinocchio” project.

This technique used in computer animation in which a character is represented in

two parts: a surface representation used to draw the character (called skin on mesh)

and a hierarchical set of interconnected bones (called the skeleton or rig) used to

animate the mesh. The mesh surface consisting of thousand vertices and nodes, so

animating such an object can get very complicated.

The skeleton embedding computes the joints

positions of the skeleton inside the character by

minimizing a penalty function. To make the

optimization problem computationally feasible, they

first embed the skeleton into a discretization of the

character’s interior and then refine this embedding

using continuous optimization. The skin attachment

is compute by assigning bone weights based on the

proximity of the embedded bones smoothed by a

diffusion equilibrium equation over the character’s

surface. (Figure 20 and 2)
Figure 21: Automatic rigging method

Figure 20: Detailed layout diagram of the third component

30 Methodology

DISCRETIZATION

Next, I will analyse the Pinocchio’s discretization approach. In the first step,

Pinocchio rescales the character to fit inside an axis-aligned unit cube. As a result,

all of the tolerances are relative to the size of the character.

Then, the next step is the approximate medial surface, where it makes a very

rudimentary proximity to facilitate other posterior computations. (Figure 22) The

calculation based on the adaptive distance field to compute a sample of points on

the medial surface. The medial surface is the set of C1- discontinuities of the

distance field. Within a single cell of our octree, the interpolated distance field is

guaranteed to be C1, so it is necessary to look at only the cell boundaries. Pinocchio

therefore traverses the octree and for each cell, looks at a grid (of spacing_) of

points on each face of the cell. It then computes the gradient vectors for the cells

adjacent to each grid point—if the angle between two of them is 120º or greater, it

adds the point to the medial surface sample. We impose the 120º condition because

we do not want the “noisy” parts of the medial surface—we want the points where

skeleton joints are likely to lie. For the same reason, Pinocchio filters out the

sampled points that are too close to the character surface (within 2_)

Then, the next step is sphere packing. Here it sorts the medial surface points by
their distance to the surface (those that are farthest from the surface are first). Then
it processes these points in order and if a point is outside all previously added
spheres, adds the sphere centred at that point whose radius is the distance to the
surface. In other words, the largest spheres are added first, and no sphere contains
the center of another sphere. (See the figure 23)

The final discretization step is a graph construction, where constructs the edges of
the graph by connecting some pairs of sphere centers. Say with the other words,
Pinocchio computes the shortest paths between all pairs of vertices in this graph and
seed up with the penalty function. (See the figure 24).

However we get the skeleton graph, but we have to reduce skeleton. So, all bones
chains have been merged, as shown on the above figure. All degree two joints, such
as knees eliminated. (See the figure 25)

Figure 24: Approximate
Medical Surface

Figure 25: Packed Spheres Figure 22: Constructed
Graph

Figure 23: Original and
reduced skeleton

31 Methodology

SKIN ATTACHMENT

The character and the embedded skeleton
are disconnected until skin attachment
specifies how apply the deformation of the
skeleton to the character mesh. Although it
could make use of one of the various mesh
editing techniques for the actual mesh
deformation, but Pinocchio choose the focus
on the standard linear blend skinning
method (Figure 26).

The linear blend skinning algorithm works by
first placing a hierarchical skeleton inside a
static model of a character, typically on
some neutral pose. This initial character pose is referred to as “dress pose”.

Then, each vertex is assigned a set of influencing joints and blending weight for
each influence. Computing the deformation in some pose involves rigidly
transforming each dress pose vertex by all of its influencing joints. Then the blending
weights are used to combine these rigidly transformed positions. The deformed

vertex position at some skeletal configuration c, ⃑⃑⃑⃑ is computed as

 ⃑ ∑

Where are the weights (usually affine or convex), is the dress-pose location of
some vertex v, is the transformation matrix associated with the ith joint in

configuration c and
 is the inverse of the dress-pose matrix associated with ith

influence.
There are several properties Pinocchio’s desire of the weight. First of all they should
not depend on the mesh resolution. Second, for the results to look good, the weights
need to vary smoothly along the surface. Finally, to avoid folding artefacts, the width
of a transition between two bones meeting at a joint should be roughly proportional
to the distance from the joint to the surface.

The common problem of the skinning algorithm is notorious for its failings. It cannot
represent complex deformations and suffers from characteristic artefacts such as the
candy-wrapper” collapse effect on wrists and collapsing around bending joints as
shown in Figure 27.

Figure 26: The human discrete embedding and skin
attachment

Figure 27: Common problem with linear blend skinning

32 System Analysis and Design

4. System Analysis and Design

4.1. Use cases

This project implemented a visualization system, under the FLTK environment which

allows us to build applications with C + + and OpenGL. This system must be able to

validate the approaches of motion capture. Remember that, this project has been

introduced some previous project which allowed the visualization of virtual character,

so I will not specify those use cases which are related with the previous project, as

for example, rig the mesh, discretize the mesh, etc.

Therefore, the use cases listed below:

1. Allow user to view the motion capture

2. Allow user to view the scene with different background

3. Allow user to view the scene from different viewing angles

4. Allow user to set the view (e.g. view the scene with the skeleton mesh, view

the scene with the global axis)

4.1.1. Use case 1(UC1)

Allow user to view the motion capture

Actor: User

Description: the users want to see the approach of motion capture.

Pre-conditions:

Main stage:
1. The user select the virtual characters what want to visualize.
2. The user starts the application.
3. The system initializes the Kinect device and the graphics library.
4. The system discretizes the virtual character.
5. The system visualizes move the human motion onto the virtual

character.

Post condition: The simulation is started.

Table 2: Use case 1

33 System Analysis and Design

4.1.2. Use case 2(UC2)

Allow user to view the scene with different background

Actor: User

Description: the users want to visualize the virtual scene with different
background. (e. g. with the depth image, with the color image or with the
black background)

Pre-conditions: The user has launched a right away the application

Main stage:
stage:

1. The user selects the background.
2. The system changes the camera.
3. The system gets the frame from the selected camera.
4. The system visualizes the virtual scene with the new background.

Post condition: The system stops active the last selected view.

Table 3: Use case 2

4.1.3. Use case 3(UC3)

Allow user to view the scene from different viewing angles

Actor: User

Description: the users want to visualize the virtual scene from different
viewing angles. They want to zoom in/zoom out, pan and rotate the scene.

Pre-conditions: The user has launched a right away the application

Main stage:
1. The user sees the reality augmented.
2. The user changes the viewing angles with the mouse. (zoom, pan or

rotate)
3. The system changes the attributes of the camera.
4. The system transforms the virtual scene.
5. The system visualizes the virtual scene from new viewing angles.

Post condition: The system stops active the last selected view.

Table 4: Use case 3

34 System Analysis and Design

4.1.4. Use case 4(UC4)

Allow user to set the view

Actor: User

Description: the users want to view the scene with different options. (e. g.
with the global axes, with the virtual skeleton …)

Pre-conditions: The user initially started and displayed the motion capture

Main stage:
1. The user sees the reality augmented.
2. The user changes the view options with the “t”, “s”, “a” keys.
3. The system changes the view options.
4. The system visualizes the virtual scene with the new view option.

Post condition: The system stops active the last selected view.

Table 5: Use case 4

35 System Analysis and Design

4.2. Domain model of the application

Entity details:

Scene: Is the entity that renders the virtual avatar and the camera’s captured image

with the possible options. Moreover, the entity controls the rotation, panning or zoom

of the camera and the illumination.

Mesh: Abstract entity which represent the virtual avatar on the virtual scene.

Camera: Entity which represent the virtual camera on the virtual scene. Contain

attributes and methods necessary to compute the camera’s projection.

Light: Entity which represent the illumination of the scene.

StaticDisplayMesh: Entity used for represent a static virtual avatar. This entity used,

when the user not launched the application correctly.

Figure 28: Domain model of the application

36 System Analysis and Design

Defmesh: Entity used for represent a dynamic virtual avatar. The user’s movement

will display on this virtual character.

Motion: Entity which contain one user’s motion posture. Contain the each bone

rotation and translation value and it updated each frame.

Tracker: Entity which control the full-body tracking. Segment the human body from

the background and determine how is situated the user.

Camera: Entity which represent the real world camera with the color and depth

frame.

Skeleton: Entity which contain the user’s instance posture. Contain the attributes and

methods necessary convert the data from the coordinates to bone’s transition and

rotation.

Double buffer: Is an entity that controls the captured color and depth frames of the

camera.

37 System Analysis and Design

4.3. Class diagrams

Figure 29: Simplified class diagram

The application follows the MVC design pattern (Model View Controller). This pattern

separates the data, the logic and the GUI of the application. In my approach consists

three different packages: Core, Tracker and DemoUI, which identified with different

colors on the Figure 29. The “Tracker” package, which contains the logic of the full-

body tracking and store the human limbs coordinates. The “core” package contains

the logic of the automatic rig and the animation of the avatar. Finally the “demoUI”

has a controller and GUI function.

Green color classes used as external resources files without the modification. The

yellow color classes created for this project and the blue color classes are the

“Pinocchio” classes, but have been modified for this project.

Classes of the core package

Classes of the tracker packages

Classes of the demoUI packages

38 System Analysis and Design

4.4. Sequence diagram

The following diagrams show the interaction between the objects of the application.

These descript the objects and classes how involved in the scenario and which order

exchanged the messages. These diagrams are related with the user cases, which I

was discuss at the previous paragraph. Same way as a previous paragraph, the

previous project’s objects will not appear in the sequence diagram. For reason of

readability, the sequence diagrams separated into modules and some parts of the

implementation are simplified.

4.4.1. Sequence diagram 1

The users want to want to see the approach of motion capture. Initially the user

selects the virtual character and launches the application with this character. The

main function forwards the execution line to the “process” static function which

analyzes the command line arguments and creates the virtual character. Then it

launches the motion capture system and maps the human motion into the virtual

character.

Figure 30: Sequence diagram 1

In the 1.2 sequence diagram (see the figure 31) I will extract the argument processing.

Here the process function gets the input command line arguments. One of these

parameters should be the virtual avatar filename and extension. If the user has been

entered correctly, then the system creates the mesh object. Later the execution line calls

the discretization and skin attachment function. Once it finished, the system create the

motion object. This object contains the human posture, which updated every frame.

Up to this point I create the mesh object and the motion object. Now I’ll call “addMotion”

function to assign the motion object reference to the mesh object. So now the system is

able to do the rig.

39 System Analysis and Design

Figure 31: Sequence diagram 1.2

In the 1.3 sequence diagram (See the figure 32) I will extract the motion capture

initialization and the full-body tracking process.

Firstly create the tracker object. In the constructor of the tracker create the

“Skeletoncoordinate” for each body part object. Create the object for the head,

neck, shoulders, elbows, hands, torso, hips, knees and foots. Secondly call the

“deviceInitialize” function, which initialize the depth and the color camera. Now

we get independent thread, which automatically update the color frame, the depth

frame and the skeleton coordinates.

Figure 32: Sequence diagram 1.3

40 System Analysis and Design

4.4.2. Sequence diagram 2

Initially the users want to visualize the virtual scene with different background (e. g.

with the depth image, with the color image or with the black background). See the

Figure 33. So the user calls the event function through user interface. The event

function analyzes the user which camera’s photos want to visualize and save the

selected camera’s code into background flags.

I should be note that the depth and the color should not activate or deactivate,

because the app uses those to get the human joint coordinates. The two cameras

launched with the application and it stays active till running the program.

Finally it calls immediately the getTrackerColorFrame or getTrackerDepthFrame

function, which will return with the frames of the selected camera.

4.4.3. Sequence diagram 3

In this case the users want to visualize the virtual scene from different viewing

angles (Figure 34). They want to zoom in/zoom out, pan and rotate the scene. So

the user calls the event functions through user interface. The event function analyze

the user how want to change the viewing and calculate the scene transformation.

Then it executes the scene transformation and visualizes the transformed scene.

Figure 34: Sequence diagram 3

Figure 33: Sequence diagram 2

41 System Analysis and Design

4.4.4. Sequence diagram 4

In this case the users want to visualize the virtual scene users want to view the

scene with different view options. (e.g. with the global axes, with the virtual skeleton).

See the Figure 35. So the user calls the event functions through user interface. The

event function analyzes and determines which option is turned on. One it determine

the options type, the system change the selected options flag.

Then, the system has to render the virtual scene with the active view options. Step

by step check which option flag is active, and if it is active render on the scene. After

the draw method execution the user view the scene with the active view options.

Figure 35: Sequence diagram 4

42 Simulation and validation

5. Simulation and validation
In this section I will evaluate the result of this work. This evaluation I will divide into

two parts. Firstly I will evaluate individually each bone movement, then the avatar

space positioning accuracy. Secondly validate the limit of the system, determine

which postures are not able to render the system.

5.1. Movement and positioning validation

The application keeps sixteen different biped avatars (figure 36), which builds by

Cosmic Blobs. Many of these character challenging due to their cartoony proportions

and features that may be mistaken for limbs. The application correctly rigged 13 of

these characters automatically, and the remaining 3 were correctly rigged with a

single joint placement hint.

If you would like to animate with the different avatar, you have to create it with

Blender's "Bone Heat" and the PM_heatWeight plugin for Maya.

Figure 36: Meshes of the application

http://www.blender.org/
http://www.creativecrash.com/maya/downloads/scripts-plugins/character/c/pm_heatweight--2

43 Simulation and validation

Figure 37 shows the individual movements of the left and right tibia. We can see that

the application returns the user's resemblance to fairly accurately, although we

observe that the left tibia angle a little inaccurate.

Figure 37: Left and right tibia simulation

44 Simulation and validation

The next figure (figure 38) shows the complete leg movements (tibia and femur). My

approach returns the user's resemblance to fairly accurately, although the left foot

took a more open position than the user.

Figure 38: Left and right complete leg movement simulation

45 Simulation and validation

The last figure (figure 39) shows the complete arm movement (clavicle and humerus)

and the trunk rotation. In this case, my approach returns 100% accurately with the

user’s posture.

Moreover, the application not just can render a standing posture, but it can render a

sitting position too. (Figure 40)

Figure 40: User seated position

Figure 39: Rotation and complete arm simulation

46 Simulation and validation

5.2. Limitation

The test phase was observed that the approach is a fairly accurate, but there are

limitations. The first thing we should note that the system is can replicate from a slow

to fast motion. But if the user makes too rapid movement, then the virtual avatar little

movement is slightly delayed.

The second key limitation is the user and the camera position. The user should be

located front-facing with the camera. A little trunk rotation allowed (approx. max 60

degrees), but if the rotation is too big, then the avatar’s movement will be imprecise.

The final key limitation is the system is able to track only a one person. If located

several users in the Kinect camera vision angle, then the program loose the previous

detected user.

47 Conclusion and future line to continue

6. Conclusion and future line to continue
The aim of this project was to analyse, design and implement a motion capture

system which allows loading any virtual avatars and applies the user motion into the

virtual character. I don’t want to create just a system where the avatar has a static

position, but rather a system that return the user’s full movement in 3D space. The

primary aim was “shift” the virtual skeleton so as it completely match with the real

user spatial position and play back the user movement.

Leveraging the success of the motion capture, it also seeks to interact with only a

single motion camera. Today’s motion capture designed with multiple cameras,

which are too expensive and too hard to implement for a small developer team. So

the aim was find the answer if it is possible to create the human captures system

with a single depth and colour camera.

The final challenge was the user can be interacting with the system in real time.

Although I said a percussion goal, but it was very important from the beginning of the

project. For each analysis, design and implementation phase was a key

consideration to reduce maximally the computational costs.

The analysis, design and implementation of the final application reached the goals.

As we have seen in the previous paragraph (5. Simulation and Validation), the virtual

avatar fairly accurately reproduces the user movement and position in space.

Although the movement is not 100% accurate, but it’s a good approximation.

Involved a learning step, because this technique was required depth knowledge of

motion capture and the automatic rigging techniques. Although the Graphics and

Data Visualization, the Image Processing and the Computer given me a basic

knowledge but it was necessary extended widely.

Below are listed the possible lines of continuation of the project.

- Improve the graphics engine or replace, that able to detect the collision

between the parts of the body, textural appearance of the avatar and improve

the rig methodology.

- Improve the translation method, that the virtual skeleton so as it completely

matches with the real user spatial position.

- Although the project is designed to motion capture with a single camera and

the result of my approach is very accurate, but can be improved if we increase

the number of the cameras.

- As I sad many times, the motion capture has a wide range of applications.

The current approach is a core, which can be implemented in any of these

techniques. (E.g. virtual dressing room, animation movie maker, surgical

education software… etc.) Need to define the aims of the software and which

type of user will be directed the software and continue on this line.

48 Bibliography

7. Bibliography

[1] RUSINKIEWICZ S., HALL-HOLT O., LEVOY M.: Real-time 3D model

acquisition. ACM SIGGRAPH 21, 3 (2002), pp. 438–446.

[2] Learning from Time-Changing Data with Adaptive Windowing by Albert Bifet &

Ricard Gavaldà, http://www.lsi.upc.edu/~abifet/Timevarying.pdf

[3] http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2008/MSC/MSC-

2008-06.pdf

[4] http://www.mit.edu/~ibaran/autorig/pinocchio.html

[5] Skeletal Representations and Applications, by Andrea Tagliasacchi,

http://arxiv.org/pdf/1301.6809.pdf

[6] MOTION CAPTURE INTERPOLATION by Jernej Barbic and Yili Zhao,

February 2012, http://run.usc.edu/cs520-s12/assign2/

[7] Automatic Rigging and Animation of 3D Characters by Ilya Baran & Jovan

Popović, 2007, http://www.mit.edu/~ibaran/autorig/

[8] MOTION CAPTURE FILE FORMATS by M.Meredith, S.Maddock,

http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0111.pdf

[9] MCML: motion capture markup language for integration of heterogeneous
motion capture data by Hyun-Sook Chung*, Yilbyung Lee,
http://www.motioninplace.org/MiPP_Articles/Chung.pdf

[10] Building Efficient, Accurate Character Skins from Examples by Alex Mohr and

Michael Gleicher,

http://research.cs.wisc.edu/graphics/Gallery/SkinFromExamples/skin-from-

examples.pdf

[11] http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html

[12] http://www.mathworks.es/es/help/sl3d/vrrotvec.html

[13] http://en.wikipedia.org/wiki/Iterative_closest_point

[14] https://en.wikipedia.org/wiki/Motion_capture

http://www.lsi.upc.edu/~abifet/Timevarying.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2008/MSC/MSC-2008-06.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2008/MSC/MSC-2008-06.pdf
http://www.mit.edu/~ibaran/autorig/pinocchio.html
http://arxiv.org/pdf/1301.6809.pdf
http://run.usc.edu/cs520-s12/assign2/
http://www.mit.edu/~ibaran/autorig/
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0111.pdf
http://www.motioninplace.org/MiPP_Articles/Chung.pdf
http://research.cs.wisc.edu/graphics/Gallery/SkinFromExamples/skin-from-examples.pdf
http://research.cs.wisc.edu/graphics/Gallery/SkinFromExamples/skin-from-examples.pdf
http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html
http://www.mathworks.es/es/help/sl3d/vrrotvec.html
http://en.wikipedia.org/wiki/Iterative_closest_point
https://en.wikipedia.org/wiki/Motion_capture

49 Annex

8. Annex

Annex I: Installation, minim requirement

- Requirement:

The software requirements to run this application:

o Windows operating system, is possible Windows 7 (32 bits)

o C++ library

 Sources:

http://www.microsoft.com/visualstudio/esn/products/visual-

studio-express-for-windows-desktop

o OpenNI SDK (version 2.x)

 Sources: http://www.openni.org/openni-sdk/#.UbBp9tI3Dqg

o Primesense Nite 2.x Middleware

 Sources: http://www.openni.org/files/nite/#.UbBqQdI3Dqg

o Kinect SDK (version 1.6)

 Sources: http://www.microsoft.com/en-

us/download/details.aspx?id=34808

o FLTK libraries (version 1.3.0)

 Sources: http://www.fltk.org/index.php

To successfully run the program, you has to install the above-mentioned software

version. It is possible that other version also works, but is untested.

To install the software, download the sources from the link and follow the official

installation instructions.

http://www.microsoft.com/visualstudio/esn/products/visual-studio-express-for-windows-desktop
http://www.microsoft.com/visualstudio/esn/products/visual-studio-express-for-windows-desktop
http://www.openni.org/openni-sdk/#.UbBp9tI3Dqg
http://www.openni.org/files/nite/#.UbBqQdI3Dqg
http://www.microsoft.com/en-us/download/details.aspx?id=34808
http://www.microsoft.com/en-us/download/details.aspx?id=34808
http://www.fltk.org/index.php

50 Annex

Annex II: User guide to develop

To develop this application, has to use the mentioned tools from the annex I. In

addition, has to use the Visual Studio 2010 IDE, which can be downloaded from

the same link as C++ library.

To develop the application, I’m recommended to following the next steps:

a) Install components and development environment

b) Once installed all components and the project located in a directory, open the

project as follows:

- Open Visual C++ if it is not already open, and then from the menu select

File>Open>Project/Solution.

- Navigate to the location where your new project has been created, and

- then move down into the folder and open the “VirtualSkin.sln” file:

Figure 41: Open project on Visual Studio

Figure 42: Open the “.SLN” file

51 Annex

- Once opened, you will see our project in the project file tree.

The “Header Files” folder contains the headers with “.h” extension and the

“Source Files” folder contains the source code with “.cpp” extension. I

recommend, that once the project is opened, then set the building folder.

You should copy the OpenNI2 folder from C:\Program

Files\OpenNI2\Redist and Nite2 folder from C:\Program Files\Nite2\Redist

and insert into builder folder. Then should copy Nite and OpenNI execution

files from the same folder and insert into “DemoUI” folder.

Figure 43: Project file tree

Figure 44: Build folder with the NITE and OpenNI files

52 Annex

- Finally to run or debug the application with the command-line go to the

“Project/Properties/Debugging section/Command line arguments box

introduce the next command: “object_file_name.obj” or

“object_file_name.obj -motion onifile.oni”

Annex III: User guide

First, I will explain how to run the application from terminal:

- Open a terminal

- Navigate with the terminal to the source project folder where is the

executable files

- Copy the OpenNI2 folder and OpenNI.ini, OpenNI2.dll and OpenNI2.pdb

files from C:\Program Files\OpenNI2\Redist and insert into Exe\

- Copy the Nite2 folder and NiTE.ini, NiTE2.dll and NiTE2.pdb from

C:\Program Files\Nite2\Redist and insert into Exe\

- Once you find the folder, type the following command without the quotes:

“DemoUI object_file_name.obj” or “DemoUI object_file_name.obj -motion

onifile.oni”

Once executed, the first thing what you will see the following GUI:

The application consist a terminal window, where display the key information of the

application state and the graphic interface where display a motion capture with the

character what we was choose at the previous step.

Figure 45: Application GUI

53 Annex

To rotate the volume, click with the left mouse button on the volume and rotate it to

get the desired position. To move the volume, click the right mouse button and move

the volume to obtain the desired position. To zoom, click with the middle mouse

button on the volume and move the mouse forward or backward to zoom in for more

detail.

The animation represented in two parts: a surface representation used to draw the

character (mesh) and a hierarchical set of interconnected bones (called the

skeleton). If we want draw also the rig skeleton, then we have to press the “s” key.

To deactivate that, press the “s” key again.

To change the background of the scene, press the “b” key. Now the application

switches the camera and rendering the new camera’s frames.

54 Annex

Finally, to view the scene with the global axes, press the “a” key. Now the system

renders the virtual character with the global axes. To deactivate that, press the “a”

key again.

