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Nanoionics has become an increasingly promising field for the future development 

of advanced energy conversion and storage devices, such as batteries, fuel cells and 

supercapacitors. Particularly, nanostructured materials offer unique properties or 

combinations of properties as electrodes and electrolytes in a range of energy devices. 

However, the enhancement of the mass transport properties at the nanoscale has 

often been found to be difficult to implement in nanostructures.  

In this thesis oxygen ion transport is investigated in the perovskite-related Mixed 

Ionic and Electronic Conducting (MIEC) oxides of thin film cathodes exhibiting well-

defined nanostructure with thickness <200nm, in order to correlate the oxygen ion 

transport with the thin film nanostructure consist of grain bulk and grain boundaries. 

Pulsed Laser Deposition (PLD) is used as a tool to acquire enhanced ionic transport 

along grain boundaries. 

The work developed in this thesis is divided into six parts. The first chapter 

introduces the basics of solid oxide fuel cells, importance of thin film cathodes and 

nanoionics concept. The second chapter explains the principle and operation of all 

experimental techniques employed in this thesis for the microstructural and 

functional characterization of the thin film cathodes. The following chapters contain 

the main work of the thesis.  

The deposition condition and microstructural optimization studies performed in 

PLD to fabricate thin film cathodes are compiled in chapter three. The oxygen ion 

transport properties of La0.8Sr0.2MnO3+δ (LSM) thin films are studied in chapter four. 

Further, a novel (new) methodology for the material screening for Solid Oxide Fuel 

Cell (SOFC) is presented in chapter five. The methodology is based upon a 

combinatorial deposition of La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) thin film system by PLD on 

a 4-inch silicon wafer which allows generating full range binary diagram of 

compositions even for complex oxides. Chapter six is devoted to the functional 

studies of LSMC binary system. 

Isotope Exchange Depth Profiling combined with Secondary Ion Mass 

Spectroscopy (IEDP-SIMS) is employed in the temperature range 500°C to 800°C for 

evaluating the oxygen mass transport properties of LSM thin film and LSMC binary 

system.  Further, the oxygen mass transport properties of LSM thin film is studied by 

Electrochemical Impedance Spectroscopy (EIS). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resumen de la tesis 

 

iv 

 

Las pilas de combustible son una de las tecnologías prometedoras en la actualidad 

para satisfacer la creciente demanda de energía y tecnología limpia. En las  pilas de 

combustible de óxido sólido (SOFC) la investigación está avanzando hacia la 

miniaturización del dispositivo (llamado "micro-SOFC" con estructuras de capas 

delgadas) que durante aplicación del dispositivo portátil trabajan  con temperaturas 

alrededor de 500°C a 700°C. 

   En las SOFC, el cátodo es el responsable principal de la pérdida de polarización debido 

a la baja energía cinética de la reacción de  reducción del oxígeno (ORR) a bajas 

temperaturas de operación que afectaría a la eficiencia del dispositivo. Para rectificar el 

problema, hay varios grupos que están estudiando la mejora de la funcionalidad del 

cátodo a bajas temperaturas. En general, su funcionalidad puede ser mejorada de dos 

maneras i) Mejorar las propiedades intrínsecas de los materiales de cátodo existentes 

modificando la microestructura del cátodo ii) Búsqueda de los nuevos materiales de 

cátodo. 

Los cátodos de capa delgada estudiados en esta tesis son; La0.8Sr0.2MnO3+δ (LSM), 

La0.8Sr0.2CoO3-δ (LSC) y el sistema pseudo-binario La0.8Sr0.2Mn1-xCoxO3±δ (LSMC; from x=0 to 

1). Todos ellos són conductores mixtos iónico-electrónicos (MIEC). La investigación del 

LSM en capas delgadas está englobada en la primera forma propuesta para mejorar la 

funcionalidad del cátodo. Aunque el LSMC es un sistema de cátodo familiar en SOFC, 

puede ser colocado en la categoría de nuevos materiales del cátodo debido a que la 

fabricación del LSMC pseudo-binario mediante un método combinatorial es nueva vía 

para la proyección de materiales SOFC. Por lo tanto, las dos maneras mencionadas se 

siguen en esta tesis para mejorar la funcionalidad del cátodo mediante la implementación 

del concepto de la Nanoiónica. 

   El comportamiento de los iones conductores a nivel nano-régimen (<100nm) es 

totalmente diferente a nivel másico, tema que estudia la nonionica. Especialmente, las 

interfaces como las capas de carga espacial y los límites de grano actúan como una 

autopista para la rápida conducción de iones oxígeno, que puede mejorar el transporte de 

carga, en general, en las nanoestructuras. En esta tesis, se estudian las propiedades de 

transporte de masa del oxígeno en cátodos en forma de película delgada mediante 

modificaciones en la nanoestructura  de la película fina con el fin de observar y mejorar el 

transporte de carga a lo largo de la interfaz de los límites de grano, así como para 

comprender el transporte iónico rápido de tales interfaces. La Deposición Pulsada por 

Laser (PLD) se utiliza como una herramienta para la fabricación de películas delgadas. 

En general, las nanoestructuras de película fina obtenidas mediante el PLD presentan 

granos columnares que pueden actuar como una autopista para la conducción iónica y 

son adecuadas para el trabajo propuesto. Por lo tanto el PLD se utiliza como una 

herramienta para fabricar películas delgadas de cátodos densos con una elevada densidad 

de límites de grano para estudiar el transporte iónico en las interfaces. Además, se llevan 
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a cabo estudios de deposición de capas múltiples de LSM/LSC mediante PLD para 

averiguar el espesor óptimo para la fabricación de un sistema  pseudo-binario de LSMC 

combinatorial sin ningún tipo de fases parásitas. 

El LSM es un material clásico y bien estudiado dentro de los cátodos estudiados en 

esta tesis. Las propiedades funcionales, es decir, las propiedades de transporte masivo de 

oxígeno (coeficiente de auto-difusión de oxígeno y coeficiente de intercambio de 

superficie, 𝑫∗ y 𝒌∗, respectivamente) de los cátodos de capas delgadas de LSM son 

analizados mediante las técnicas intercambio de isotopos en perfiles profundos utilizando 

iones secundarios espectroscopia de masas (IEDP -SIMS) y Espectroscopia de Impedancia 

Electroquímica (EIS) en el rango de temperaturas entre 500°C y 700°C. Las propiedades 

de transporte del oxígeno se estudian mediante la alteración de la nanoestructura de las 

películas delgadas de LSM. La nanoestructura se modifica mediante la fabricación de 

películas de LSM con una elevada densidad de límites de grano mediante el control de las 

condiciones de deposición en el PLD. 

A continuación, se observa una mejora  en el transporte de iones oxígeno a lo largo de 

los bordes de grano de la capa delgada del LSM con nanoestructuras modificadas. La 

nanoestructura del LSM se investigó adicionalmente por Microscopía Electrónica de 

Transmisión de alta resolución (HRTEM) y se encontró que las deformación inducidas 

por la alta densidad de dislocación son las responsables de la mejora en 6 a 7 órdenes del 

transporte de iones oxígeno a lo largo de las regiones del límite del grano del LSM. 

La proyección de nuevos materiales y propiedades de las composiciones de ajuste fino 

es una tarea esencial pero compleja que requiere mucho tiempo. Por desgracia, sólo se 

puede obtener información discreta sobre las composiciones sintetizadas y  en general las 

optimizaciones primarias originales se han mantenido durante años. Recientemente, un 

enfoque combinatorial para la síntesis y caracterización de materiales está abriendo una 

nueva vía en la generación de la totalidad de los diagramas de composición en un solo 

experimento. En el estudio del LSMC pseudo-binario, se presenta a una nueva 

metodología para la selección de materiales aplicables en las pilas de combustible. La 

metodología se basa en una deposición combinatorial de películas delgadas por PLD en 

obleas de silicio de 4 pulgadas, además es posible predecir el espesor y el mapa de 

composición del LSMC binario utilizando esta metodología. La metodología propuesta se 

puede ampliar para generar diagramas binarios y ternarios de composiciones completas, 

incluso para  óxidos muy complejos (debido a una excelente transferencia de la 

estequiometria).  

Con el fin de ser capaz de mapear las propiedades estructurales y funcionales de los 

diagramas sintetizados, se han empleado técnicas de caracterización puntual y no 

destructiva. La Espectroscopia de Micro- Raman se emplea para evaluar la composición y 

estructura local, mientras que IEDP-SIMS se lleva a cabo para evaluar las propiedades de 

transporte de masa del oxígeno del sistema LSMC en las composiciones con un contenido 
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en cobalto de x ≈ 0.04 a 0.85 en el rango de temperatura de 600°C a 800°C. Los valores 

obtenidos para  𝑫∗y 𝒌∗ a través del interior de grano siguieron la misma tendencia que los 

reportados previamente por De Souza et al. para composiciones discretas en forma másica 

[1 , 2]. Por otra parte, se han encontrado de 6 a 7 órdenes de magnitud de mejora a lo 

largo de los límites de grano en el sistema LSMC.  

Dado que no existe una solución analítica disponible para un sistema de película 

delgada heterogénea bicapa con valores distintos 𝑑𝑒 𝑫∗y 𝒌∗, los perfiles de difusión del 

isótopo de oxígeno de las capas delgadas de LSM y el sistema de pseudo-binario 

LSMC/8YSZ son estudiados utilizando el Método de Elementos Finitos (FEM) para 

extraer los parámetros de transporte de oxígeno a lo largo de los límites de grano y 

interior del grano ( 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗ ). También hay otro modelo llamado “Two-slab” 

que se utiliza en ciertas condiciones para  encontrar los valores medios de  𝑫∗y 𝒌∗ en el 

LSMC. 

 

Esta tesis se estructura en seis capítulos con un breve resumen en cada capítulo y dos 

apéndices.  

 

Capítulo 1: Introducción al alcance de la tesis. 

Capítulo 2: Introducción al método experimental empleado en esta tesis. 

Capítulo 3: LSM y LSC; optimización microestructural mediante  PLD. 

Capítulo 4: Estudio de transporte de iones de oxígeno en cátodos de LSM de película 

delgada. 

Capítulo 5: Fabricación y caracterización microestructural de sistemas  pseudo-

binarios de película delgada de LSMC. 

Capítulo 6: Estudio de transporte de iones de oxígeno en sistema de película delgada 

de LSMC. 

 

Apéndice 1: Introducción al método “Two-slab”. 

Apéndice 2: La fabricación de sistema de pseudo-ternario LSM-LSC-LSF.  
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Chapter I 

1.1  Fuel cells 

Science and technological growth in the last centuries have improved the standard 

of living of world population in an exceptional way. Energy is the driving force of all 

such accelerated growth and is the lifeblood of the world economy. Therefore, energy 

growth is directly linked to comfort-living and prosperity across the world.  

At present, the world’s major energy requirement and daily energy needs are 

fulfilled by the usage of fossil fuels such as petroleum, coal and natural gas which are 

the primary sources of CO2 emission [1]. As a consequence of the vast consumption of 

fossil fuels, the global temperature is rising accompanied by changes in the global 

weather and climate. In the last century earth's average temperature has risen by 0.7°C 

due to industrialization [2].  According to the recent statistics of United States 

environmental protection agency it is believed that global temperature will rise to another 

~ 1 to 5°C in the next hundred years [2]. Even a small increase in the global 

temperature can cause huge impact on climate, weather and eco-system. Therefore, 

scientists are looking for alternatives as a challenge a) to reduce the global warming b) 

scarcity of fossil fuels and c) to meet the growing demand for energy due to increasing 

population. The alternative energy should be safer for environment. 

Fuel cells, an alternative energy source, is currently attracting interest for power-

generation with wide range of applications including stationary power generation, 

portable power generation and transportation. Fuel cells are electrochemical energy 

conversion devices that convert chemical energy into electrical energy with water and 

heat as by-products [1, 3]. The advantages of fuel cells are high efficiency, lower 

emission of sulfur, nitrogen oxide and hydrocarbon pollutants and significantly lower 

amount of CO2 emission making them a non-polluting and renewable way of 

electricity generation [1, 3].  

Up to now, there are six varieties of fuel cells each differ in terms of operating 

temperature and the type of electrolyte material used [4]. However, the basic principle 

of operation is the same. The different varieties of fuel cells are Proton Exchange 

Membrane (Polymer Electrolyte) Fuel Cell (PEMFC), Alkaline Fuel Cell (AFC), 

Phosphoric Acid fuel Cell (PAFC), Molten Carbonate Fuel cell (MCFC) Solid oxide Fuel 

Cell (SOFC) and Direct Methanol Fuel Cell (DMFC).  
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Table 1.1. Comparison of six fuel cells on the axis of operating temperature and electrolyte type. η 

represents efficiency. 

 

Fuel 

cell 

type 

T  

(°C) 

Electrolyte Charge 

carrier 

Electrochemical reaction 

(i) Anode (ii) Cathode 

η 

(real) 

% 

PEMFC 50-100 

Hydrated 

Polymeric 

Ion 

Membrane 

Exchange 

 𝐻+ 
𝑖) 𝐻2 → 2𝐻+ + 2𝑒− 

𝑖𝑖)  1
2⁄ 𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 

40-

50% 

AFC 50-200 

Liquid 

solution of 

KOH 

 𝑂𝐻− 
𝑖) 𝐻2 + 2(𝑂𝐻−) → 2𝐻2𝑂 + 2𝑒− 

𝑖𝑖)  1
2⁄ 𝑂2 + 𝐻2𝑂 + 2𝑒− → 2(𝑂𝐻)− 

~50% 

PAFC ~200 
Phosphoric 

acid(H3PO4) 
 𝐻+ 

𝑖) 𝐻2 → 2𝐻+ + 2𝑒− 

𝑖𝑖)  1
2⁄ 𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 

40% 

MCFC ~650 

Li2CO3, 

KCO3 in 

LiAlO2 

 𝐶𝑂3
2− 

𝑖) 𝐻2𝑂 + 𝐶𝑂3
2− → 𝐻2𝑂 + 𝐶𝑂2 + 2𝑒− 

𝑖𝑖)  1
2⁄ 𝑂2 + 𝐶𝑂2 + 2𝑒− → 𝐶𝑂3

2− 
>50% 

SOFC 
800-

1000 

Ceramic 

ionic 

conductor 

 𝑂2− 
𝑖) 𝐻2 + 𝑂2 → 𝐻2𝑂 + 2𝑒− 

𝑖𝑖)  1
2⁄ 𝑂2 + 2𝑒− → 𝑂2− 

>50% 

DMFC 60-200 

Solid 

polymer 

membrane 

 𝐻+ 
𝑖) 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 → 𝐶𝑂2 + 6𝐻+ + 6𝐻− 

𝑖𝑖) 3𝑂2 + 12𝐻+ + 12𝐻− → 6𝐻2𝑂 
40% 

 

The low temperature fuel cell technologies such as PEMFC, AFC and PAFC require 

relatively pure hydrogen for stable performance to ensure the adequate reaction 

kinetics in electro-catalysts (eg. expensive Platinum-based catalysts) [5]. They are 

highly sensitive to impurities such as CO, CO2 and H2S. The necessity of pure 

hydrogen to avoid electrode deactivation raises efficiency of fuel cells [4]. DMFC offers 

lower efficiency due to low-operation temperature and the usage of methanol is toxic 

and flammable [4]. MCFC can reach higher efficiency due to high-operation 

temperature and it does not need expensive precious-metal catalysts. The main 

drawback of MCFC is corrosive-nature of electrolyte moreover molten electrolyte 

resulting in corrosion and degradation issues [4, 5]. 

Among these six fuel cell technologies, SOFC presents various advantages. The 

high-temperature operation (800-1000°C) removes the usage of expensive noble-metals 

as electrodes, thereby reducing cost [4, 5]. The main advantages of SOFCs compared to 

other types are higher efficiency, in the range 60 to 85% and mechanical stability of the 

solid electrolyte. High-temperature operation offers the possibility of reforming the 

fuel by an internal reformer, which is a cost-effective solution compared to adding a 

separate external reformer.  Further, SOFC has higher tolerance to the impurities such 
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as carbon monoxide than other fuel cell types which gives fuel flexibility (hydrogen 

and hydrocarbon) [3-7].  

1.1.1 Solid Oxide Fuel cells (SOFCs) 

A single SOFC unit consists of two electrodes (a cathode and an anode) separated 

by an electrolyte as shown in Fig.1.1. Generally, the electrolytes are gas-tight pure 

oxide-ion conducting oxides [1, 3]. On the cathode side of the fuel cell, O2 is reduced to 

oxide ion (O2-) that is transported through the electrolyte to the anode, where it reacts 

with the gaseous fuel (H2, CH4 etc.) releasing electrons and yielding heat and water as 

by-products. The electrolyte conducts these oxide ions between electrodes, maintaining 

overall electrical charge balance. The flow of electrons in the external circuit gives 

useful power (Fig.1.1).  

 

Figure 1.1. Schematic diagram of Solid Oxide fuel cell (SOFC). 

Since oxide ion is transported from higher oxygen concentration side (𝑷𝑶𝟐

𝒉𝒊𝒈𝒉
) i.e. 

cathode to lower oxygen concentration side (𝑷𝑶𝟐

𝒍𝒐𝒘) i.e. anode, SOFC can be considered 

as an oxygen concentration cell that generates an electromotive force (emf) given by 

Nernst equation,  

 𝐸𝑒𝑚𝑓 =
𝑅𝑇

4𝐹
𝑙𝑛 [

𝑃𝑂2

ℎ𝑖𝑔ℎ

𝑃𝑂2

𝑙𝑜𝑤 ] 
 

(1.1) 

where 𝑬𝒆𝒎𝒇 is the reversible voltage that can be achieved by an SOFC under open 

circuit voltage (OCV) condition. OCV defines the voltage obatined in open circuit 

conditon or without current flow. 𝑹 is gas constant (8.314 J/mol.K), 𝑻 is temperature 

and 𝑭 is Faraday constant (9.65x104 C/mol).  
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The measured voltage 𝑬 of an operating cell is always lower than 𝑬𝒆𝒎𝒇. This is due 

to as the current is drawn form the cell (Fig.1.2), the cell voltage falls due to internal 

resistance and various polarisation losses. The voltage of an operating cell can 

approximately be expressed as,  

 𝐸 = 𝐸𝑒𝑚𝑓 − 𝐼𝑅𝑖 − 𝜂𝑎𝑐𝑡 − 𝜂𝑐𝑜𝑛𝑐 

 

(1.2) 

where 𝑰𝑹𝒊 is the ohmic loss, 𝑰 is cell current, 𝑹𝒊 is internal resistance. 𝜼𝒂𝒄𝒕 and 𝜼𝒄𝒐𝒏𝒄 

are the activation and concentration losses of anode and cathode.  

 

Figure 1.2. Ideal and measured current –voltage (𝑰𝑹) curve for an SOFC with corresponding 

polarization losses dominant in each region (activation polarization (𝜼𝒂𝒄𝒕), ohmic polarization 

(𝑰𝑹𝒊) and concentration polarization (𝜼𝒄𝒐𝒏𝒄). 
 

Fig.1.2 shows the measured voltage in SOFC is not same as the theoretical voltage 

due to various polarization losses associated with different components of fuel cell. 

Ohmic loss is associated with the resistance of electrolyte and other cell components. 

Activation loss is mainly caused by the slowness of the reaction on the electrode 

surface. Concentration loss mainly comes from the change in the concentration of 

reactant as the fuel is used. 

1.1.2 Disadvantages of high-temperature SOFC operation (800-1000°C) 

The major technical issue behind the development and commercialization of SOFC 

technology is its high-operation temperature (800-1000°C). It consists of various 

drawbacks like thermal stresses between SOFC components, longer start-up times, 

degradation problems and chemical instability between electrode and electrolytes 
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which affect the life-time and efficiency of SOFC [6, 7]. Therefore, significant effort has 

been put in the last decades to lower the operation temperature of these devices giving 

rise to the intermediate-temperature SOFC (IT-SOFC) which operate at 500-750°C.  

However, decreasing the operation-temperature of SOFC is not an easy task as it 

consists of lot of challenges embedded in SOFC components and electrochemical 

activity that have to be resolved. Mainly, the ionic-conductivity of electrolyte and the 

electrode activity decrease rapidly with decreasing the operation temperature. In 

particular, reducing the temperature increases ohmic losses resulting from the ionic 

transport of the electrolyte.   

The possible solutions for SOFC temperature reduction are a) reducing electrolyte 

thickness b) using (exploring) electrolyte materials with excellent ionic-conductivity in 

the intermediate-temperature of operation c) exploring new active electrode materials 

or improving the existing ones [6, 7].   

1.1.3 Miniaturization of SOFC 

In the past decades, the majority of the SOFC research and applications has been 

conducted in the form of bulk ceramics for large amount of power generation. 

Conventional SOFCs are used for stationary power generation in kilowatt to megawatt 

range due to high-temperature operation 800-1000°C [1].  

In recent years, there is an increasing interest towards the miniaturization of SOFC 

by implementing thin film components. There are some technological objectives 

behind the increasing trend towards the scaling-down of SOFC. One of the objectives is 

the temperature reduction of SOFCs from high-temperature to intermediate-

temperature [8] already discussed in the last section 1.1.2. The second driving force is 

the development of micro-SOFC (µ-SOFC) with thin film SOFC components for the 

power generation in portable electronic devices such as laptop, mobile phones, digital 

cameras etc., in the range of milliwatt to several watts [8, 9].  

Today’s increasing demand on modern portable consumer electronics and 

integration of various features (MEMS - Micro Electro Mechanical Systems) into a 

single device will increase the energy requirements to a level that cannot be sustained 

by current Li-ion batteries [9]. On this scenario, SOFCs can fulfil the energy demand for 

portable electronics as it is expected to produce energy densities per volume three to 

four times larger than Li-ion, Ni metal hydride batteries and PEMFC [8-10].Therefore, 

fuel cell miniaturization will lead to the commercialization of SOFC. 
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The SOFC component studied in this thesis are cathodes in thin film form for 

intermediate-temperature SOFCs, operating in the temperature range from 500°C to 

750°C. The oxygen reduction reaction (ORR) mechanism taking place in the cathodes 

are studied in thin films and new strategies to obtain enhanced performance at 

intermediate-temperature is given in this thesis. The cathodes materials studied in this 

thesis are well-known compounds which are perovskite-related oxides explained in the 

following sections. 

1.2 Perovskite-type oxides as cathodes in SOFC 

Perovskite is a general term used to define certain structural family of compounds 

which have the same type of crystal structure as CaTiO3. The general formula of a 

perovskite is ABO3 and its ideal cubic structure is given in Fig.1.3.  

 

Figure 1.3. Structure of ideal cubic perovskite ABO3. 

 

In ABO3 cubic structure (Fig.1.3) A-cations are located in the corner of the unit cell. 

O2- ions are located in the face-centered positions and B-cation occupies the center of 

the cube. Besides, B-site cations are surrounded by six oxygen ions forming BO6 

octahedral structure [7, 11]. 

The stability of perovskite structure depends on the radii of constituent ions in the 

perovskite structure. Goldschmidt [7, 11] defined the tolerance limit for perovskite 

structure which can be given as,  

 𝑡 =
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝐵 + 𝑟𝑂)
 

 

(1.3) 

 

Where 𝒕 is tolerance factor. 𝒓𝑨, 𝒓𝑩 and 𝒓𝑶 are ionic radii of A, B and oxygen ions 

respectively. The perovskite structure is preserved if 𝑡 is in between 0.8 and 1. The 
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value of 𝑡 is 1 for an ideal perovskite structure. As 𝑡 decreases from 1, the cubic 

structure deforms to lower symmetry orthorhombic and rhombohedral structures, 

which are commonly found distortions in perovskites. If 𝑡 > 1 calcite and aragonite 

structures are preserved while if 𝑡 < 0.8 ilmenite structure is stabilized. A perovskite 

structure can accommodate number of different cations with +1 to +5 valence states 

and ionic sizes of 0.45 to 0.75 Å [7, 11]. 

Most cathode materials used in SOFC are perovskite oxides that exhibit significant 

oxygen ionic and electronic conductivity (MIEC – Mixed Ionic Electronic conductors) 

at elevated temperatures, which is suitable for oxygen reduction. The electrical 

conductivity is desirable for the extraction of current. The functional properties of such 

MIEC cathodes can be tuned by aliovalent substitution in A and B-sites. The doping 

can alter the ionic and electronic conductivities of MIEC by formation of oxygen 

vacancies (𝑉̈𝑜) and electronic defects such as holes and electrons that can influence the 

electrochemical activity of the cathode [7, 11].  

In this thesis, the perovskite-type oxides La0.8Sr0.2MnO3+δ (LSM), La0.8Sr0.2CoO3-δ (LSC) 

and La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) are studied in thin film form. In LSMC, the 

intermediate compositions of a solid solution system attained from LSM and LSC are 

studied. In which pure LSM and LSC are well-studied and traditional cathode 

materials with unique electrochemical properties. In the following sections, some 

general properties of LSM and LSC such as structural, defect chemistry, electrical and 

oxygen ion transport properties are explained. 

1.2.1 La0.8Sr0.2MnO3+δ : Structural, defect chemistry and electrical properties 

LSM are oxygen-excess perovskites which are commonly used as cathodes for high-

temperature operating SOFC (800°C-1000°C). LSM presents high chemical 

compatibility with electrolytes like Yttria-stabilized Zirconia (YSZ) at its operating 

conditions. But LSM react with YSZ at high-temperature forming secondary phases 

such as La2Zr2O7 and SrZrO3 [1]. Another advantage for the traditional choice of LSM is 

its mechanical compatibility with the typically used electrolyte Yttria-stabilized 

Zirconia (YSZ). The Thermal expansion coefficient (TEC) of LSM is ~10.08 × 10−6𝐾−1 

[12] while 8YSZ is ~10.05 × 10−6𝐾−1 at 900°C [13]. 

Basically, LaMnO3 without Sr exist in orthorhombic structure at room temperature. 

It shows an orthorhombic to rhombohedral transition at ~600°C. LaMnO3 with Sr exist 

in three different phases depending upon Sr content. La1-xSrxMnO3+δ exists in 
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rhombohedral structure when 0 ≤ 𝑥 ≤ 0.5 , tetragonal at 𝑥 = 0.5 and cubic at 𝑥 ≤ 0.7 

[14].  

Regarding oxygen non-stoichiometry (δ) of LSM, δ is zero under intermediate 

partial pressure of oxygen (PO2) ranging between 10-5 and 1 Pa. On the other hand, 

LSM is oxygen-deficient at very low PO2 < 10-5 Pa, where oxygen vacancies 𝑽̈𝒐 are 

compensated by reduction of Mn4+ ions to Mn3+ and Mn2+ [14] which can be expressed 

with the following equation,  

 
1

2
𝑂2 +  𝑉̈𝑜 + 2𝑀𝑛𝑀𝑛

3+ ↔ 2𝑀𝑛𝑀𝑛
4+ + 𝑂𝑜

𝑥 
 

(1.4) 

 
1

2
𝑂2 +  𝑉̈𝑜 + 2𝑀𝑛𝑀𝑛

2+ ↔ 2𝑀𝑛𝑀𝑛
3+ + 𝑂𝑜

𝑥 (1.5) 

At high oxygen partial pressure, LSM shows oxygen-excess stoichiometry (≥1Pa) 

which is compensated by oxidation of Mn and formation of cation vacancies which can 

be given as,  

 6𝑀𝑛𝑀𝑛
3+ +

3

2
𝑂2 ↔ 6𝑀𝑛𝑀𝑛

4+ + 3𝑂𝑜
𝑥 + 𝑉𝐿𝑎

′′′ + 𝑉𝑀𝑛
′′′  

 

 

(1.6) 

 

Hence, oxygen vacancies are the major defects at low PO2 while holes and cation 

vacancies are major defects at high PO2. Fig.1.4 depicts oxygen non-stoichiometry 

trend in LSM under different ranges of PO2 at different temperature in which the 

maximum oxygen content in LSM at 873K is ~3.06.  

 

Figure 1.4. Oxygen non-stoichiometry of La0.8Sr0.2MnO3+δ perovskite is plotted against PO2 

[15].             
                 

Regarding electrical properties, LSM is a p-type conductor [12] and the conductivity 

is proportional to Sr concentration. When trivalent La3+ ions are replaced by divalent 
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Sr+2 ions, holes are created in the B-site by oxidation of Mn ions to compensate the 

charge neutrality leading to increased conductivity  [14, 16] which can be given as, 

 𝐿𝑎𝑀𝑛𝑂3 + 𝑥𝑆𝑟𝑂 → 𝐿𝑎1−𝑥
3+ 𝑆𝑟𝑥

2+𝑀𝑛1−𝑥
3+ 𝑀𝑛𝑥

4+𝑂3 

 

(1.7) 

 

The electrical conductivity of LSM also depends upon PO2. Generally, the 

conductivity of LSM decreases under reducing condition (PO2 < 1 to 10-5 Pa) due to the 

formation of 𝑽̈𝒐 and reduction of Mn ion that will reduce the hole concentration. In the 

oxygen excess region PO2 > 1 Pa it shows a constant conductivity [15].  

1.2.2 La0.8Sr0.2CoO3-δ : Structural, defect chemistry and electrical properties 

LSC are oxygen-deficient perovskites, it has high catalytic activity towards ORR at 

intermediate-temperature itself, due to the large concentration of oxygen vacancies. It 

is a good mixed ionic and electronic conductor, but the chemical and thermal 

compatibility of LSC with YSZ is lesser than LSM. For example LSC reacts with YSZ at 

~900°C forming Co3O4, SrZrO3, La2Zr2O7 [17, 18]. The TEC of LSC is ~21.54 × 10−6𝐾−1 

[12] and 8YSZ is ~10.05 × 10−6𝐾−1 at 900°C shows high thermal mismatch between 

LSC and YSZ. 

La1-xSrxCoO3-δ (x≤0.5) exists in rhombohedral structure when 0 ≤ 𝑥 ≤ 0.5,  

orthorhombic when 𝑥 > 0.5. 

In LSC, when a higher-valence La3+ ion is substituted by lower-valence Sr+2 ion 

electroneutrality will be attained in two ways, either by the formation of oxygen 

vacancies (𝑽̈𝒐) or holes [12, 19]. In general both processes occur and compete each other 

depending upon composition, T and PO2. The defect chemistry of LSC can be given as 

following equations, 

 

 2𝑆𝑟𝑂 +  2𝐿𝑎𝐿𝑎 + 𝑂𝑜
𝑥 → 2𝑆𝑟𝐿𝑎

′ + 𝑉̈𝑜 + 𝐿𝑎2𝑂3 (1.8) 

 2𝐶𝑜𝐶𝑜
𝑥 ↔ 𝐶𝑜𝐶𝑜

. + 𝐶𝑜𝐶𝑜
′  

 

(1.9) 

 

 𝑂𝑜
𝑥 +  2𝐶𝑜𝐶𝑜

𝑥 ↔
1

2
𝑂2 +  𝑉̈𝑜 + 2𝐶𝑜𝐶𝑜

′  (1.10) 

The above equation 1.8 represents aliovalent doping of La3+ by Sr2+ and the 

formation of oxygen vacancies. Equation 1.9 is charge the disproportion of Co ions in 
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LSC which lead to p and n-type carriers. In equation 1.10 the oxygen vacancy 

formation in LSC is compensated by n-type charge carriers [19].  

Regarding oxygen non-stoichiometry, at high PO2, oxidation of LSC is compensated 

by holes. At low PO2 ( < 102 Pa) oxygen vacancies become predominant defects attained 

by the reduction of Co ions Fig.1.5.  

 

Figure 1.5. Non-stoichiometry in La0.8Sr0.2CoO3-δ perovskite over PO2 under different 

temperature [20].                             

 

LSC is a p-type electrical conductor in which conductivity occurs by thermally 

activated hopping of p-type charge carriers and the conductivity increases over Sr 

content [19, 20].  

1.2.3 Oxygen transport properties of LSM and LSC 

The incorporation of oxygen on the cathode/gas surface and oxygen ion conduction 

in cathode bulk are the rate-limiting factors of oxygen reduction reaction (ORR) in 

cathode. These factors are defined by 𝑫∗ and 𝒌∗ which are the decisive parameters of 

the performance of mixed conducting cathode materials. where 𝑫∗ is oxygen self-

diffusion coefficient, 𝒌∗ is oxygen self-exchange coefficient can be determined from 

oxygen tracer measurement (for a description of this technique, see chapter 2 section 

2.5.2).  

In Fig1.6a and 1.6b, the 𝑫∗ and 𝒌∗ values of pure LSM and LSC are compared with 

similar materials found in the literature [21, 22] exhibiting different amount of Sr 

content in the A-site, Co and Mn content in the B-site.  
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Figure 1.6. a) Oxygen self-diffusion coefficient 𝑫∗and b) Oxygen self-exchange coefficient 𝒌∗of 
LSM82 and LSC82 is plotted against temperature. They are compared with similar materials 

given in the literature [21, 22]. LSC82-La0.8Sr0.2CoO3, LSCM8228-La0.8Sr0.2Co0.2Mn0.8O3, 

LSM82-La0.8Sr0.2MnO3, LSC55-La0.5Sr0.5CoO3, LSCM5582-La0.5Sr0.5Co0.8Mn0.2O3, LSM55- 

La0.5Sr0.5MnO3. 

 

Fig.1.6 a and b illustrates that there is a dramatic difference between 𝑫∗ and 𝒌∗ 

values of Mn and Co rich materials. This difference is highly pronounced in oxygen-

diffusion coefficients than in oxygen-exchange coefficients. The 𝑫∗ values of LSM-82 

and Mn rich compositions such as LSCM-8228, LSM-55 and LSCM-5582 are ~4 to 5 

times lower than pure Co materials LSC-82 and LSC-55 with different amount of Sr 

concentration. Similarly, 𝒌∗ values of Mn rich compounds are ~1 to 2 orders of 

magnitude lower than the corresponding to pure Co compounds.  

This is due to LSM oxygen-excess stoichiometry and has poor oxygen vacancy 

concentration (section 1.2.1), which is responsible for the lower oxygen-diffusivity and 
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exchange coefficients of Mn rich materials. On the other hand, pure LSC has oxygen-

deficient stoichiometry and the presence of high concentration of oxygen vacancies 

(section 1.2.2) enhances the oxygen transport properties of pure Co materials. 

1.3 Enhancing oxygen ion transport in thin film cathodes using 

nanostructured films  

While the ohmic losses in electrolytes are largely understood today, the physics 

governing overpotential losses of cathodes is not yet clearly understood due to the 

geometrical constraints offered by porous electrodes. Further, cathode causes major 

polarization losses in IT-SOFC which affect the fuel cell performance [23]. Therefore, 

understanding ORR kinetics is crucial to enhance/tune the functionality of cathodes to 

improve the device performance. ORR kinetics can be understood well in dense thin 

film cathodes and its functionality can be enhanced by implementing nanoionics 

concepts [8, 24, 25, 26]. Further, thin film technology can offer a useful tool for the 

study of oxygen transport in cathodes. 

1.3.1 Thin film cathodes Vs thicker cathodes 

ORR reaction in a MIEC cathode takes place by several steps such as oxygen gas 

diffusion (𝐎𝟐(𝐠)), adsorption (𝐎𝟐
𝐚𝐝), dissociation and ionization (𝐎𝐚𝐝

𝟐−) on the electrode 

surface and oxygen ion incorporation (𝐎𝟐(𝐠) + 𝟐𝑽𝒐 + 𝟒𝒆− ↔ 𝟐𝑶𝒐
𝟐−) into cathode as a 

final step. These steps are collectively called as oxygen exchange process [27, 28]. After 

incorporation, oxygen ion diffusion occurs in the cathode bulk.  If the cathode is a pure 

electronic conductor ORR is confined in Triple-phase boundary (TPB).  

ORR steps in porous and dense cathodes are depicted in the following figure 

(Fig.1.8).  
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Figure 1.7. Illustration of oxygen reduction reaction (ORR) steps in a) porous electrode b) thin 

film dense electrode. TPB is Triple-phase boundary.  If the electrode is a pure electronic 

conductor ORR takes place in TPB. If the electrode is made by MIEC, then ORR will be 

extended into cathodes. 

 

In the last decades cathode materials were prepared by conventional ceramic 

processing routes (eg. tape casting, screen printing) resulting in 20 to 100µm thickness 

with porous microstructure. Even after spending a couple of decades in understanding 

ORR mechanism in porous cathodes, still a general conclusion is not yet attained on 

which of the possible kinetic steps limits the cathode performance. This is due to ill-

defined, complex morphology and microstructure (Fig.1.7) offered by porous 

microstructures that cannot be measured and reproduced [29]. It makes difficult to 

relate intrinsic properties of cathode with the electrode geometry and microstructure. 

Hence, dense thin film cathodes can be the best alternative to overcome the 

complexities emerging from porous cathodes. Typically, the geometry and 

morphology offered by thin film cathodes are simple (Fig.1.7), providing simple 

architectures where intrinsic properties can be directly correlated to the electrode 

geometrical parameters and microstructure [19]. Further, the geometry and 

microstructure of thin films can be precisely controlled and reproduced by controlling 

the deposition conditions by means of thin film vacuum deposition techniques [27].  

Oxygen surface exchange process and oxygen bulk diffusion are the two main rate-

limiting steps in ORR (Fig.1.7). These rate-limiting steps can be controlled by the thin 

film thickness. The so-called “critical thickness” (𝑳𝒄) indicates whether oxygen 

exchange or diffusion to be rate-limiting [19, 28].  It can be given as, 

 𝑳𝒄 =
𝑫

𝒌
 

 

(1.11) 
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Where 𝑫 is oxygen diffusion coefficient and 𝒌 is oxygen surface exchange 

coefficients.  

If the electrode thickness is below the critical thickness (𝑳 < 𝑳𝒄) ORR will be limited 

by the oxygen exchange process. If it is above the critical thickness (𝑳 > 𝑳𝒄) it will be 

limited by the oxygen diffusion in the cathode bulk. The typical value of 𝐿𝑐 for most 

perovskite materials presents values in between 1 nm to 150µm which depends on 

temperature and PO2 [30].  

1.3.2 Nanoionics effect in thin film cathodes 

Nanoionics is the study of ionic charge transport in ion-conducting solids in nano-

regime (less than 100nm) [27]. Nanoionics effect in which the behavior of electronic 

and ionic transport in nanoscale is totally different than bulk, which is highly 

pronounced in hetero-interface and grain boundaries. when study the conductivity in 

the nanoscale, the influence of defects, space charge lagers at grain boundaries and its 

surface etc. is more visible than when studying the systems at the macro-scale. 

It has been reported that in most cases, hetero-interfaces and space-charge layers are 

responsible for fast ionic transport [31-34]. Usually ionic transport parallel to the 

interface is enhanced compared to the transport perpendicular to the interface. The 

typical grain size of thin film cathodes processed at low temperature is in the 

nanometer scale at which nanoionics effects are dominant and can be examined [31-34]. 

Unlike charge transport in bulk, the charge and mass transport in ionic materials along 

interfaces and its dependency on interfacial structure are less understood [33, 35]. The 

interface modification in favour of ionic conduction is one of the main challenge in 

nanoionics [33]. Measuring, understanding and predicting ionic behavior over size 

variation is technically challenging [33]. Hence, research on nanoionics is a relatively 

new field of study. 

A short introduction to such space-charge zone and grain boundary is given below. 

Space charge layer is the region adjacent to the boundaries where charged species 

and defects tend to accumulate/segregate to lower the strain and electrostatic energies 

of the system which are compensated by the formation of opposite charges in the 

boundary of adjacent grain. The graphical representation of space-charge region is 

given in Fig.1.8. This region acts as a transition zone for two grains with different 

orientation or interface of two solid phases, therefore it has its own chemistry and 

defect chemistry [31-34]. 
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Figure 1.8. A qualitative description of space-charge zone. Defect profile Co in space charge layer 

and grain bulk with different size which is plotted against space coordinate. The space charge 

layer has positive and negative charge carrier which is in interfacial core. Blue line (dotted) is 

background defect concentration. d is average grain size, LD is space charge width [34]. 

 

Fig.1.8 shows the influence of grain size (average) 𝒅 on the majority carrier 

concentration Co in space charge layer and grain bulk. As grain size is reduced to equal 

to space charge width (𝒅 ≤ 𝟒𝑳𝑫) the concentration of majority carrier in the grain 

center does not return to background value. If the grain size is further reduced, the 

overall conductivity can be enhanced due to high density of space charge layers. The 

space charge effect can be observed in single heterostructure (thin film/substrate) and 

multilayer heterostructures. As an example, N. Sata et al. [35] found a great 

enhancement in F- ion conductivity of CaF2/BaF2 thin film heterostructures, showing 

that the conductivity increased with increasing periodicity. This is due to the fact that 

F− ions in BaF2 is transferred to neighboring CaF2 layer, leaving F− in BaF2 and 

increasing charge carrier concentration in space charge layer.  

Apart from space charge zone, sometimes grain boundary itself acts as fast 

conduction pathways for ionic transport Fig1.9. Space-charge do not exist when the 

charge carriers are highly mobile [36]. 
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Figure 1.9. Ilustration of Grains (dark-red circles) separated by grain boundary region (Open 

circles) taken from reference [33]. 

 

The presence of high defect densities and excess volume in the interface of adjacent 

grains can enhance ionic diffusion along grain boundaries. [34, 37]. 

1.3.3 LSM and LSC thin film cathodes 

Some interesting works on LSM and LSC thin films found in the literature are 

organized in this section to emphasize the importance of thin film electrodes and the 

influence of nanoionics effect in ORR.  

La O’ et al. [38] studied oxygen exchange in 65nm thickness LSM electrodes in the 

temperature range 660-790°C, showing that 𝒌𝒒 values are 1 to 2 orders of magnitude 

higher than LSM bulk. 𝒌𝒒 is oxygen exchange coefficient obtained from electrical 

measurements.  

The same authors further reported oriented epitaxial LSC thin film (20nm) exhibit 1-

2 orders of magnitude higher 𝒌∗ than bulk through EIS measurement [39].  Kubicek et al. 

[40] and Ji et al. [41] studied oxygen transport properties in LSC epitaxial thin films of 

20nm, 60nm and 243nm thickness in the temperature range 280-475°C [40] and 550-

650°C [41]. They reported an enhancement in 𝑫∗ and 𝒌∗ values due to lattice strain in 

the epitaxial film.  

The surface decoration of LSC thin film is an emerging topic of research in recent 

days, in order to improve the surface exchange properties of LSC thin film. In most of 

the work, ((La, Sr)CoO3-δ)113 perovskite thin films are decorated with islands of ((La, 

Sr)2CoO4±δ)214 layers a Ruddlesden-Popper phase (RP phase) [42-46], sometimes 

decorated with perovskite structures [47].  
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Epitaxial LSC thin films (~85nm) with partial LSM coverage (0.1 to 0.9nm) displayed 

an enhancement in 𝒌𝒒 values 2 to 3 times higher than undecorated LSC film [47]. LSC 

film (~85nm) with partial (La0.5Sr0.5)2CoO4±δ decoration (0.1 to 15nm) exhibited 𝒌𝒒 values 

3-4 orders of magnitude higher than LSC bulk [42]. Similarly, LSC film (~140nm) 

partial decoration of Sr (4 to 7.5nm) displayed 1-2 orders of magnitude of enhancement 

in 𝒌𝒒 value due to the formation of (La, Sr)2CoO4±δ, an RP phase between LSC/Sr 

interface [43].  

Lattice strain, increase in oxygen vacancy concentration, interfacial properties such 

as strain and space-charge effects are considered as responsible for an enhancement in 

ORR. In particular, a great enhancement in 𝒌𝒒 obtained in the above works confirm 

that in the surface decorated LSC films, interface (LSC film/decorated layer) acts as 

active sites for fast oxygen exchange rate an impact of nanoionics effect. 

1.4 Scope of the thesis 

This thesis is devoted to investigate the oxygen ion transport in perovskite-related 

MIEC thin film cathodes (< 200nm thickness) exhibit well-defined nanostructure in 

order to correlate the nanostructure with oxygen transport properties.  

 Pulsed Laser Deposition (PLD) is intentionally used to fabricate thin films with 

high density of grain boundaries displaying vertically aligned grains with columnar 

microstructure and nanocrystalline grain size to observe fast ionic transport along 

grain boundaries.  

This thesis is organized in the following way,  

 Chapter 2 compiles and briefly describes the experimental techniques used in 

the thesis. A detailed explanation of principles and operation of PLD is also 

included.  

 Chapter 3 is devoted to optimize the depositions conditions of thin film 

perovskite LSM, LSC and LSF in PLD. The deposition conditions optimized in 

chapter-3 is the basis for sample fabrication in the following chapters. 

Moreover, the possibility of attaining a new composition in thin film form from 

ultra-thin film multilayer deposition is presented.  

 Chapter 4 describes the oxygen ion transport studies carried out in LSM thin 

films. 
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The next following chapters are about the fabrication of a combinatorial pseudo-binary 

system and its functional studies. 

 Chapter 5 describes the fabrication of LSMC thin film pseudo-binary system 

and its microstructural characterizations. Further, a new methodology is 

introduced in this chapter to generate layers with a determinate composition 

and thickness distribution in the binary system. 

 Chapter 6 describes the oxygen transport studies carried out in the LSMC 

binary system.  

Chapters 3 to 6 including appendixes is given as flowchart which is as follows, 

 

 

  

Figure 1.10. Flow-chart of the thesis chapters and Appendixes. 
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Chapter II 

2.1 Chapter outline 

The aim of this chapter is to give a general overview of the experimental methods 

and tools employed in this thesis to carry out experiments, emphasizing its place of 

application in the following chapters. The work developed in this thesis can be simply 

divided into two categories: (i) Thin film fabrication techniques (ii) characterization 

techniques. The sample fabrication methods adopted in this thesis is explained in 

section 2.2. The equipments used for the thin film microstructural studies are 

presented in section 2.3 and the techniques used to study the sample functionality are 

described in section 2.4. 

2.2 Thin film fabrication techniques 

The whole thesis is based upon the samples in thin film form, thickness within the 

250nm to 40nm range. There are various deposition techniques are available to 

fabricate oxide thin films. Existing physical and chemical deposition techniques such as 

thermal evaporation, sputtering, PLD, spray pyrolysis, Atomic layer deposition (ALD), 

Chemical vapor deposition (CVD) or metal organic chemical vapor deposition 

(MOCVD) are commonly used for thin film technology [1-5]. Preserving stoichiometry 

in thin films is one of the main challenges in these deposition techniques [1-5]. 

In this thesis, Pulsed laser deposition (PLD) is used as a tool to fabricate MIEC thin 

film cathodes and electrolytes. PLD is a physical vapor deposition (PVD) technique 

where a high power laser pulses are focused on a target to melt, vaporize and ionize 

the material from the target surface. The ablated material from the target generates a 

highly energetic plasma that will be collected on a substrate upon which it condenses 

form a thin film (Figure 2.1).  

The advantage of PLD is its stoichiometric material transfer which preserves the 

thin film composition [6]. Inside the PLD chamber, only the target material is ablated 

that avoids contamination issues. Congruent evaporation with excellent stoichiometry 

control, microstructure control, low thin film processing temperature and the 

possibility of attaining high quality films with high dense layers are the most attractive 

features underneath the employment of this technique in this thesis. The disadvantages 

of PLD are particulate ejection, small area deposition that lead to a thin film with 
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inhomogeneous thickness and substrate surface modification due to ion impingement 

and implantation on the substrate. 

The basic principle and the different versions of PLD equipment available are 

compiled in section 2.2.1, 2.2.2 and 2.2.3. 

2.2.1 Pulsed laser deposition  

Pulsed laser Deposition (PLD) is a material processing technique for growing thin 

films of wide variety of materials. The usage of lasers to deposit thin films by laser 

ablation was started in the 1960s, after the invention of the Ruby laser. However, this 

technique did not draw much attention for two decades, until it was applied for 

growing high temperature superconducting (HTS) thin films.  

When most of the conventional growth techniques like sputtering, e-beam 

evaporation failed for this application, PLD was invented by Dr. Venkatesan in 1987, 

leader of Surface group at Bell labs, USA [7, 8]. They had successfully grown first 

YBa2Cu3O7-x (YBCO) thin film, a High Temperature Tc Superconductor (HTS) on carbon 

foil using pulsed Nd-YAG laser [7, 8]. 

After his discovery, the importance of the PLD was realized worldwide, followed by 

subsequent development in laser technology that led PLD technique to attain a rapid 

growth in thin film technology. In material science the application of PLD is nowadays 

frequent. It is applied to make ceramic films, hard coatings with diamond based films, 

exotic alloys, multi-component films, multilayer films like superlattice structures or 

heterostructure (p-n junctions) [1-5]. The schematic diagram of PLD deposition is given 

in Figure 2.1. 
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Figure 2.1. illustration of laser ablation of a target inside PLD chamber. 

 

The principle of PLD is simple. When a laser pulse is irradiated onto the surface of a 

solid target in a vacuum chamber, a small amount of material is ionized from the 

surface and ejected away from the target. The laser-induced plasma expands 

adiabatically making it highly-forward directional. The plasma goes toward the 

substrate, where it is cooled down to form a thin film.  

Basically, in PLD the deposition of a thin film is taken place by three steps which are 

a) Laser-target interaction b) Plume expansion dynamics c) Thin film deposition [3-6]. 

Each step depends on the type of material, the deposition condition used to control the 

film growth. 

2.2.1.1 Laser-Target interaction 

During laser-target interaction the material is removed from the target surface by 

several processes. There are thermal, electronic contributions involved during laser-

target interaction and their relative importance depends on the target material type, 

laser excitation wavelength and pulse width.  

When the laser is irradiated on a target, the photon absorption by target surface 

causes surface heating. The surface temperature of the target can easily exceed the 

melting point of ceramics (~ 1500oC) that can evaporate the molten surface. Normally, 

target surface temperature depends on optical absorption property and thermal 

conductivity of the material as well as the repetition rate of laser [4, 5].  
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Electronic contributions generally dominate when a material is irradiated with 

ultrashort-laser pulses like femtosecond (fs) laser. Continuous irradiation using ultra-

short laser pulse can rapidly excite electron that can rise the electron temperature 

through electron-electron coupling. Consequently, target lattice is heated up with a 

rate proportional to electron-phonon coupling strength, eventually target is vaporized 

[4, 5].  

Thermal contributions generally dominate when a material is irradiated with long-

laser pulses like nanosecond (ns), picosecond (ps) lasers. This long duration laser pulse 

has enough time that allows a photon to propagate into target material, thereby 

interacts with electrons and vibrational modes of lattice simultaneously, make the 

melting and evaporation of the target material.  

During congruent evaporation all chemical species are detached away from the 

target at the same time, which ensures stoichiometric material transfer from the target 

[4, 5].  

Laser ablation of the material is only possible if the laser energy density is above a 

certain threshold energy density. The threshold energy density is required to create the 

plasma, which mainly depends on the optical absorption property of the target 

material and the laser excitation wavelength [3, 9]. 

2.2.1.2 Plume expansion dynamics 

Continuous exposure to laser lead to plasma expansion. In the early stages of 

expansion, the plasma close to the target surface possesses anisotropic expansion of 

velocity distribution, directed away from the target surface. Later, collision among the 

ablated species changes anisotropic to isotropic expansion of velocities. Therefore the 

region close to the target surface is called as the Knudsen layer where the laser energy 

is absorbed by plasma [5, 9, 10].  

In the first few mm of expansion, Bremsstrahlung emission from atoms, ions and 

emission from multiple charged ions are normally observed. The above emissions are 

no longer observed after certain mm of expansion.  

Under the background gas, plasma pushes the gas ahead which gives a sharp shape 

to the plume front. The collision of particles with background gas can alter the original 

trajectory of plasma and widen the angular distribution. The expanding plasma is 

highly-forward directional, in which direction the density is distributed exponentially 

and velocity is maximum (106 cm/s) [5].  
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The angular distribution of plasma consists of two distinct cosine components 

Figure 2.2a. One of the components is a stoichiometric highly forward-directed 

component, with cosnθ dependence (9<n<12) and θ is measured with respect to the 

target normal (Figure 2.2a). The other component is a non-stoichiometric and arises 

due to the thermal evaporation of the target, located ≥ 20o (Figure 2.2b) on either side of 

the plume front [7, 10]. Thermal component is considered to evolve from the deeper 

part of the target, where the energy density is below the threshold value lead to a non-

stoichiometric thermal evaporation of materials [7, 10]. 

 

 

Figure 2.2. Angular distribution of YBCO film a) Thickness (dashed line is cosθ fit) b) 

Composition. The diagram is taken from ref [10]. 

 

2.2.1.3 Thin film deposition 

In thin film deposition, the way of nucleation determines the structure and 

morphology of the films. Under certain circumstances, deposition conditions such as 

substrate temperature, pressure can affect the thin film microstructure, composition 

and properties. Typically, the thin film growth process can be explained by any one of 

the following three conventional growth modes (Figure 2.3) [3, 11, 12].  

 

 

Figure 2.3. Illustration of three basic growth modes of thin film growth. a) Volmer-Weber mode 

b) Frank-van der Merwe mode c) Stranski-Krastanov mode. 
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i) Volmer-Weber mode is a three-dimensional island growth mode. It dominates 

when both the thin film and substrate are dissimilar materials with different crystal 

structure. During this growth mode the surface adatoms are strongly coupled to each 

other and more than with the substrate leading to polycrystalline thin films (Figure 

2.3a).  

ii) Frank-van der Merwe involves layer-by-layer 2-dimensional growth mode, 

where film growth is promoted by strong film-substrate bonding leading to the highest 

crystalline quality epitaxial films (Figure 2.3b).  

iii) Stranski-Krastanov is a mixed growth mode in which initially the film 

growth is promoted by layer-by-layer growth for one to five monolayers then the 

growth way turn to three-dimensional island growth due to a change in the energetics 

of the underneath monolayers (Figure 2.3c).  

The selection of growth modes by a substrate-thin film system depends on the 

thermodynamics of film-substrate surface energies and film-substrate interface energy. 

2.2.2 Large Area Pulsed laser deposition (LAPLD)  

Although PLD has several advantages in material processing, the deposition on 

small substrate area of size 1 x 1cm2 restricts the implementation of PLD at the 

industrial level. After the first successful growth of YBCO thin film in 1986, the scale-

up in PLD technology was accelerated leading to a large area pulsed laser deposition 

(LAPLD) tool.  

The world’s first LAPLD was designed and developed at Research Division of 

Raytheon (USA) to deposit thin films on ≈ 3-inch diameter wafers [13]. The 

advancement in laser beam scanning techniques in conjunction with large-diameter 

target allows one to fabricate high quality film with homogeneity in thickness and 

composition on large area substrates for the application in Research and Development 

as well as commercial productions [3, 13, 14].  

Figure 2.4 depicts the multi-functional PLD employed in this thesis for a small area 

chip level deposition to a large area 4-inch wafer deposition. Large area deposition is 

possible in this PLD with the help of laser beam rastering or mirror rastering where the 

target is ablated by moving the laser beam across it. It will provide an excellent target 

utilization leading to uniformity in thickness. In order to keep the spot size constant 
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during mirror rastering, a motor driven linear translation stage is provided to move the 

focus lens with the mirror [3].  

 

 

Figure 2.4. The main picture represents PLD-5000system from PVD products a multi-

functional PLD. It can perform small area to large area deposition including combinatorial 

deposition. The optical train setup is used for directing and focusing the excimer laser beam into 

the PLD chamber.  

 

The place of application of LAPLD deposition mode in this thesis is given in the 

following section. 

2.2.3 Combinatorial Pulsed laser deposition (CPLD) 

CPLD is a recent advancement in PLD technology facilitated for fabricating a novel 

continuous compositional-spread (CCS) [15, 16] thin film systems on a large area 

through multilayer deposition. The CCS based combinatorial sample can be achieved 

in different ways of depositions depending on the equipment adapted in the CPLD 

system. In most cases, CCS based combinatorial samples are prepared by simultaneous 

ablation from multiple targets or sequential deposition technique where a single 

material is ablated at one time forming multilayers [15, 16].  

The CCS based combinatorial thin film system can be fabricated in a special PLD 

utilizing combinatorial layer growing package with computer controlled automated 

program. With this package it is possible to fabricate binary, ternary, and quaternary 
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continuous compositional spreads by indexing both the target and substrate in 

appropriate fashion as well as programming the important deposition conditions such 

as temperature T, pressure P, laser fluence F, laser frequency f and number of cycles n 

to repeat the sequential deposition etc. Further, the possibility of fabricating a multi-

component combinatorial system depends on the number of target holders available in 

PLD.  

In this thesis PLD-5000 system from PVD products (Figure 2.4) has been used for 

small area, large area and combinatorial depositions. It has Lambda Physik COMPex 

PRO 205 KrF excimer Laser (wavelength λ = 248nm, pulse duration 20ns, max Power P = 

30W, max repetition rate f = 50Hz). Further, it has four target holders in the target 

carousel which facilitates to perform binary to ternary depositions (Figure 2.5). 

 

 

Figure 2.5. Graphical representation of multi-target carousel in PLD-5000system to perform 

multilayer and combinatorial depositions.  

 

PLD-5000 system is used for typical chip level depositions (1x1cm2) in the chapter 3 

and 4 to grow LSM, LSC and LSF thin films. LAPLD mode is applied in chapter 5 to 

deposit 8YSZ layer on a 4-inch silicon wafer by using mirror rastering facility in PLD-

5000 system. CPLD is applied in chapter 5 to fabricate a CCS combinatorial LSMC thin 

film system.  

Commercial targets with nominal compositions La0.8Sr0.2MnO3 (LSM), La0.8Sr0.2CoO3 

(LSC), La0.8Sr0.2FeO3 (LSF) (≈99.95% purity, 99.99% density, 2-inch diameter, 4mm 

thickness) from SurfaceNet, and home-made target 8 mol-% Y2O3 (8YSZ) (99.99% 

density, 4-inch diameter, 5mm thickness) are used as targets in PLD. It was found that the 
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LSM and LSC targets are under-stoichiometry in the B-site and the average value of 

A/B ratio is ≈1.2, estimated by EDS measurement (section 2.3.3) due to the frequent 

laser ablation of PLD targets. The same targets are used throughout the whole thesis 

for PLD depositions. 

2.3 Microstructural characterization techniques  

After thin film fabrication, preliminary studies such as phase, microstructure and 

composition analysis are performed by various measurement techniques such as XRD, 

SEM, TEM, AFM, Raman spectrometry, EDS and WDS. A short introduction to each 

technique is given in the upcoming sections. (section 2.3.1. to 2.3.7).  

2.3.1 X-Ray diffraction (XRD) 

X-ray diffraction is a non-destructive structural characterization technique in which 

the diffraction pattern of a material is obtained by exposition of that material to X-rays. 

When a beam of X-rays interact with the target material, the X-rays are scattered by the 

atoms present in the target material. The scattered X-ray beam will undergo 

constructive and destructive interference produce diffraction [18, 19].  

The generated diffraction pattern acquire various information about the crystallinity 

of the material under study. A qualitative and quantitative analysis of the pattern 

allows to identify the crystalline phase and determining the lattice parameter. The 

diffraction of X-rays can be described by Bragg’s law (Figure 2.6) which is, 

 𝟐𝒅𝒔𝒊𝒏𝜽 = 𝒏𝝀 (2.1) 

Where 𝒅 is inter-planar distance, 𝜽 is angle of incidence, 𝒏 is integer, 𝝀 is wavelength of 

incident X-rays.  

 

 

Figure 2.6. Illustration of Bragg’s law of diffraction.  
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The XRD measurements in thin films are mainly performed at low incident angles 

to maximize the signal from the thin layers as well as to avoid signal from the 

substrate.  

XRD technique is frequently used in this thesis to check the phase and purity of 

LSM, LSC, LSF thin films and LSMC combinatorial thin film system in chapters 3, 4 

and 5 including Appendix B. Most of the XRD patterns are acquired using Bruker D8 

diffractometer (Figure 2.7) equipped with CuKα radiation (λ = 1.54184Å) in the offset 

scanning mode. It has a nickel filter and Lynx Eye detector. FullProf software was 

employed to perform the Le Bail fitting on XRD spectra to determine the lattice 

parameters. 

 

 

Figure 2.7. Bruker D8 diffractometer.  

 

2.3.2 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) utilizes a focused beam of electrons to generate 

image by scanning the sample surface. The interaction of electron beam with the 

sample surface generates various signals that contain information about the sample 

topography and composition.  

When the electron beam knocks out an inner-shell electron of an atom, the electrons 

from higher orbital (outer-shell) will jump to the empty lower orbital (inner-shell) by 

emitting an electromagnetic radiation in the energy range of X-rays. These 

characteristic X-rays are used to identify the composition and abundance of the 

elements of the sample [20, 21]. 

The beam of accelerated electrons which typically have energy in the range ~ eV to 

keV is focused by a series of electromagnetic lenses on the sample surface with a spot 

size up to 1 nm. The interaction of accelerated electrons with the specimen makes the 
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electron to be scattered in different directions by elastic and inelastic scattering. It has 

secondary, back-scattered, Auger electrons and X-rays that can be collected by various 

detectors for different applications [20, 21]. The following different modes are 

commonly used to study the microstructure of solid materials. 

The electrons resulting from inelastic scattering possess low energy electrons called 

secondary electrons which is the most common imaging mode. Due to their low 

energy (< 50 eV) these electrons are generated few nanometers from the surface. It 

contains information about the sample topography and morphology.  

Backscattered electrons (BSE) are higher energy electrons produced by elastic 

scattering. Since the elements with different atomic number backscatter different, BSE 

provide compositional information of the sample.  

The electrons emitted from the atomic layers very close to the sample surface are 

called Auger electrons containing valuable information about the sample surface 

chemistry.  

In this thesis SEM is often used in chapter 3, 4 and 5 to perform topography, 

morphology, thickness, grain size studies in LSM, LSC, LSF thin films and LSMC 

combinatorial thin film system. SEM images are obtained using ZEISS AURIGA SEM. 

2.3.3  Energy dispersive X-ray analysis (EDS) 

Energy dispersive X-ray spectroscopy (EDS) is an electron probe X-ray 

microanalysis technique (EPMA). It is also a non-destructive qualitative and 

quantitative analytical technique to study the chemical composition of a sample for 

elements with atomic number, Z >3 [20, 21].  

X-rays emitted from the sample are characteristic in energy. Each element has its 

own characteristic X-ray lines that allow a sample's elemental composition to be 

identified [20, 21]. 

The Zeiss Auriga SEM is also equipped with EDS which is often used in chapter 3, 4 

and 5 to estimate the atomic percentage of constituent elements in LSM, LSC, LSF thin 

films and LSMC combinatorial sample. 

2.3.4 Wavelength-dispersive X-ray analysis (WDS) 

Wavelength dispersive X-ray spectroscopy (WDS) is also an electron probe X-ray 

microanalysis technique.  It is also similar to EDS but more powerful than EDS in terms 

of peak resolution.  
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This technique is also based on the measurement of characteristic X-ray intensities 

emitted by the constituent elements in the sample when it is bombarded by a focused 

electron beam. The ratio of the characteristic X-ray intensities emitted from the sample 

to that emitted from a standard of known composition called as k-ratio. Then the 

composition is obtained by fitting the predictions of a thin film software program in 

order to the measured k-ratio [28, 29].  

In EDS, X-rays are distinguished based on energy whereas in WDS it is 

distinguished by wavelength. In ED spectrometer the overlapping between adjacent X-

ray lines makes it difficult to find accurate X-ray intensities. But in WD spectrometer 

the peaks are well resolved between each other so that the detection limit of WD 

spectrometer is 10 times higher than ED spectrometer. In WDS detection limit for most 

elements is down to 100ppm or even less [30]. 

 WDS is suitable for the analysis of thickness of bulk layers in micrometer scale. It 

can also be used for the analysis of thin films and multilayers with thicknesses in the 

sub-micron range.  

Both EDS and WDS can be coupled with Scanning Electron Microscopy (SEM) or 

Transmission Electron Microscopy (TEM) for several applications.  

In this thesis WDS facility (model- Jeol JXA-8230) in university of Barcelona has 

been used to check the composition of LSM thin film (chapter 4) and LSMC 

combinatorial system (chapter 5). The data obtained from WDS analysis is processed 

using Stratagem Surface Layers Analysis software (SAMx).  

2.3.5 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is a powerful technique for 

microstructural and crystallographic characterization in material science. When a high 

energy focused electron beam from electron gun is illuminated through an ultra-thin 

specimen, the interaction between electrons and atoms creates the image of the sample.  

The transmission of electron beam through the sample depends upon the thickness 

and electron transparency of the specimen. The transmitted electrons can suffer 

diffraction, due to the interaction of electrons with the crystalline material being 

observed. The diffracted beam can be used to study the crystal structure of atoms [26, 

27]. Once the transmitted electrons are collected by an objective lens and the image will 

be projected onto a phosphor screen or CCD camera where the image can be observed.  
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High-resolution TEM (HRTEM) can capture image in atomic scale resolution which 

is used to study the sample crystal structure, lattice imperfections, point defects, 

stacking fault, dislocations, defects in grain bulk and grain boundary etc [26, 27]. 

There are two types of imaging in TEM, depending on the type of electrons used 

which can be scattered (diffracted) or unscattered (direct) electrons. The scattered 

electrons can be blocked by deflecting them away from the optical axis of the 

microscope, in order to obtain high contrast images. An aperture is used to perform the 

type of electron selection and inserted into the back focal plane of the objective lens. 

Normally, an aperture allows the direct beam by blocking the diffracted beam except 

that which is visible to the aperture.  

The apertures can be moved using external drives to make either direct or scattered 

electrons go through it. If the direct beam is selected the resultant image is called as 

bright-field image. If we select scattered electrons of any form, we call it a dark-field 

image [26, 27].  

In this thesis Jeol JEM-2100 Transmission electron microscope at the University of 

Castilla La Mancha (UCL) operated at 200kV was used to study the defects in 

LSM/YSZ heterostructures in chapter 4.  

2.3.6 Atomic force microscopy (AFM) 

Atomic force microscopy is a non-destructive technique used to study the sample 

surface. It works by scanning a probe over the sample surface mapping the height or 

topography of the sample surface. 

The instrumentation of an AFM consist of piezoelectric transducers (or piezoelectric 

scanners), force transducers (force sensors), and feedback control. Generally, the 

piezoelectric transducer moves the tip over the sample surface, the force transducer 

measures the force between the tip and the surface, and the feedback control feeds the 

signal from the force transducer back in to the piezoelectric, to maintain a fixed force 

between the tip and the sample. AFM stage is the heart of the instrument. The major 

components of AFM stage are Z motor, which can move the AFM scanner towards the 

sample. There is an X-Y stage useful for positioning the feature for imaging under the 

probe. There is an optical microscope for viewing the probe and surface.    

Maintaining the tip–sample force at a set value effectively maintains the tip–sample 

distance fixed. To scan the probe across the surface in a raster-like pattern, the X-Y 
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piezoelectric elements are used. In this way, by monitoring the voltage applied to the 

Z-piezo, a map of the surface shape (a height image) is measured.  

In this thesis the surface morphology and roughness of samples such as LSM thin 

film in chapter 4 and LSMC combinatorial system in chapter 5 are studied by AFM. 

XE15-AFM from Park systems was used in contact and non-contact modes [24, 25]. 

2.3.7 Raman spectroscopy 

Raman spectroscopy is a spectroscopic technique that provides information about 

molecular vibration that can be used for sample identification. It is based on the 

inelastic scattering of a monochromatic radiation.  

During the sample-photon interaction the energy is exchanged such that the energy 

of scattered photon can be higher or lower than the incident photon. If the energy of 

scattered photon is less than the incident radiation form strokes line.  If the energy is 

greater than the incident radiation form anti-stokes lines. The shift in the wavelength of 

inelastically scattered photon provides the vibrational modes of the sample which is 

useful to study the sample structural information [22, 23]. Raman spectroscopy is also 

used for the sample quantification where scattered intensity is proportional to the 

quantity or thickness (concentration in liquid) of the material [22, 23]. 

The Raman measurements were carried out using micro-Raman facility in 

University of Barcelona. It has T-64000 Jobin Yvon/Atago Bussan triple spectrometer 

equipped with liquid nitrogen cooled CCD detector. Green laser light of wavelength λ 

= 514.5nm, spot size 0.5 µm was used to excite the samples.   

In this thesis micro-Raman spectroscopy is mainly applied in chapter 5 to study the 

spatial thickness distribution of LSM and LSC parent depositions. It is also used in the 

same chapter to study the local structure of LSMC combinatorial thin film system. 

2.4 Functional characterization techniques 

2.4.1 Electrical measurements 

The electrochemical properties of thin film cathodes are studied by impedance 

spectroscopy in symmetrical cell configuration in order to understand the ORR 

mechanism over thickness and microstructure. The symmetrical cell measurement 

setup is detailed in section 2.4.1.1. The basic principle of impedance spectroscopy is 

explained in section 2.4.1.2.  
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The experimental setup to electrochemically characterize a symmetrical cell is 

composed of the following elements such as a) Cell sample holder b) Furnace and 

temperature control system c) Gas flow and humidifier d) Impedance analyzer e) 

Potentiostat/galvanostat. Different programs developed in Matlab at IREC are used to 

fully automate and control the measurements of the cells (Figure 2.8).  

 

 

Figure 2.8. Image of one experimental setup used in this work to electrochemical characterize the 

Solid Oxide Fuel Cells (located in IREC). 

 

2.4.1.1 Cell measurement setup 

The graphical representation of LSM/YSZ/LSM symmetrical cell arrangement setup 

is given in Figure 2.9. The Au (gold) painted symmetrical cell is sandwiched between 

Pt meshes. Both Au layer and Pt mesh acts as current collectors. 

 

 

Figure 2.9. Schematic diagram of LSM/YSZ/LSM symmetrical measurement configuration.  

 

This setup is placed in between alumina supports. The alumina support holding the 

symmetrical cell (facing downward) is a long tube around 1 meter length that acts as a 
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support. The other side of the cell (facing upward) is pressed by another small alumina 

support which is connected to a metal hook through a thin-long alumina rod. The 

metal hook is connected back to the bottom part of one meter alumina tube that makes 

a good contact between current collector and LSC electrode by pulling them tightly. 

Both alumina supports has a hole in the middle through which air reaches the active 

part of the cathode.  

In this thesis LSM/YSZ/LSM symmetrical cells are measured based on the depicted 

configuration in Figure 2.9 and the results are discussed in chapter 4. 

2.4.1.2 Electrochemical impedance spectroscopy (EIS) 

The electrochemical impedance spectroscopy (EIS) is a powerful tool to study the 

electrochemical properties of solid state ionic devices such as solid oxide cells (SOC), 

batteries and gas sensors. EIS has the capability to separate the different impedance 

contributions ranging a frequency domain [31].  

In impedance spectroscopy a small, alternating perturbation voltage (signal) is 

applied to the sample and the resulting voltage/ current response is measured. The 

measurement is performed in a frequency range from several orders of magnitude to 

few Hz in a way that, one can distinguish the impedance contribution from different 

electrochemical processes according to their relaxation times. The time required for a 

polarized region to come to equilibrium after a perturbation signal is the relaxation 

time (𝜏) which is the characteristic time of the each electrochemical process involved in 

the electrochemical system. Therefore, the relaxation time of two different processes 

(e.g. relaxation time of ionic transport in the electrolyte faster than electrode) should be 

different that can be distinguished from impedance spectroscopy [31]. 

The impedance data are commonly represented as Nyquist plot (Figure 2.10) a polar 

plot where impedance response is plotted in a complex plane (𝒁′(𝝎)𝑽𝒔𝒁′′(𝝎)). Where 

Z’, Z”represents the real and imaginary values of impedance as a function of angular 

frequency ω. 
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Figure 2.10. a) Impedance Z is plotted in a complex plane with polar coordinate 𝑍(𝜔) = 𝑍′ +

𝑗𝑍′′. b) Appropriate RC equivalent circuit to fit the impedance spectra with two semicircles 

associated with two electrochemical processes with different time constants. 

 

The interpretation of impedance data is sometimes simple or difficult which 

depends on the complexity of the electrochemical system under investigation. The 

most common approach is constructing an equivalent circuit with resistance (R) and 

capacitive (C) elements [32]. The simplest equivalent circuit is a single RC-element with 

R and C connected parallel to each other. The resultant impedance is,  

 

 
𝒁(𝝎) =

𝑹

𝟏 + 𝒊𝝎𝑹𝑪
 

         

 (2.2) 

where 

 
𝝎 =

𝟏

𝑹𝑪
=
𝟏

𝝉
 

         

 (2.3) 

 

Where 𝝎 relaxation frequency equivalent to time constant 𝝉 = 𝑹𝑪.  

 

Bauerle [33] proposed a model based on the linear combination of RC circuits to fit a 

more complex system (i.e. electrode/electrolyte/electrode) in order to extract the 

separate values of R, C and the time constant (τ) characteristic of each individual 

process. For example a circuit with two RC elements is suitable to apply in an 

impedance data with two well-separated semicircles with different time constants 

(Figure 2.10b).  

However, this kind of circuits do not fit well the impedance spectra due to the 

appearance of a depressed (imperfect) semicircle in the complex plane which is related 

to non-ideal capacitance, therefore, the use of constant-phase elements (CPEs (Q,n)) is 
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often required. A number of equivalent circuits based on different models can be used 

to fit the same impedance spectra apart from a conventional RC equivalent circuits 

offer less-accurate fitting and fitting parameters. Moreover, all the elements chosen in 

the fitting must have a physical meaning in terms of resistive processes in the material, 

charge transfer or mass transfer processes.  

In this thesis impedance spectroscopy is applied to study the electrochemical 

properties of LSM/YSZ/LSM symmetrical cells in chapter 4. All the generated 

impedance spectra were analyzed by ZView software. 

2.4.2 IEDP-SIMS measurement 

2.4.2.1 Oxygen isotope exchange  

Isotope Exchange Depth Profiling using Secondary Ion Mass Spectrometry (IEDP-

SIMS) is a powerful technique to determine oxygen diffusion coefficient 𝑫∗ and oxygen 

exchange coefficient 𝒌∗ in oxides in thin film or bulk form [35]. Before doing SIMS, 

oxygen isotope exchange annealing process has to be performed to allow the diffusion 

of 18O isotope inside the sample. There are some important steps that have to be 

followed during 18O isotope exchange process which is explained below in detail. The 

experimental setup used for the isotope exchange annealing process is given in the 

following figure (Figure 2.11). 

 

Figure 2.11. isotope exchange experimental setup. The diagram is taken from the reference [36]. 
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The first step in the isotope exchange process consists of a proper sample selection 

with suitable geometry and long-time annealing for time t, temperature T and oxygen 

pressure P in pure oxygen. For that, the sample is mounted on a silica crucible placed 

inside a silica tube. Initially, the chamber is evacuated to the base pressure < 5x10-7mbar 

using a pumping system consisting of a rotary and a turbo molecular pump. Then the 

chamber is filled with pure dry oxygen (research grade oxygen≈ 99.9996% purity) with 

natural 18O isotopic abundance (18O molar fraction 0.002). The sample is heated in a 

furnace which can functions as roll-on, roll-off type where the temperature, ramping 

and dwelling can be controlled. The sample is annealed for a period of time 10 to 30 

times higher than the isotope exchange annealing time, in order to equilibrate the 

sample with oxygen.  

After the first step, the sample is cooled down and the pure oxygen is replaced by 

18O enriched atmosphere (55.3% to 93.9%) and then heated to a temperature at which 

the annealing under pure oxygen is performed as a first step. The sample is annealed 

under 18O enriched atmosphere for a time 𝒕 (≈ 20min to 3 hours). During this annealing 

18O will be introduced into the sample to create oxygen diffusion profile over sample 

depth which is called diffusion-annealing step. Once the diffusion-annealing is 

finished, the sample is quenched down by rolling the furnace off in order to quench the 

oxygen diffusion profile.  

The annealing temperature is the temperature of interest where 18O diffusion 

wanted to be studied. The sample temperature and ambient pressure is being 

continuously monitored during different annealing steps. Oxygen composition in the 

sample ambient is continuously monitored by residual gas analyzer (RGA) gating 

through a leak valve which confirms that the applied oxygen concentration is constant 

throughout the exchange. A correction is made for the heating and quenching time 

period, temperature using Killoran method [36, 38]. 

2.4.2.2 Time of flight - Secondary ion mass spectrometry (ToF-SIMS) 

 

ToF-SIMS (Figure 2.12) is a very sensitive surface analytical technique to study the 

chemical composition on the surface and near-surface region of a solid sample. ToF-

SIMS combined with IEDP is used to acquire the oxygen isotope concentration profile 

over sample depth [38-40].  
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Figure 2.12. Schematic diagram of TOF-SIMS5 system from ION TOF website [41] sputters the 

sample surface with primary ions ejecting secondary ions.  

 

The principle of ToF-SIMS is when the sample surface is bombarded by pulsed 

energetic primary ion beam in keV, the primary ions transfer their energy to target 

atoms by cascade collisions of atoms. The interaction of primary ions with the target 

surface led to the ejection of secondary ions. The ejected species may include atoms, 

clusters of atoms, and molecular fragments. After sputtering process the secondary 

ions are accelerated towards the detector where the ions are collected based on the time 

of arrival of ions to the detector.  

The main role of the detector is to count the secondary ions with positive or 

negative polarity and recording the arrival time of various ions in order to perform 

quantitative analysis such as composition study on the surface or isotopic 

concentration in the sample. To fulfil them, the SIMS detector is equipped with 

microchannel plate, scintillator, and photomultiplier [39].  

The type of analysis depends on the geometry of the sample. The sample with short 

diffusion profile <10µm can be analyzed by conventional depth-profiling method [35]. 

It involves the sputtering of sample over depth with simultaneous collection of 

secondary ion oxygen isotopes (Figure 2.13).  
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The line-scan analysis is used when the profiles extend to hundreds of micron [35]. 

In line-scan analysis a portion perpendicular to sample surface is sliced out from the 

whole sample and analyzed over depth with a very fine primary ion beam. 

 

 

Figure 2.13. Depth profiling by dual beam mode. First beam is sputtering crater. The second 

beam analyzing the crater bottom. 

 

The main challenge in SIMS measurement is achieving sufficient intensity for minor 

isotopes and the signal saturation of major isotope. Consequently, the secondary ions 

with enhanced intensity can cause collision-induced ion interactions and the detector 

dead time effects. Both effects lead to an underestimation of major isotope intensities 

which in turn create systematic errors in the concentration of secondary ion intensities.  

In order to avoid such error, ToF-SIMS was operated in burst mode [39, 40] in which 

the primary ions with long pulse 100ns is chopped into short pulses (bursts) with 1ns 

out of a larger pulse (Figure 2.14). 

 

 

 

 

Figure 2.14. illustration of burst-mode operation. 

 

In this thesis TOF.SIMS5 machine from ION-TOF (GmbH, Munster, Germany) is 

used to determine the oxygen diffusion coefficient 𝑫∗ and oxygen exchange coefficient  

𝒌∗ in LSM thin film (chapter 4) and LSMC combinatorial system (chapter 6). The 

detection limit of TOF.SIMS5 is 1015 atoms/cm3 and the sensitivity to secondary ions is 
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in ppm/ppb range. The depth resolution is ≈1nm and the lateral resolution is <60nm 

[41]. 

Some common experimental conditions used in the IEDP-SIMS measurements on 

LSMC combinatorial system and LSM thin films are:  in both studies a 25kV Bi+ ion 

beam that was used as primary ions and the primary beam was alternated with 2kV 

Cs+ ion beam for sputtering based on dual-beam mode. The charge compensation 

during the analysis was solved by flooding 21eV low energy electrons from the 

electron gun.  

2.5 Conclusion 

The principle of various experimental techniques employed in this thesis for 

performing sample fabrication and characterization studies has been described in this 

chapter. In addition the specification and the place of application of each measurement 

in this thesis have been given. The experimental conditions and the results produced 

from those experimental techniques are given in the following chapters. 
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Chapter III 

3.1 Chapter outline 

Advances in thin film processing methods have provided the ability to grow thin 

film heterostructures, which were previously inaccessible by traditional material 

processing means. Heterostructures are artificially processed materials which are 

composed of multiple layers of different phases, and these are stacked in periodic 

manner.   

These multilayers (multiple layers) have sharp boundary in the interface of 

successive layers and stacked with a highly ordered average spacing between each 

layers. However, the individual layer may be amorphous or polycrystalline with low 

degree of structural coherence in the interface (Figure 3.1). Multilayers composed of 

single-crystal layers that possess same crystal structures, in which the interfaces are in 

perfect atomic registry, are called super lattice structures [1, 2].  

 

Figure 3.1. illustration of structural coherence in different multilayer systems taken from 

reference [1]. 

 

Although several multilayer deposition trials ended up in failure in early 1940’s, the 

first stable thin film metallic multilayer system Ag-Au, Cu-Pd was successfully grown 

by Hillard et al. in 1969 [3].  Later, investigations on multilayered structure attained 

tremendous growth after observing the possibility of tuning a multilayer system 

properties by reducing the successive layer thickness below electron mean free path in 

the year 1968 [4]. 
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With the latest thin-film processing techniques, it is possible to fabricate high 

quality heterostructural oxide thin films with multi-functional properties by precisely 

controlling the thickness and composition of each layer.  Functional properties can be 

tuned by engineering lattice, strain, and interfaces [5] in these nanostructures under 

nanometer to atomic length scale, for a wide range of applications in different fields. 

Some exciting technological development has been obtained from high quality thin 

film heterostructures with well-defined composition, nanoscale in dimension. 

Applications include: band gap engineering of materials for optoelectronic devices [6], 

high speed computer processor and memories [7, 8], thin-film micro batteries, electro 

chemical capacitors [9] for portable electronic device applications, etc. 

Artificially tailored, a thin film multilayer system can be fabricated by using various 

thin film processing techniques which are typically based upon layer by layer epitaxial 

or poly crystalline growth [1, 2]. Apart from fabricating heterostructural thin film with 

different crystal structures, a new composition with single phase is possible to be 

achieved from such multilayer system by taking advantageous of short diffusion 

length existing in the successive thin layers. This can be done by precisely controlling 

the thickness of every adjacent layer. The current chapter is about the possibility of 

achieving a homogeneous layer composition by means of subsequent depositions of 

ultra-thin films. The current chapter is organized in following way. 

Section 3.2 is devoted to optimize the deposition conditions of LSM, LSC and LSF 

layers in PLD. The influence of deposition condition on the thin film microstructure is 

discussed in section 3.2.1 and 3.2.2.  

A general outline about interdiffusion mechanism in thin films and the rate-limiting 

factors of diffusion processes is given in section 3.3.1 and 3.3.2. There are two 

methodologies introduced in section 3.3.3 to fabricate a new composition from ultra-

thin film multilayer deposition technique.  

Fabricating La0.8Sr0.2Mn1-xCoxO3±δ (x ≈ 0 to 1) a pseudo-binary system from 

La0.8Sr0.2MnO3+δ (LSM), La0.8Sr0.2CoO3-δ (LSC) multilayers is the objective of chapter-5. 

The multiple layers involved in the new product formation are called “precursor or 

parent layers“ [10, 11]. LSM and LSC are parent layers here, in which B-site atomic 

diffusion (B = Mn, Co) play a significant role during interdiffusion between parent 

layers. It is necessary to acquire primary knowledge in the diffusion of atomic species 

involved in interdiffusion mechanism in order to achieve the desired composition. 
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Therefore, Mn, Co and Fe atomic diffusion in perovskite-related structure and its 

effective diffusion time are studied in section 3.3.4 and 3.3.5.   

After optimizing the deposition conditions in PLD, a few number of LSC/LSF, 

LSM/LSC thin film multilayer depositions are performed by using the optimum parent 

layer thickness estimated from Co and Fe atomic diffusion coefficients. The Influence 

of parent layer thickness on the quality of desired new composition is discussed in 

section 3.4.1 and 3.4.2.  

3.2  LSM, LSC and LSF parent layer PLD deposition optimization  

An important advantage of PLD technique is the stoichiometric material transfer in 

thin film. In PLD chamber, only the target material is ablated which avoids 

contamination issues. Congruent evaporation with excellent stoichiometry control, 

microstructure control, low thin film processing temperature, possibility of attaining 

high quality films with highly dense layers [10, 12, 13] are the most attractive and 

required features underneath the employment of this technique in this thesis for thin 

film fabrication. Readers are asked to refer section 2.2 in chapter 2 for the detailed 

description about principle and function of PLD. 

The deposition conditions such as Temperature (T), pressure (P), laser fluency (F), 

frequency (f), target-substrate distance (d) have to be optimized in PLD to fabricate a 

dense LSM, LSC and LSF thin films. Apart from dense layers, deposition conditions 

have to be also optimized to obtain porous layers for performing electrochemical 

measurements on thin film with dense and porous microstructures. These 

optimizations can also be considered as preliminary step for performing LSM/LSC, 

LSC/LSF multilayer depositions. All preliminary optimization depositions are 

performed in Si substrate with 8 mol-% Y2O3 (8YSZ) layer on top of it. The depositions 

are performed in the temperature range from 500°C to 800°C and different pressure of 

oxygen of 20mT, 70mT and 200mT to optimize the dense and porous microstructures. 

3.2.1 Effect of substrate temperature on phase formation 

Initially, LSM, LSC and LSF films are grown at different temperatures such as 

500°C, 600°C, 700°C and 800°C under 70mT of oxygen pressure to optimize the LSM, 

LSC and LSF phases in PLD. 

In Figure 3.2 a) b) c) XRD pattern represents the phase evolution of LSM, LSC and 

LSF thin films over different substrate temperatures such as 500°C, 600°C, 700°C and 
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800°C.  In that, LSM layer attained crystallinity at low temperature 500°C itself, 

however LSC and LSF peaks do not appear at that temperature, indicating the 

generation of amorphous layers. Hence deposition temperature is increased to achieve 

the polycrystalline LSC and LSF layers.  
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Figure 3.2. XRD pattern of a) LSM b) LSC c) LSF thin film phase evolution over substrate 

temperature is compared with its powder pattern. 

 

At 600°C, 700°C and 800°C all these three layers look polycrystalline with different 

levels of preferential orientation. Although LSC is polycrystalline at 800°C, a parasitic 

phase is observed at 31.6° which is indexed as SrCoLaO4 (indicated by star). There are 

other parasitic phases such as Co3O4, SrZrO3, La2Zr2O7 reported in the literature at high 

temperature 900°C when LSC reacts with YSZ [14, 15]. Here SrCoLaO4 might be formed 

due to instability of LSC at 800°C. 

Regarding crystal structure, LSM and LSC thin films are crystallized in 

Rhombohedral symmetry with 𝑅3̅𝑐 space group. LSF is crystallized in orthorhombic 

symmetry with 𝑃𝑏𝑛𝑚 space group. Generally LSF is crystallized in rhombohedral 

structure when Sr is ≤ 0.2 [16, 17]. 

Thin film phase evolution over substrate temperature confirms the influence of 

deposition temperature on the film crystallinity and preferential orientation (for a fixed 

thickness of ≈150nm) which can be seen in XRD pattern. The morphology of LSM, LSC 

and LSF layers are observed by SEM. Figure 3.3, 3.4 and 3.5 shows the microstructural 

evolution of LSM, LSC and LSF layers at different substrate temperatures such as 

500°C, 600°C, 700°C, 800°C. 
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Figure 3.3. Evolution of LSM microstructure deposited at P=70mT with respect to substrate 

temperature a) 500°C b) 600°C c) 700°C d) 800°C. 

 

 

 

Figure 3.4. Evolution of LSC microstructure deposited at P=70mT with respect to substrate 

temperature a) 500°C b) 600°C c) 700°C d) 800°C. 

 



III - Interdiffusion mechanism and optimization of LSM, 

LSC and LSF deposition by PLD  

 

 

51 

 

 

Figure 3.5. Evolution of LSF microstructure deposited at P=70mT with respect to substrate 

temperature a) 500°C b) 600°C c) 700°C d) 800°C. 

 

SEM image confirms the morphological changes in LSM, LSC, LSF layers deposited 

at different substrate temperature. Especially two parameters such as film porosity and 

grain size are affected by the substrate temperature.  

The microstructure of LSM, LSC and LSF thin film consists of nanoparticles forming 

a dense layer at high temperature (800°C). The grain size of LSM, LSC and LSF at 

700°C and 800°C are higher than the one observed at 500°C and 600°C. Generally in the 

thin film microstructural evolution mechanism, a fast grain growth occurs at high 

temperature through impingement and coalescence of islands [18]. Therefore, dense 

and improved grain size observed at 700°C and 800°C can be related to high 

temperature grain growth mechanism.  

LSM layer is porous at 500°C, 600°C, 700°C, while both LSC and LSF layer show 

porosity at 500°C, 600°C as a result of low energetic surface adatoms involved in the 

crystallization and grain growth process.   

Regarding crack formation, in LSM and LSF layers cracks are observed only in the 

samples deposited at 800°C with dense microstructure where as in LSC layers, cracks 

can be observed in all sets of temperature irrespective of dense and porous 

microstructures (Figure 3.4a to 3.4d).  

Generally, cracks arise in thin film due to two factors which are thermal expansion 

mismatch with underneath substrate [19] and thin film thickness [20]. Thin films with 
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dense microstructure release its stress in the form of cracks after certain thickness. This 

thickness is called as critical thickness [20] that does not have to be confused with the 

critical length (Lc) used in interdiffusion process explained in section 3.3.2. Therefore, 

cracks observed in LSM (TECLSM ≈ 10.08 X 10-6 K-1) [21], LSC (TECLSC ≈ 21.54 X 10-6 K-1) 

[21] and LSF (TECLSF ≈ 13 X 10-6 K-1) [17] layers may be due to the thermal mismatch 

with Si (TECSi ≈ 4 X 10-6 K-1) substrate [22, 23, 24].  

It is found that 40nm is the critical thickness to grow crack-free dense LSC layers in 

this deposition conditions (Fig 3.6). In opposite, critical thickness to grow crack-free 

dense LSM layer is ≈ 250nm (Fig 3.6). 

 

 

Figure 3.6. Crack-evolution1 in LSM thin films a) 100nm b) 200 c) 250nm. LSC thin films a) 

and b) are <40nm c) 40nm. 

 

XRD investigation revealed that 700°C is the best temperature to process LSM, LSC 

and LSF layers.  It is important to remark that using the same deposition temperature 

is highly recommended for the parent materials (LSM and LSC) which are involved in 

the combinatorial deposition for technical reasons (see chapter 5 section 5.4 for the 

detailed description of combinatorial deposition).  

Although the deposition temperature is optimized at 700°C to grow LSM, LSC and 

LSF polycrystalline layers based on XRD results, the layers are not dense enough for 

performing functional studies on these layers. In the following section, microstructural 

                                                 
1 Crack-evolution study was performed in LSM and LSC layers as preliminary analysis for 

LSMC pseudo-binary thin film system fabrication.  
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evolution of LSM, LSC and LSF layers are studied over different oxygen pressure in 

order to optimize the dense microstructure. 

3.2.2 Effect of pressure on thin film microstructure 

Depositions are performed at three different pressures such as 20mT, 70mT, 200mT, 

in order to achieve dense and porous LSM, LSC and LSF layers. Figure 3.7 shows the 

microstructural evolution of LSM, LSC, LSF layers upon different oxygen pressure 

which confirms the morphological changes taking place over oxygen pressure.  

 

Figure  3.7. Microstructural evolution of LSM thin films with respect to different oxygen 

Pressure a) 20mT b) 70mT c) 200mT. LSC microstructure evolution under d) 20mT e) 70mT f) 

200mT. LSF microstructure evolution under g) 20mT h) 70mT i) 200mT.   

 

At high oxygen pressure (P = 200mT), LSM, LSC and LSF layers are porous whereas 

at low pressure (P = 20mT) they are (or seem to be) dense. In particular, changes in the 

porosity and grain size can be observed over oxygen pressure.  

Increasing oxygen pressure confines the plasma expansion that will reduce the 

mean free path of the particle collisions happen inside the plasma. As a consequence, 

particles arrive at the substrate surface are low energetic. Then, energy is not sufficient 
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to involve in the surface diffusion.  It will make the particle to stick on the substrate 

surface where it lands. Hence, porosity and cluster size increases upon pressure [25].  

At high pressure, high energetic adatoms involve in surface diffusion, nucleation, 

crystallization, grain growth process which lead to dense microstructure [26, 27]. Also, 

this low and high energetic plasma can affect the growth rate of thin films. Figure 3.8 

shows the influence of the oxygen pressure on the growth rate of LSM, LSC and LSF 

layers. 

 

Figure 3.8. Growth rate of LSM, LSC, LSF layers upon pressure. Growth rate is calculated in 

terms of nm/1000pulses for a fixed laser frequency. 

 

It clearly indicates that the film grows faster at lower pressure than at higher 

pressure [26, 27, 28]. When the pressure is increased to 10 times from 20mT to 200mT, 

growth rate increases from 3 to 4 times, which clearly depicts the kinetic energy of 

plasma play a significant role in determining the growth rate.  

3.3  Interdiffusion mechanism 

3.3.1 What is interdiffusion/intermixing process? 

The general driving force of diffusion is chemical potential gradient. Gradient in 

temperature, pressure, voltage, stress etc [29, 30] can also setup atomic diffusion in a 

system from bulk to thin film form.  

When two different materials with non-zero atomic diffusion coefficient are kept in 

contact with each other, ions will start to diffuse at different rates. This diffusion will 
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induce a local change in chemical composition. This process is called “intermixing or 

interdiffusion” process Figure 3.9.  

 

 

 

Figure 3.9. illustration of interdiffusion process a) A and B are two solid materials kept in 

contact b) interdiffsuion of A atoms in B medium and B atoms in A medium c) Concentration 

gradient after interdiffusion at A-B interface. 

 

The resultant product obtained from interdiffusion process might be mixed either in 

homogeneous or heterogeneous way, which depends upon the diffusion length 

(thickness) of the interdiffusing media. This thickness is called “critical length (Lc)”. 

Moreover, the diffusion length (thickness) can also alter the time and temperature of 

intermixing process [31].  

3.3.2 Rate-limiting factors of intermixing mechanism 

Diffusion and nucleation are the two rate-limiting steps which controls the 

interdiffusion mechanism across thin films. These rate-limiting step compete each 

other when the interdiffusion process is taken place between two different solid layers.  

Case (i) Diffusion is rate-limiting: For a multilayer system composed of ultra-thin 

films, the thickness of parent layers below critical length (l < Lc) allow the completion 

of intermixing process between these multilayers before the nucleation step begins to 
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dominate at the interface. In this case, parent layers are first homogenously mixed with 

each other through the occurrence of diffusion process as first step, followed by 

nucleation or atomic arrangement as a next step which lead to the formation of a new 

material with single phase. Therefore when the diffusion step is rate-limiting, a pure 

final product (composition) can be achieved through a completed intermixing process.  

Case (ii) Nucleation is rate-limiting: when a multilayer system composed of thicker 

films, the thickness of parent layers above critical length (l > Lc) allow the nucleation 

step to dominate in the multilayer interface resulting in the precipitation of parasitic 

phases at interface which hinder the formation of a pure final product (composition). 

In the end, parent layers are saturated with incomplete intermixing process. Therefore 

when the nucleation step is rate-limiting the desired final composition cannot be 

attained due to incomplete intermixing process.  

The above limitations explain the importance of critical length Lc, which acts as a 

deciding factor of the purity of the final product (composition) [31-34].  

3.3.3 Methodology to fabricate new composition in thin film form by 

intermixing process 

The possibility of fabricating a new composition from an ultra-thin film multilayer 

system and its rate-limiting steps has been explained in the previous section.  

Generally, a new composition from an ultra-thin film multilayer system can be 

processed in two different methodologies (Figure 3.10) by using the latest deposition 

techniques [10, 12, 13]. However, the “formation stage” of the new product depends 

on the amorphous or crystalline phase of the multilayers involved. 
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Figure 3.10 Schematic diagram of methodology to fabricate a new composition from ultra-thin 

film multilayer system. 

 

In the first methodology (Figure 3.10), ultra-thin multilayers are directly grown in 

crystalline form using right deposition conditions, usually imposing high energy to the 

involved species (eg. high temperature deposition). The advantage of this first 

methodology is that the desired composition can be directly achieved during material 

processing or deposition itself through the diffusion step followed by nucleation step. 

In the second methodology (Figure 3.10), ultra-thin multilayers are directly grown 

as amorphous layers using low deposition temperatures. This kind of low energy 

deposition would allow the homogeneous mixing of parent layers. The resultant 

homogenously mixed amorphous compound is a reaction intermediate. However, it 

still needs a post-annealing treatment to make the nucleation step to complete in order 

to achieve the desired final product.   

The first methodology is more efficient than the second one in terms of time and 

energy consumption. Moreover, second method needs the optimization of post-

annealing parameters as an extra step to attain the desired product.  

Various thin film processing techniques such as PLD, CVD, MOCVD, ALD, etc [12, 

13] equipped with multilayer thin film fabrication facility can be used to fabricate new 

composition in thin film form. In this thesis, PLD is used as a tool to perform this task. 
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In a PLD chamber deposition under constant temperature and pressure interdiffusion 

is normally stimulated by chemical potential between parent layers.   

3.3.4 Mn, Co and Fe diffusivity in perovskite-related structures  

As explained in the introduction the main goal of chapter 5 is the fabrication of 

continuous composition spread (CCS) LSMC system from LSM and LSC multilayers 

through proper intermixing. Before getting involved in LSMC pseudo-binary system 

fabrication, it is essential to know the evaluation of the interdiffusion processes of the 

atoms involved.  

The parent compounds such as La0.8Sr0.2MnO3+δ (LSM), La0.8Sr0.2CoO3-δ (LSC) 

composition has the same amount of A-site atomic concentration (La and Sr) which 

prevents the interdiffusion of La and Sr atoms between LSM and LSC layers. But 

different chemical potential of B-site atomic concentration can promote interdiffusion 

of Mn and Co atoms in the B-site of parent layers. To have a theoretical knowledge on 

the diffusivity of Mn and Co atoms will be highly useful to predict an approximate 

critical length Lc value, in order to achieve pure LSMC system.  

Therefore, self-diffusion and inter-diffusion coefficients of Mn and Co ions 

including Fe ion in perovskite-related structure has been collected from the literature.  

The diffusion coefficients found in the literature are determined by different 

experimental techniques such as tracer annealing, inter-diffusion couple, solid state 

reaction etc [35-39]. The diffusion coefficients of Mn, Co and Fe ions is given in the 

following Arrhenius plot. 
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Figure 3.11. Arrhenius plot of Mn, Co, Fe diffusion coefficients vs temperature. 

 

In Figure 3.11 Mn diffusion in LaMnO3 (LMO), Co in LaCoO3 (LCO), Fe in LaFeO3 

(LFO) represents the self-diffusion coefficient of Mn, Co, Fe ions. While Fe diffusion in 

La0.8Sr0.2CoO3 (LSC), Co diffusion in La0.8Sr0.2FeO3 (LSF) represents inter-diffusion 

coefficients. The diffusion of an ionic species taken place without any driving force is 

called as self-diffusion, whereas diffusion of an ionic species in a foreign material is 

called interdiffusion [29, 38].  

Generally, cation diffusion in perovskite-related oxides takes place by vacancy 

migration mechanism [35-39]. Hence, B-site diffusion is facilitated by B-site vacancies, 

sometimes also promoted by vacancies in A-site. De Souza et al. [40] performed atomic 

simulations on cation migration in LMO. They observed a significant decrease in Mn 

migration energy from 8eV to 3.5eV after removing La from its saddle point, due to the 

absence of electro-static repulsion between migrating Mn and La ion which facilitated 

B-site diffusion [40].  

In Figure 3.11, Mn diffusivity in LMO is relatively higher than Co in LCO and Fe in 

LFO due to larger amount of cation vacancies present in LMO system. Inter-diffusion 

coefficient of Fe in LSC, Co in LSF is 4 to 5 orders of magnitude lower than Mn in 

LMO, Co in LCO as a result of diffusion affected by chemical environment.  
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Dissimilar activation energies such as 81kJmol-1, 70kJmol-1 is observed in Mn self-

diffusion coefficient measured by tracer annealing and inter-diffusion couple 

measurements. This dissimilarity in activation energy is attributed to difference in 

cation vacancy population influenced by the thermal history of a sample gone through 

in different experimental techniques [36]. It can be the explanation for dissimilar 

activation energies observed in the self-diffusion coefficients of Co. However, cation 

diffusion can also be influenced by various other parameters such as bond distance, 

pressure etc [36, 41].  

3.3.5 Influence of thickness on effective diffusion time (𝒕𝒆𝒇𝒇) of Mn, Co and Fe 

cations 

Mn, Co and Fe diffusion coefficients obtained from the literature is used to estimate 

the effective diffusion time (𝐭𝐞𝐟𝐟) of a mobile species. Effective diffusion time (𝐭𝐞𝐟𝐟) is the 

time required for a mobile species to cross its characteristic diffusion length [35, 36].  

Characteristic diffusion length is nothing but average length (thickness) a mobile 

species with its characteristic diffusivity can travel through in certain time. The 

effective diffusion time is given by the following equation, 

 
𝒕𝒆𝒇𝒇 =

𝒍𝟐

𝟐𝑫
 

 

(3.1) 

Where 𝒕𝒆𝒇𝒇 is effective diffusion time, 𝒍 is film thickness or characteristic diffusion 

length, 𝑫 is diffusion coefficient of a mobile species.  

The effective diffusion time (𝐭𝐞𝐟𝐟) estimated for Mn, Co and Fe ions to travel under 

different thickness from 1nm to 10nm at 700°C is plotted in Figure 3.12. Self-diffusion 

and inter-diffusion coefficients values taken from the literature (Figure 3.11) at 700°C 

has been used to determine 𝐭𝐞𝐟𝐟.  
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Figure 3.12. Effective diffusion time (𝒕𝒆𝒇𝒇) of Mn, Co and Fe cations Vs thickness at 700°C. 

 

In Figure 3.12 the effective diffusion time 𝐭𝐞𝐟𝐟 of Mn is in millisecond range to travel 

1nm to 10nm of thickness, while the diffusion time of Co, Fe ions are longer than Mn. 

The effective diffusion time of Fe in LSC, Co in LSF is longer than Mn in LMO and Co 

in LCO. In particular, Fe in LFO has the longest diffusion time in all of them. It needs 1 

day to 100days to cross a layer with 1nm to 10nm thickness.  

In general based on the results obtained in Figure 3.12, the diffusivity of different 

cations can be arranged as Mn>Co>Fe irrespective of the type of diffusion. Also, the 

effective diffusion time 𝐭𝐞𝐟𝐟 obtained here for different cation has given a rough value 

about the critical length range, which can be expected in sub-nm level. 

3.4  Validation of interdiffusion mechanism 

3.4.1 LSF/LSC multilayer deposition 

After optimizing the deposition conditions of parent materials, LSC/LSF multilayer 

trial deposition is carried out (Figure 3.13) to fabricate La0.8Sr0.2Co0.4Fe0.6O3±δ (LSCF46) 

thin film with 40% Co and 60% Fe. 

The density of LSC is 7.11g/cm3 while LSF is 6.43 g/cm3 and its average area density 

would be directly proportional to composition. The average area density 𝝆𝒂 can be 
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given as 𝝆𝒂 =  𝝆𝒕. Where 𝝆 is density of the material, 𝒕 is film thickness. Since the 

densities of LSC, LSF are almost similar thickness ratio between LSC and LSF layer will 

directly give Co and Fe concentration.  

In order to achieve LSCF film with 40% Co and 60% Fe approximately, LSC and LSF 

periodic layers are fabricated by controlling LSC with 4nm and LSF with 6nm in each 

cycle (Figure 3.13). It is prepared based on the 1st methodology introduced in section 

3.3.3.  

 

 

Figure 3.13. Schematic diagram of LSCF phase formation from LSC/LSF ultra-film multilayer 

in PLD. 

 

These trial depositions are performed to corroborate the influence of critical length 

(Lc) of parent layers (LSC and LSF) on the purity of final composition LSCF46 

achievable through interdiffusion mechanism as discussed in section 3.3. The 

deposition condition optimized in the previous section is applied in these test 

depositions. The exact depositions conditions are: Temperature T = 700C, Pressure P = 

20mT, Fluency F = 0.7Jcm-2(LSC) and 1.1Jcm-2(LSF), target to substrate distance d = 95mm, 

frequency f = 10Hz.  

Figure 3.14a represents the XRD pattern of the LSCF46 thin film achieved through 

the interdiffusion between LSC/LSF multilayers, but ended up with a parasitic phase. 

The impurity phase is indexed as Sr2FeO4 and Sr3Fe2O6 with tetragonal structure.  
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Figure 3.14. XRD pattern of LSC/LSF multilayers with different thickness. a) 

LSC:LSF=4nm:6nm per cycle. Star symbol indicates the parasitic phases such as Sr2FeO4 and 

Sr3Fe2O6. b) LSC:LSF=2nm:3nm per cycle 

  

A homogeneous mixing between parent material is necessary to attain a final 

composition without any parasitic phase as explained in section 3.3.2. For a 

homogeneous mixing, the thickness of parent layer should be under or equal to the 

critical length (Lc). The presence of parasitic phase here exhibits the precipitation of 

Sr2FeO4 and Sr3Fe2O6 in LSC/LSF interface resulting from the nucleation-limited 

intermixing of LSC and LSF multilayers (case ii in section 3.3.2).  

According to effective diffusion time (𝒕𝒆𝒇𝒇) predicted for Co, Fe cations in Figure 

3.12, Fe atom needs 159min to penetrate completely into 4nm thickness of LSC layer, 

whereas Co atom needs 68min to diffuse into 6nm thickness of LSF layer. The thickness 

of 4nm LSC, 6nm LSF multilayers may be above critical length Lc hindered the 

formation of pure LSCF46.  

Therefore a second LSC/LSF multilayer test deposition is repeated by reducing 

LSC/LSF layer thickness two times lower than the first trial deposition. In the second 

trial, LSC film thickness is maintained as 2nm, LSF as 3nm per cycle. After reducing the 

thickness, a pure LSCF46 composition is finally achieved through the homogeneous 

mixing of LSC/LSF multilayers.  

Figure 3.14b shows the XRD pattern of pure LSCF46 thin film without any parasitic 

phase after reducing the thickness. This is due to the thickness of parent layers 
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(LSC:LSF = 2nm:3nm) may be under critical length Lc in the 2nd trial, might induced 

homogeneous mixing followed by nucleation step. 

3.4.2 LSM/LSC multilayer deposition 

Similarly, LSM/LSC multilayer deposition is also carried out to check the 

compatibility between LSM and LSC layers in attaining the intermediate compositions 

of LSMC system. Intermediate compositions such as La0.8Sr0.2Mn1-xCoxO3±δ (x= 0.25, 0.5, 

0.75) are fabricated from the multilayer depositions of LSM and LSC parent materials 

by controlling the thickness of parent layer under 2nm. The density of LSM is 6.4g/cm3 

and LSM:LSC thickness ratio is maintained as 1.5nm:0.5nm per cycle to fabricate LSMC 

with Co = 0.25, 1nm:1nm per cycle for Co = 0.5 and 0.5nm:1.5nm per cycle for Co = 0.75.  

The XRD pattern acquired from LSMC distinct compositions is given in Figure 3.15. 

which shows that there is good compatibility between LSM and LSC parent layers in 

the intermediate composition formation LSMC with rich (x=0.75) and poor (x=0.25) 

cobalt concentration. Moreover, thickness control of each parent layer under 2nm 

seems working because there is no secondary phase observed in each LSMC distinct 

compositions. 

 

Figure 3.15. XRD pattern of La0.8Sr0.2Mn1-xCoxO3±δ (x= 0.25, 0.5, 0.75) distinct compositions 

obtained from LSM/LSC multilayers.  

 

The above trial deposition validates the significant contribution of critical length Lc 

on the purity of final product. Also, it validates the 1st methodology introduced in 

section 3.3.3 the possibility of attaining a new composition during ultra-thin film 
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multilayer deposition itself. Hereafter, thickness of parent layer is decided to control 

below 2nm for combinatorial system fabrication.  

3.5  Conclusion 

The deposition conditions are optimized in PLD to grow tailored dense, porous, 

homogeneous and crack-free parent layers. It is found that 700°C is the best common 

temperature to attain polycrystalline LSM, LSC and LSF layers. 20mT of pressure is an 

optimum pressure to achieve dense layers while 200mT is preferred for porous layers. 

The microstructural studies of parent layers are investigated by X-ray diffraction 

(XRD), Scanning electron microscopy (SEM). Also, interdiffusion mechanism is 

understood and validated through the experiments on LSC/LSF and LSM/LSC 

multilayer depositions. It is found that thickness below 2nm to 3nm is an optimum 

thickness value for growing LSM, LSC and LSF parent layers involved in multilayer 

deposition in order to achieve desired product from the diffusion-limited 

homogeneous intermixing. 
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Chapter IV 

4.1 Chapter outline 

The phenomenon of simultaneous conduction of ions and electrons is one that is 

applied in a wide variety of devices such as batteries [1, 2], fuel cells and electrolyzers 

[3, 4] and electrochromic displays [5, 6, 7]. Since mixed ionic-electronic conductors 

(MIECs) are key functional materials in all these solid state devices, novel approaches 

to improve their ionic/electronic transport properties have attracted increasing 

attention in recent years [8]. In particular, the search for enhanced ionic conductivity 

through the design of oxide interfaces has been pursued since Sata et al. [9] showed 

superior anionic conductivity in CaF2/BaF2 heterostructures due to space charge effects. 

For oxygen ion conductors, another strategy based on the lattice strain generated by 

multilayering epitaxial films has been proposed to promote an increase in ionic 

conductivity [10, 11]. However, the implementation of this type of hetereostructures 

still remains a challenge since it is limited to a certain number of substrates and to a 

lateral architecture. The enhancement of mass and charge transport properties in 

inherent interfaces, such as grain boundaries (GBs), is therefore clearly advantageous  

and opens new technological perspectives for GB-dominated materials in advanced 

devices such as nanoionics-based resistive switching devices [12, 13] or micro-solid 

oxide fuel cells [14, 15]. 

While grain boundary diffusion in metals has been widely studied and is reasonably 

well understood [16], there is a noticeable lack of understanding on this type of ionic 

diffusion in ceramic materials [17]. In particular, the oxide ion transport along grain 

boundaries in mixed ionic electronic conductors remains virtually unexplored, 

primarily due to the limited number of techniques suitable for its direct 

characterization. However, the fundamental and technological importance of diffusion 

in this sort of materials requires bridging this knowledge gap, particularly now that a 

variety of nanostructures can be synthesized and characterized. Because nanomaterials 

intrinsically contain a high density of grain boundaries, their mass transport properties 

can be dominated by such grain boundaries [17]. Understanding and controlling this 

dominant mechanism is obviously interesting for enhancing the electrochemical 

behavior of catalytic materials but also for avoiding undesirable ionic conductivity that 

under high dc voltage can cause degradation of electronic components based on thin-
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film multilayer technology such as multilayer ceramic capacitors, varistors or oxide 

transistors [18]. The focus of this work is to analyze the oxygen mass transport 

properties of La0.8Sr0.2MnO3+δ (LSM) nanostructures. In bulk form, this compound 

shows oxygen hyper-stoichiometry with a very low concentration of oxygen vacancies 

(metal vacancies and electron holes are the predominant defects), making this material 

a pure electronic conductor [19]. LSM was selected since it is considered a cornerstone 

material in a wide variety of electrochemical and electronic devices such as solid oxide 

fuel cells [20] and high-density memories [21], respectively. 

4.2 Microstructural Characterization of LSM films 

In order to study the dominating transport properties in nanostructured LSM, films 

with a high density of grain boundaries were prepared by Pulsed Laser Deposition 

(PLD). PLD is one of the methods of choice for preparing thin films based on complex 

oxides due to an excellent stoichiometry transfer of the target composition. Moreover, 

it allows growing fully dense columnar-type nanostructures highly suitable for 

diffusion studies. We used this technique to grow 100nm La0.8Sr0.2MnO3+δ/100nm 

(ZrO2)0.92(Y2O3)0.08 (YSZ) heterostructures on (100) silicon substrates passivated with a 

stress-free combination of amorphous SiO2 and SiNX layers. An oxygen partial pressure 

of 20mT and a substrate temperature of 973 K were employed in the PLD deposition 

chamber to grow fully dense polycrystalline layers of Yttria-stabilized Zirconia (YSZ) 

and LSM [22].  

The heterostructure was characterized by using X-ray Diffraction (XRD), Scanning 

and Transmission Electron Microscopy (SEM and TEM), Atomic Force Microscopy 

(AFM) and Electron Probe X-ray Microanalysis (EPMA).  

The XRD patterns all show single phase deposition of polycrystalline YSZ and LSM 

layers without any noticeable preferential orientation (Figure 4.1).  
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Figure 4.1. Typical XRD diffraction patterns of the LSM deposited on polycrystalline YSZ (employed 

for IEDP-SIMS experiments) and on YSZ single crystals (employed for EIS experiments).  

 

The patterns in Figure 4.1 were indexed to a rhombohedral R3c space group with 

unit cell a = b= 5.529(2), c =13.447(3) for the LSM/poly-YSZ and a = b= 5.540(2), c = 

13.456(3). The diffraction pattern of powder of LSM is included for comparison 

(a = b= 5.518(1), c = 13.381(3)). Crystalline and single phase LSM is observed in both 

cases. According to the lattice parameters obtained, the deposited films are slightly 

tensile stressed (ε< 0.5%). 

Top view and cross-section SEM pictures (Figure 4.2a and b) demonstrate the full 

density of the LSM layers and a columnar-type microstructure with grain sizes in the 

nanoscale (d = 16 +/- 7 nm) and well-defined and vertical grain boundaries with a 

thickness ca. 1nm (Figure 4.2c). AFM images of the LSM layer confirm the grain size 

and yield a surface roughness of rms = 0.9 nm. High Resolution TEM (HRTEM) studies 

reveal the non-homogeneous nature of the LSM columnar grains. Indeed, strain causes 

distortion at the grain boundaries, which results in the creation of a high density of 

dislocations in the regions close to the borders (Figure 4.2d and e).  
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Figure 4.2. a) SEM top view image of the LSM dense film deposited by PLD on polycrystalline 

YSZ. The inset shows an AFM image of the same sample. The color bar refers to the height of the 

surface. b) SEM cross section image of the LSM (100nm) and YSZ (100nm) bilayer deposited by 

PLD. c) and d) High resolution TEM and FFT images of the same area and magnification 

showing a detail of a typical boundary between two LSM grains. Solid lines indicate two families 

of planes for each grain while the dashed lines represent a guide for the eyes indicating the GB 

influence region. A high density of dislocations is observed in the GB region, some of them are 

marked with yellow “T” labels. 
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1 

 

 

 
 

Figure 4.2.e) HRTEM1 image of three grains of dense LSM (and two grain boundaries 

represented by red dashed lines). The insets are FFT calculated images corresponding to different 

regions of the grain interior and grain boundaries. A wave-like contrast caused by lattice strain 

is clearly observed inside the grain and, more pronounced, close to the borders where likely 

causes a high dislocation density. 

 

Although the stress is clearly mitigated in the bulk, the grain boundaries are 

relatively close to each other and that result in a nanodomain texture, with 1-2 nm 

domains being slightly misoriented from one another.  

The stoichiometry of the deposited LSM films was measured by EPMA showing 

values of 81:19 for the La:Sr ratio.  

 

4.3 Oxygen mass transport study in LSM dense thin films by 

IEDP-SIMS and EIS techniques 

4.3.1 IEDP-SIMS technique 

The steps involved in oxygen isotope exchange and the principle and operation of 

ToF-SIMS is explained elsewhere in section 2.4.2 in chapter 2. The high quality of the 

multilayer is confirmed by SIMS depth profiling of the different species (Figure 4.3).  

                                                 
1 HRTEM studies were performed by Dr. J. Canales-Vazquez in university of Castilla-la 

Mancha. 
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Figure 4.3. Typical SIMS depth profile of the different species contained in the LSM/YSZ 

bilayer. Sharp interfaces with short interdiffusion close to the LSM/YSZ interlayer can be 

observed ensuring the high quality of the films. 

 

Sharp interfaces and negligible interdiffusion are observed between the LSM and 

YSZ layers (Figure 4.3). Moreover, this analysis corroborates that dense YSZ layers 

represent highly efficient diffusion barriers for the silicon coming from the substrate 

resulting in silicon-free LSM layers. 

Although other electrochemical techniques allow measuring mass transport 

properties, 18O isotope exchange experiments and depth profiling analysis by 

Secondary Ion Mass Spectroscopy (IEDP-SIMS) is the most direct method to measure 

oxygen diffusion, in particular when applied to dense mixed ionic electronic 

conductors in bulk or thin film form [23, 24]. Therefore, to fully understand the oxygen 

mass transport properties of the prepared heterostructure and calculate the oxygen 

diffusivity ( 𝑫∗) and surface exchange coefficients (𝒌∗) of the LSM film, we carried out 

IEDP-SIMS at different temperatures between 773K and 973K.  To avoid oxygen 

diffusion intake from the backside during the exchange process we employed a silicon 

wafer substrate, therefore limiting the incorporation of oxygen to the top surface area.  

The proper combination of the measured depth profiles of the 18O and 16O ions 

allowed us to calculate the normalized 18O isotopic fraction (Cx) as a function of the 

distance to the top surface [23]. High quality data were obtained as illustrated in 

Figure 4.4, which includes a set of isotopic fraction profiles for the whole range of 

temperature under study. Three regions can be easily distinguished in all profiles 
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(particularly at low temperatures), namely, a near-surface abrupt decay, a deep-

penetrating tail and an unanticipated step at the LSM/YSZ interface (inset in Figure 4.4) 

that results in a higher isotopic concentration in the YSZ layer. This indicates that LSM 

is not a homogeneous medium since it combines a slow diffusion process limited to a 

small region close to the surface and a fast diffusion process extended to the YSZ layer.  

 

Figure 4.4. Normalized 18O isotope concentration for LSM/YSZ bilayers exchanged at 773, 873 

and 973K. Inset shows the enlarged view of 18O concentration profile inLSM layer at 773K. 

 

A higher isotopic concentration in the YSZ layer without accumulation in the LSM 

layer points toward the existence of narrow fast oxygen diffusion pathways across the 

LSM film. This is consistent with the columnar-like microstructure obtained by PLD 

(Figure 4.2c) if we consider slow diffusion through the bulk and fast diffusion in the 

grain boundaries. This model is in agreement with higher oxygen diffusivities for LSM 

grain boundaries reported by De Souza et al. [19].  

4.3.2 Finite Element Analysis (FEM) of oxygen diffusion profiles to determine 

oxygen transport parameters 

Since analytical solutions are not available for diffusion in such an inhomogeneous 

material with finite geometry, the response of an equivalent bilayer was studied by 

numerical methods using Finite Element Analysis (FEM2) to extract quantitative 

information of the oxygen transport properties of the bulk and grain boundaries of 

LSM. Isotope concentration profiles corresponding to the IEDP-SIMS3 experimental 

                                                 
2 FEM simulation was performed by Dr. Dolors Pla. 
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conditions were simulated by FEM for a bilayer consisting of (i) a 100nm thick film 

exposed to the atmosphere with vertically aligned squared grains of 16nm each side 

and a typically observed 1nm thick grain boundary [16] (equivalent to the LSM layer) 

and (ii) a 100nm thick bulk material (corresponding to our YSZ layer). Since YSZ can be 

considered an oxygen sink in the range of temperatures under study, the oxygen mass 

transport properties of the LSM layer, i.e. the diffusion and surface exchange 

coefficients for the bulk (𝑫𝒃
∗  𝑎𝑛𝑑 𝒌𝒃

∗ ) and grain boundaries (𝑫𝒈𝒃
∗  𝑎𝑛𝑑 𝒌𝒈𝒃

∗ ), were the only 

parameters to adjust for fitting the experimental and simulated profiles. Previously 

reported values of the bulk coefficients [19] were employed as a starting point for the 

adjustment. However, the shape of the simulated profiles was very sensitive to all the 

involved parameters and it was necessary to slightly modify these bulk coefficients to 

achieve optimum fittings. Finally, a very good match between experiments and 

simulations were obtained for the whole range of temperatures (as illustrated in Figure 

4.5a for T= 823K) yielding a collection of oxygen tracer diffusivities and surface 

exchange coefficients for bulk and grain boundaries of the nanostructured LSM.  

The 3D isotopic concentration maps generated by simulation after fitting the mass 

transport parameters clearly support the existence of an oxygen diffusion “highway” 

from the surface to the YSZ through the grain boundaries simply explaining the 

unexpected step present at the YSZ layer in the IEDP-SIMS3 concentration profiles (see 

Figure 4.5b and c for T= 823K). 

3 

 

 

 

 

 

 

                                                 
3 IEDP-SIMS measurement was carried out by Dr. Andrea Cavallaro in Imperial College, 

London. 
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Figure 4.5. a) Normalized 18O isotope concentration and fitted solution to the diffusion equation 

calculated by FEM for the LSM/YSZ bilayer exchanged at 823 K.  b) and c) Top view and cross 

section of the isotope concentration map for the intersection of four quarters of grain as 

generated by FEM simulation of the LSM/YSZ bilayer exchanged at 823 K. The image shows a 

highway for oxygen diffusion along grain boundaries (the scale bar refers to the normalized 

isotope concentration). 

 

Figure 4.6a and b show a representation of the set of oxygen mass transport 

coefficients obtained by FEM analysis as a function of the reciprocal temperature.  
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Figure 4.6. a) and b) Arrhenius plot of the oxygen tracer diffusion (𝑫) and surface exchange (𝒌) 

coefficients of bulk and grain boundary LSM (filled and open stars, respectively) calculated by 

employing a FEM model to adjust the isotopic concentration profiles measured by IEDP-SIMS. 

Tracer diffusion coefficients reported in ref [19] for bulk (dashed line) and GB LSM (short 

dashed line) were included together with bulk values of La0.8Sr0.2CoO3-δ (dashed dotted line). a) 

Includes GB diffusion coefficients (crosses) and chemical diffusion coefficients (triangles) 

obtained from EIS measurements for 40and 180nm thick dense LSM layers. 

 

The observed straight trends indicate that all the parameters follow an Arrhenius-

type behavior. While the values obtained for the bulk coefficients (𝑫𝒃
∗  𝑎𝑛𝑑 𝒌𝒃

∗ ) are 

consistent with the literature [19] (included in Figure 4.6a and b for comparison), grain 

boundary properties are orders of magnitude greater. Contrary to the significantly 

higher activation energy of the GB diffusivity compared to the bulk observed by De 

Souza et al. in micron-sized grain polycrystalline samples [19], the activation enthalpy 

for 𝑫𝒈𝒃
∗  is smaller than that for 𝑫𝒃

∗  in our nanostructure. As a consequence, the 

diffusion through the GBs of the PLD-deposited LSM becomes noticeably higher than 

that previously published, especially at lower temperatures where an astonishing 

improvement of up to six orders of magnitude is observed (T= 773 K). This accelerated 

diffusion rate means that, unlike the essentially pure electronic conduction of the bulk, 

the grain boundaries of LSM possess reasonable oxide ion diffusivity, with values close 

to those of La0.8Sr0.2CoO3-δ (see Figure 4.6a).  

More interestingly, a superior behavior of the oxygen surface exchange yielded 

values of 𝒌𝒈𝒃
∗  among the best ones ever reported and within the criteria for good 

cathodes proposed by Steele (𝒌∗>10-4-10-5 cm/s) [25] at temperatures as low as T= 823 K. 
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This effective GB oxygen exchange is thought to be enhanced due to the coupling of 

the oxygen adsorption and dissociation steps, which could occur along the entire LSM 

surface, with the oxygen incorporation step, mainly occurring in or close to the grain 

boundaries (with high oxygen vacancy content, see below). The combination of  

 𝑫∗ and 𝒌∗ values places this nanostructure of LSM, with a high density of GBs, among 

the MIEC materials typically employed as electrodes for SOFCs (see Figure 4.6b), 

making these dense nanostructures of LSM especially interesting for electrochemical 

applications.  

4.3.3 EIS technique 

The functionality of these vertically nanostructured thin films was also investigated 

in conventional two-electrode, supported electrolyte electrochemical cells. Symmetrical 

cells with 40 and 180nm thick LSM electrodes deposited by PLD on both sides of YSZ 

single crystal electrolytes were fabricated. PLD deposition conditions were tuned to 

obtain cells with porous and fully dense (Figure 4.7a and b) LSM electrodes to clearly 

show the transition from a pure electronic to a mixed ionic-electronic conductor.  

 

Figure 4.7. a) and b) SEM top view images of porous and dense films of LSM employed for the 

EIS measurements.  The scale bar applies for both images. 

 

It is usually assumed that for porous LSM electrodes with pure electronic 

conductivity a direct incorporation of oxygen at the triple phase boundary takes placei 

(Figure 4.8, surface path). However, employing dense electrodes is only possible for 

materials which operate as MIECs, since the oxygen reduction reaction is limited to the 

surface and oxide-ion transport to the electrolyte through the electrode is required 

(Figure 4.8, bulk/grain boundary path). The prepared porous and dense LSM/YSZ/LSM 

symmetrical cells were characterized by using electrochemical impedance spectroscopy 
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(EIS) in the temperature range of 773-973 K and applying ac voltage of 50mV under 

synthetic air.   

 

 

Figure 4.8.  Sketches of the three paths of the oxygen reduction and incorporation reactions. The 

surface path is only available for porous samples while bulk and grain boundary paths are the 

only option for dense films. The red color indicates the active regions for oxygen adsorption and 

ionic conduction. 

 

The Nyquist plots in Figure 4.9 show the contribution of the electrode polarization 

to the total impedance for porous and dense electrodes of different thickness at 973 K. 

While porous electrodes yielded lower polarization resistances and a better 

performance with thickness, dense electrodes present higher resistance with values 

increasing almost proportionally to the thickness. This clearly indicates that the 

reactions at the TPB are dominating for the porous samples whereas the oxygen 

diffusion through the electrode limits the performance of the cells with dense 

electrodes, i.e. LSM shows a MIEC behavior.  
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Figure 4.9.  Nyquist plot for the electrochemical response of the LSM/YSZ/LSM cells with dense 

and porous LSM layers with different thickness in air at T= 973 K. The continuous line presents 

the fitting of the equivalent circuit sketched in the inset. For clarity, the only contribution shown 

in the figure is that associated with the electrode polarization (the inductance and series 

resistance was subtracted by deconvolution). 

 

By adjusting the EIS spectra of the LSM cells with an equivalent circuit recently 

proposed by Jamnik et al. [27] for MIECs (Figure 4.9), it was possible to calculate the 

electrical and chemical diffusion coefficients for the films, 𝑫𝑸 and 𝑫𝜹, respectively. 

Moreover, since it is well known that the electrical diffusion coefficient is nearly equal 

to 𝑫∗ [28], the tracer diffusion was also easily obtained (𝑫𝑸=𝑫∗/f, where f is the tracer 

correlation factor and equal to 0.69[29]). 𝑫∗ and 𝑫𝜹 obtained from EIS were plotted in 

Figure 4.6a. The excellent agreement between 𝑫∗ obtained by EIS and the grain 

boundary diffusion coefficients obtained from the FEM fitting of the IEDP-SIMS 

experiments, confirms that the electrochemical behavior is clearly dominated by the 

rapid oxide-ion diffusion along the grain boundaries, i.e. 𝑫𝒈𝒃
∗ . This diffusivity is 

characterized by an activation energy of EDgb = 1.9(1) eV. This value is remarkably 

below the one reported by De Souza et al. [19] for the bulk, EDb = 2.9 eV, and, more 

interestingly, for the GBs, EDgb = 3.3 eV. This difference in the activation enthalpy of the 

GB is clearly associated to the lower degree of order and high dislocation density 

observed in the shared interface of our columnar grains (see section 4.2) [29]. Finally, it 

is worth mentioning that the chemical diffusion coefficients resulting from EIS are in 

the same range as the values reported for bulk LSM [30], which indicates that the 

oxygen stoichiometry changes induced by oxygen diffusivity along GBs take place 

within the grains.  
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From the knowledge that the EIS behavior is dominated by the zone of influence of 

the GBs, the mole fraction of the oxygen vacancies involved in the mass transport can 

be calculated for the nanostructured LSM thin film (xv = 𝑫∗/f 𝑫𝜹) [28]. Figure 4.10 

shows the mole fraction (xv) and concentration of oxygen vacancies (Cv) of the active 

area as a function of the temperature.  

 

Figure 4.10.  Concentration of oxygen vacancies as calculated by EIS measurements for the 

LSM dense layer. Six order of magnitude of increase is observed with respect to reported bulk 

LSM [32] (dashed line) and a concentration within the range of the good MIEC LSC family, 

La0.9Sr0.1CoO3-δ (dashed dotted line) and La0.5Sr0.5CoO3-δ (short dashed line) [33]. 

 

Contrary to the hyper-stoichiometric bulk LSM with very low concentration of 

oxygen vacancies [31], GBs of LSM present extremely high vacancy concentration (six 

orders of magnitude higher) indicating a remarkable oxygen deficiency in these 

interfaces (with values in the range of excellent MIEC deficient perovskites like the 

ones of the LSC family [32]). Reverse chemical expansion could be the origin of this 

vacancy formation since tensile strains, typically present in grain boundaries of slightly 

tensile stressed thin films [33], could induce oxygen vacancy formation as recently 

shown by Jalili et al. [34]. After vacancy formation, the GB region with high dislocation 

density (Figure 4.2d) would attract these oxygen vacancies defining a preferential fast 

diffusion pathway along it. Further intensive exploration of the origin of this high 

vacancy concentration is still required to be able to tailor the GB diffusion properties 

and therefore reach a fine tunability of the mixed ionic electronic conduction.   
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4.4 Conclusion 

To the best of our knowledge, this is the first time that fast oxide ion diffusivity in 

grain boundaries has been employed to change the nature of a pure electronic 

conductor into a MIEC. Our results open the way to the preparation of new families of 

artificial mixed ionic electronic conductors with tailored properties by engineering 

nanostructures with an elevated density of highly defective grain boundaries. 

Controlling the microstructure, grain size and thickness in thin films represents a 

realistic and simple approach for direct implementation of these nanostructures in high 

performing devices; therefore, we expect this work to be of particular significance for 

many technologies that rely on mixed ionic-electronic conductor materials. Besides, we 

note that fundamental insight into oxide-ionic diffusivity along grain boundaries and 

oxygen surface exchange of other key technological nanostructured ceramics, 

particularly those employed in thin film form, deserves a similar intensive exploration 

by advanced methods.  
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Chapter 5 

Optimization of the combinatorial PLD method 

for the study of La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1)              

thin film system  
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Chapter V 

5.1 Chapter outline 

Conventional compositional studies are generally limited by material synthesis 

procedures and characterization. Much effort has to be devoted for obtaining each 

material composition and valid characterization methods just for a single composition. 

Covering a range of compositions consists of a laborious process including trial and 

error steps, consumption of resources, time and energy.  

Therefore a combinatorial approach to material synthesis can be an alternative 

solution to the traditional methodology [1, 2]. It can accelerate the materials discovery 

when one wants to correlate functional properties of a multicomponent family. As an 

example, Alan et al. [3] employed a robotic ink-dip printer to prepare a series of 66 

compositions of the LSMC family. They followed a discrete combinatorial synthesis 

(DCS)1 approach to obtain the LSMC library [4, 5].  

Although SOFC materials research is adapted to a modern approach for processing, 

there is still room for research towards material screening based on a combinatorial 

approach. A good example of the interest of material screening is on perovskites 

exhibiting mixed ionic and electronic conducting (MIEC) properties.  

In the last two decades much effort has been invested in synthesizing and 

characterizing new mixed ionic and electronic conducting (MIEC) oxides for low 

temperature device operation applications such as cathode in SOFCs, oxygen 

separation membranes, etc [6, 7]. Good oxygen surface exchange and diffusion are the 

attractive features of MIECs to be implemented as cathodes in SOFCs. Most MIEC 

exhibits perovskite (ABO3) structure which support partial aliovalent substitution in A 

and B-sites to form a multicomponent 𝐴1−𝑥𝐴𝑥
′ 𝐵1−𝑦𝐵𝑦

′𝑂3 compound. However, the 

number of MIEC that displays high catalytic activity towards ORR is less in number 

[7].  

Among them La0.8Sr0.2Mn1-xCoxO3±δ (LSMC) has received much attention for its 

enhanced oxygen transport properties first revealed by De Souza et al. [8, 9] through his 

18O isotope exchange depth profiling measurements (IEDP). In this family, Manganese 

                                                 
1 DCS approach is a set of discrete chemical composition is generated from a rapid sequential 

synthetic technique [4, 5]. 
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(Mn) rich members acquire oxygen hyper-stoichiometry while cobalt (Co) rich 

members have oxygen sub-stoichiometry making it an interesting system to study.  

Some studies have been conducted on the influence of Mn replacement by Co (B-site 

substitution) on the oxygen transport properties of LSMC by various techniques such 

as Temperature Programmed (TP) measurements [3], Oxygen storage capacity 

measurements (OSC) [10], Fourier Transform infra-red spectroscopy (FTIR) or X-ray 

photoelectron spectroscopy (XPS) [11]. In general, an enhancement in oxygen exchange 

and diffusion properties is observed for Co substitution due to an increment in the 

oxygen vacancy concentration.  

In the above studies LSMC system was mainly synthesized by conventional material 

processing routes such as reactive grinding [6], glycine nitrate process [11], sol-gel 

method [12], etc.  

In this chapter, continuous composition spread (CCS) [4, 5] approach is followed to 

fabricate an LSMC pseudo-binary system in thin film form by PLD multilayer 

deposition, in which thickness and composition are the two parameters that vary 

spatially. Also, a new methodology is introduced in this chapter to predict thickness 

and composition distribution maps from the knowledge of the PLD deposition of the 

parent compound layers. 

The combinatorial approach is based on the overlapping of PLD plumes of parent 

materials and the prediction of thickness and Mn/Co relative concentration from the 

resulting output. Each step involved in that methodology is detailed in section 5.2. 

Following this methodology, a real CCS combinatorial of the LSMC system is 

fabricated, with a prior knowledge gained on the prediction of resultant thickness and 

composition distribution from parent material superposition study. LSMC pseudo-

binary system fabrication is explained in section 5.4.  

The microstructural characterization of combinatorial maps are carried out by 

various experimental techniques. Structural studies are carried out by XRD and Raman 

analysis (section 5.5.1 and 5.5.2). Sample morphology is studied by AFM (section 

5.5.3). Thickness distribution is studied by SEM and Raman while composition 

distribution is studied by EDS, WDS techniques (section 5.5.4 and 5.5.5). In section 5.6 

theoretically predicted thickness and composition distribution is compared with 

experimentally obtained values in order to validate the methodology introduced in this 

work. 
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According to the flowchart presented in the introduction (Figure 1.10 in chapter 1) 

the studies such as combinatorial sample fabrication and sample microstructural 

characterization are covered in the current chapter.  

5.2 LSM and LSC thickness map  

5.2.1 Large-area LSM and LSC deposition and sample preparation  

The deposition conditions to grow dense LSM and LSC thin films have already been 

optimized in the previous chapter. Following the preliminary optimizations of 

individual materials in PLD, the LSM and LSC thickness map study is conducted as a 

subsequent step for performing the LSM and LSC plume superposition optimization.  

To generate LSM and LSC thickness plume maps, samples with individual layers of 

LSM and LSC plumes are deposited on 4-inch Si wafer, with the same deposition 

conditions optimized for dense microstructures in chapter 3. As shown in the Figure 

5.1 for LSM, both LSM and LSC plumes obtained through PLD deposition are elliptical 

in shape due to the influence of energy distribution in the laser focalization spot [13]. 

We assumed that the whole plume is symmetrical in shape and has a half-Gaussian 

thickness distribution including the maximum thickness region called “plume center”.  

 

 

Figure  5.1. LSM plume deposited on 4”silicon wafer. The yellow line represents the axis 

selected for thickness measurement. The place where the three axes meet each other is the plume 

center with maximum thickness. 

 

The plume consists of elliptical shaped multicolored concentric rings (Figure 5.1) 

corresponding to a thickness variation or thickness gradient in the LSM layer. Dark 
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green colored central ring is the plume center intentionally located at ≈ 2.5cm in x-y 

plane (top-left) which has the maximum thickness of 240nm as determined from SEM.  

It is possible to generate a whole thickness map by interpolation of experimental 

points, just with the thickness information along certain axes. Therefore, in the 

elliptical shaped plume, three axes (yellow lines in Figure 5.1) are selected for thickness 

determination by SEM. The vertical line represents “major or vertical axis” while 

horizontal line represents “minor or horizontal axis” of the ellipse. One more axis is 

called “cross axis”, which is an intermediate axis passing through vertical and 

horizontal lines at 45°.  

After precisely choosing and marking the axis lines in LSM and LSC parent 

depositions, samples were cleaved along these lines by defining trenches in the back 

side of the Si wafer (Figure 5.2) using an automatic dicing saw machine (without 

damaging the layer deposited on the top of the Si wafer).  

 

 

Figure  5.2. SEM cross section image depicts cleaved part in the back side of Si wafer. 

 

5.2.2 Thickness determination by SEM and micro-Raman analysis 

After cleavage of the samples, thickness is measured along the horizontal, vertical 

and cross axis by SEM every 5mm (Figure 5.3). Thickness values below 25nm thickness 

were difficult to precisely determine, therefore thickness measurements were only 

performed where the thickness was higher than this value (≈ 20 to 25nm).  
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Figure  5.3. Sample with LSM plume deposited on Si wafer. The red dots represent the place 

where thickness was measured by SEM and µ-Raman along horizontal axis. SEM cross section 

image of LSC layer located at 5.5cm from the plume center along horizontal axis. 

 

For measuring these ultra-thin layers present at the axis end (wafer edge), where it 

is not possible to obtain accurate thickness by SEM technique, µ-Raman can be an 

alternative technique. In addition, with µ-Raman is possible to measure thin film 

thickness in the nm level without destroying the sample.  

Figure 5.4 illustrates the thickness determination by µ-Raman analysis based on 

Beer’s law of attenuation [14]. According to Beer’s law, when the laser employed for 

the Raman modes excitation hits the sample surface, the out coming substrate intensity 

is attenuated exponentially by any thin film deposited on top of the substrate [14, 15]. 

The post-attenuation of the substrate’s Raman intensity is proportional to the thickness 

and absorption coefficient of the top layer, which can be written as,  

 

 𝐥𝐧[𝑰 𝑰𝒐] =⁄ − 𝟐𝜶𝒕 (5.1) 

 

Where 𝐥𝐧⁡[𝑰 𝑰𝒐]⁄ ⁡ represents natural logarithmic value of relative intensity of the 

substrate, 𝑰 is the substrate intensity with top layer, 𝑰𝒐 is the substrate intensity without 

top layer, 𝜶 is the absorption coefficient of the top layer (that can be obtained from the 

slope of equation 5.1) and t is the film thickness. In this work, the top layer is LSM or 

LSC deposited by PLD and the substrate is Si wafer.  
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Figure  5.4. Illustration of thickness determination by µ-Raman analysis from the substrate 

signal attenuation. 

 

The µ-Raman measurement was therefore performed along the aforementioned 

three axes every 5mm (in the same place where SEM measurements were carried out). 

Post-processing of Raman spectra were carried out for base-line and peak-shift 

corrections. A collection of Raman spectra for different points of the LSM and LSC 

parent depositions is presented in Figure 5.5a and b. 
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Figure 5.5. The attenuation of the major Si peak intensity due to thickness variation along 

horizontal axis of a) LSM b) LSC deposition. Natural logarithm of the relative intensity of Si is 

plotted against thickness in the inset. 

 

The prominent peak for Si is positioned at 520cm-1. This is the peak used as a 

reference to determine the LSM and LSC thickness by employing its relative intensity 

𝑰 𝑰𝒐⁄  (equation 5.1). 

Figure 5.5a and b indicates the evolution of the Si peak intensity along horizontal 

axis of LSM and LSC individual depositions, which clearly depicts the thickness 

variation of parent layers along the horizontal axis. There are ultra-thin layers at the 

wafer edges ≈7.5cm which emits strong Si signal. This is due to a weak attenuation of 

the substrate Si signal by ultra-thin parent layers. In opposite, Si intensity coming out 

from the plume center positioned at 2.5cm is very weak due to a strong attenuation of 

the Si signal in the thickest region (plume centers) of the sample.  

Insets in Figure 5.5a and b illustrate the relative intensity of Si signal, its attenuation 

over thickness variation along the horizontal axis of LSM and LSC plumes which obey 

Beer’s law of attenuation. The 𝜶 value obtained from equation 5.1 for LSM layer is 

0.019nm-1 while for LSC it is 0.032nm-1.  

5.2.3 LSM and LSC thickness map  

Thickness distribution information acquired by SEM (along three axes) was used for 

the interpolation of this discrete data in order to generate the LSM and LSC thickness 

maps (Figure 5.6 and 5.7).  
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Thickness was interpolated on the x-y plane using 2D Gaussian functions. Gaussian 

function was used because of the Gaussian nature of the original thickness distribution 

of the angular distribution of a plasma as explained in plume expansion dynamics in 

section 2.2.1.2 in chapter 2.  

The following equation represents the 2D Gaussian function used for the thickness 

fitting of the LSM and LSC depositions. 

 

 

 
𝒁𝑳𝑺𝑴(𝒙, 𝒚) = ⁡𝒁𝒐 + 𝑨⁡𝒆𝒙𝒑 [⁡−⁡

(𝒙 − 𝒙𝒄)

𝟐⁡𝒘𝟏
𝟐

𝟐

−⁡
(𝒚 − 𝒚𝒄)

𝟐⁡𝒘𝟐
𝟐

𝟐

⁡] 
 

(5.2) 

 

 
𝒁𝑳𝑺𝑪(𝒙, 𝒚) = ⁡𝒁𝒐 +𝑨⁡𝒆𝒙𝒑 [⁡−⁡

(𝒙 − 𝒙𝒄)

𝟐⁡𝒘𝟏
𝟐

𝟐

−⁡
(𝒚 − 𝒚𝒄)

𝟐⁡𝒘𝟐
𝟐

𝟐

⁡] 
 

(5.3) 

Where 𝒁 stands for thickness, 𝒁𝑳𝑺𝑴(𝒙, 𝒚), 𝒁𝑳𝑺𝑪(𝒙, 𝒚) represents thickness of LSM, 

LSC layer at a particular point (𝒙, 𝒚) in their respective plumes. 𝒁𝒐, 𝐴, 𝒙𝒄, 𝒚𝒄, 𝒘𝟏, 𝒘𝟐 are 

constants. 𝑨 represents amplitude, 𝒙𝒄, 𝒚𝒄 represents position of plume centers, 𝒘𝟏, 𝒘𝟐 

represents Full-Width Half  Maximum (FWHM) in x and y axis.  

Table 5.1: Summary of fitted parameters and error obtained from 2D Gaussian fitting of LSM, LSC 

thickness. 

 LSM LSC 

2D 

Gaussian 

function 

parameters 

Fitted 

parameters 
Error (±) 

Fitted 

parameters 
Error (±) 

𝒁𝒐 15 2 14 1 

𝑨 221 2 201 2 

𝒙𝒄 2.46 0.05 2.49 0.05 

𝒘𝟏 2.90 0.06 2.59 0.06 

𝒚𝒄 2.45 0.07 2.56 0.06 

𝒘𝟐 3.48 0.08 3.11 0.07 
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Figure 5.6. Thickness map study in LSM layer a) Sample with LSM plume positioned at the left 

corner of the Si wafer b) LSM thickness plume map obtained by interpolation using Gaussian 

function. Color bar represents thickness. c) d) e) Thickness obtained along horizontal, vertical, 

cross axis by SEM values obtained from µ-Raman is compared with thickness obtained by 

Gaussian interpolation. 
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Figure 5.7. Thickness map study in LSC layer a) Sample with LSC plume positioned at the left 

corner of the Si wafer b) LSC thickness plume map obtained by interpolation using Gaussian 

function. Color bar represents thickness. c) d) e) Thickness obtained along horizontal, vertical, 

cross axis by SEM values obtained from µ-Raman is compared with thickness obtained by 

Gaussian interpolation. 
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The LSM and LSC thickness maps generated by interpolation using equations 5.2 

and 5.3 are plotted in Figure 5.6b and 5.7b. The color bar represents thickness in nm, in 

which red color indicates maximum thickness i.e. plume center region. These thickness 

maps resemble their respective samples Figure 5.6a (LSM/Si wafer) and Figure 5.7a 

(LSC/Si wafer) in terms of shape and size of the plume.  

In Figure 5.6c, d, e and Figure 5.7c, d, e the thickness measured along horizontal, 

vertical, and cross axis by experimental techniques such as SEM and µ-Raman (with 

error bar) are gathered together with the thickness fitted through Gaussian 

interpolation along the same axes.  

The maximum thickness of LSM and LSC at the plume centers estimated from SEM 

is 240nm and 228nm. In the wafer edges of both plumes, the minimum thickness is 

always in the range between 1nm to 25nm according to SEM and µ-Raman results.  

In general, thickness estimated by SEM is in good agreement with the one obtained 

by µ-Raman and with the thickness obtained by Gaussian fitting. These results confirm 

the possibility of attaining a whole thickness map by a non-destructive technique such 

as Raman and to use an analytical function to define the shape by using a limited 

number of experimental values. Having an analytical function allowed to combine 

different materials and plume center position to predict the thickness (composition) 

map of the resulting layer (see next section). 

5.3 Optimization of plume center position from superposition of LSM and 

LSC layers  

The LSM and LSC thickness maps comprise crucial information, as it allows to 

predict the thickness and composition distribution resulting from the superposition of 

the two plumes as a function of plume position.  

For this, we assume that the overlapping of LSM and LSC plume gives rise to a 

layer in which the thickness at every point is the sum of the thickness of parent layers 

separately. Positioning the center of the Gaussian distribution at different distances 

will generate different thickness profile of the combinatorial layer. Therefore, the 

resultant thickness will directly give a thickness distribution map. Since the density of 

LSM and LSC (LSM = 6.4g/cm3; LSC = 7.11g/cm3) are almost similar, the thickness ratio 

will directly give a compositional map of a combinatorial system.  
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Parent compounds superposition is carried out between LSM and LSC, by varying 

their plume center positions at different places on the Si wafer. LSM and LSC thickness 

maps are normalized to 180nm maximum thickness.  

LSM and LSC plume centers are kept in a way that their cross axis face each other 

on x-y plane. This is the axis where almost have the whole range of composition 

La0.8Sr0.2Mn1-xCoxO3±δ ranges from i.e. x ≈ 0 to 1 attained from the maximum to the 

minimum thickness of LSM and from the minimum to the maximum thickness of LSC. 

This main axis will be called as “central axis” for the convenience. The plume center 

position of each material and the distance between plume centers are considered the 

parameters to modify to control the compositional map. A first analysis of the final 

compositional map is obtained by changing the distance between LSM, LSC plume 

centers in 2cm, 4cm, 6cm, 7cm, 8cm, 9cm. 

The resultant thickness and concentration distribution obtained from the double 

deposition is given as 3D plot in Figure 5.8a to 5.8g where x-y plane represents 4-inch 

wafer (position in cm). Z-axis represents the resultant thickness obtained at different 

plume center positions which gives an overview about thickness and concentration 

distribution of different LSMC possible systems. The color bar in right hand side 

represents Co percentage relative to Mn. When the distance between LSM and LSC 

plume centers are varied, there is a change in the resultant thickness and a Co 

concentration distribution can be observed. 
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Figure 5.8. Resultant thickness, concentration distribution map when the distance between LSM 

and LSC plume centers is a)2cm b)4cm c)5cm d)6cm e)7cm f)8cm g) 9cm. x-y axis represents 

position in cm, z-axis represents thickness, color bar represents Co relative concentration to Mn. 

The thickness maxima at the two ends in longitudinal direction represents LSM (left), LSC 

(right) plume centers. 
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It is convenient to have a well spread variations in composition in order to have 

larger areas which can be considered as homogeneous in composition. Therefore, there 

are two important parameters such as thickness and concentration gradient that have 

to be carefully considered in the plume position optimization to obtain a sample with 

reasonable concentration gradient.  In the following section the influence of the plume 

center position on the thickness and Mn/Co distribution is discussed. 

5.3.1 Effect of plume center position on thickness and Co concentration 

distribution 

The resultant thickness emerged as a result of different plume center distance is 

plotted against wafer position in Figure 5.9.  

 
    Figure 5.9. Resultant thickness along central axis Vs different plume center position. 

 

It is observed that, moving the plumes farther away from 2cm to 9cm each other 

causes a dip in thickness which is due to the mixing of thickness present in the gradient 

and corner region of the Gaussian profile Figure 5.6 and Figure 5.7. In opposite, the dip 

is vanished when plumes are moved closer each other from 9cm to 2cm, which is due 

to the mixing of plume center portions mainly.  

The resultant thickness given in Figure 5.9 were obtained by adding the Gaussian 

functions of two plumes which can be written as,  

 𝒁𝒓𝒆𝒔(𝒙, 𝒚) = ⁡𝒁𝑳𝑺𝑴(𝒙, 𝒚) +⁡𝒁𝑳𝑺𝑪(𝒙 ± ∆𝒙, 𝒚 ± ∆𝒚) (5.4) 
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where 𝒁𝒓𝒆𝒔⁡(𝒙, 𝒚) represent resultant thickness at certain point (𝒙, 𝒚)⁡in z-direction 

when the thickness at specific points in LSM plume 𝒁𝑳𝑺𝑴(𝒙, 𝒚), LSC plume 𝒁𝑳𝑺𝑪(𝒙 ±

∆𝒙, 𝒚 ± ∆𝒚) are superimposed each other.  

Similarly, Mn/Co relative percentage at certain point can be obtained from the ratio 

of LSM or LSC layer thickness at particular point to the resultant thickness at that 

point.  The following equation is used to determine Mn/Co relative percentage,  

 

 
𝑴𝒏%(𝒙, 𝒚) = ⁡

𝒁𝑳𝑺𝑴(𝒙, 𝒚)

𝒁𝒓𝒆𝒔(𝒙, 𝒚)
× 𝟏𝟎𝟎 

(5.5) 

 

 
𝑪𝒐%(𝒙, 𝒚) = ⁡

𝒁𝑳𝑺𝑪(𝒙 ± ∆𝒙, 𝒚 ± ∆𝒚)

𝒁𝒓𝒆𝒔(𝒙, 𝒚)
× 𝟏𝟎𝟎 

(5.6) 

 

 𝒊𝒆. 𝑪𝒐%(𝒙, 𝒚) = 𝟏𝟎𝟎 − ⁡𝑴𝒏%(𝒙, 𝒚) (5.7) 

Where 𝑴𝒏%(𝒙, 𝒚) and 𝑪𝒐%(𝒙, 𝒚) represents the relative percentage of Mn and Co 

content at a certain point (𝒙, 𝒚). 𝒁𝑳𝑺𝑴(𝒙, 𝒚) represents LSM thickness 𝒁𝑳𝑺𝑴 at (𝒙, 𝒚), 

𝒁𝑳𝑺𝑪(𝒙 ± ∆𝒙, 𝒚 ± ∆𝒚) represents LSC thickness 𝒁𝑳𝑺𝑪 at (𝒙 ± ∆𝒙, 𝒚 ± ∆𝒚), 𝒁𝒓𝒆𝒔(𝒙, 𝒚) 

represents resultant thickness 𝒁𝒓𝒆𝒔 at (𝒙, 𝒚).  

The thickness and composition distribution values obtained along central axis at 

different plume center distance is compiled in the following table. 
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Table 5.2: Summary of thickness and concentration distribution obtained from plume superposition 

study 
Along central axis 

 

Distance 

between 

LSM and 

LSC 

plume 

centers 

(cm) 

Thickness distribution in 
Concentration distribution in 

Co % 

distribution 

 

Middle Edge 

Max 

% 

 

Min

% 

 

Plume 

centers;  

average 

value 

(nm) 

middle 

(nm) 

Edges; 

average 

value 

 (nm) 

Gradient  

( % mm-1) 

Span 

(cm) 

Gradient            

( % mm-1) 

Span 

(cm) 

2 300 324 55 0.92 6 0.39 4 72.1 27.9 

4 219 237 85 1.64 5 0.26 5 87.3 12.7 

6 195 145 132 2.17 4 0.09 6 92.6 7.4 

7 193 108 155 2.27 4 0.09 6 93.4 6.6 

8 192 80 174 2.29 4 0.11 6 93.8 6.3 

9 192 59 187 2.17 4 0.17 6 93.9 6.2 

 

The above table5.2 shows the influence of plume position on the thickness and Co 

concentration distribution along the central axis.  

There is no considerable change observed in the composition gradient per mm. 

However, composition gradients with the rate of ≈1% to 2% mm-1 in the middle 

whereas 0.1% to 0.4% mm-1 in the edges of central axis with different distribution 

(span) length.  

When the plume centres are closer to each other such as 2cm and 4cm away, Co 

concentration distribution is limited to ≈ 20% to 80%.  Besides that the other plume 

positions such as 6cm to 9cm away almost fulfils (≈7% to 93%) the expected whole 

range of Co concentration 1% to 100%.  

Although it is possible to fabricate a combinatorial sample with ≈7% to 93% Co in 

certain plume position, the thickness exceeds 100nm in the middle region of central 

axis when plume centres are 6cm and 7cm away. This thickness can cause thermal 

mismatch induced cracks in Co rich compositions, which may restrict from achieving 

crack-free intermediate compositions in LSMC family. It has to be mentioned that the 

TEC of LSMC system increase as a function of Co content [12]. This represents a 

significant limitation to take into account. 
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In chapter 3 it was found that critical thickness to grow a crack-free LSC layer is 

40nm which is a pure Co composition. It is expected that the critical thickness for Co 

rich (x > 50%) intermediate LSMC compositions supposed to be higher than 40nm 

thickness as its TEC is relatively smaller than pure LSC.  

Therefore, in thickness point of view plume positions such as 8cm and 9cm are 

attributed as the best positions to achieve crack-free Co rich intermediate compositions. 

Also, crack-free dense microstructure is an appropriate microstructure required for 

performing oxygen diffusion studies in LSMC combinatorial system.  

5.4 LSMC combinatorial sample preparation in PLD 

After performing the parent compounds deposition analysis (section 5.2) and the 

superposition study (section 5.3), a CCS LSMC combinatorial sample is prepared 

based on the favorable plume center position obtained from the parent layer mixing 

study. The sample is prepared by keeping LSM and LSC plume centers 8cm away. 

 The sample is fabricated in a PVD-5000 PLD system specially designed for 

fabricating CCS libraries in wafer level. The novel technical feature of this PLD is a 

precise and rapid synchronization of target exchange, target movement (rotation and 

translation), laser ablation and substrate rotation that allows the possibility of 

fabricating a multilayer system. The specification of PLD is given in detail in section 

2.2.3 in chapter 2.  

As shown in Figure 5.10, 4-inch Si wafer is used as a substrate for combinatorial 

sample fabrication. Firstly, 8YSZ layer of 100nm in thickness is grown on the top of the 

Si wafer with the following deposition conditions temperature T = 600°C, Pressure P = 

20mT, target-substrate distance d = 9cm, frequency f = 10Hz, fluency F ≈ 1.1J/cm2 (Table 

5.3). The value of 100nm represents the average thickness of the 8YSZ layer on the 

whole Si wafer. The main variation in thickness is in the wafer edge with a thickness of 

the 8YSZ is in between 75 and 90nm. This thickness inhomogeneity in the wafer edge is 

typical in large area PLD depositions due to uneven laser beam raster movement over 

a large diameter target [16, 17].  
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Figure  5.10. Schematic diagram of LSMC combinatorial sample fabrication in PLD and the 

resultant LSM/LSC multilayer system. 

 

After YSZ deposition, the LSM and LSC dense multi-layers are grown under the 

following deposition conditions T = 700°C, P = 20mT, d = 9.5cm, f = 10Hz, F ≈ 1.1J/cm2 

(LSM), 0.7J/cm2 (LSC) already optimized conditions in chapter 3 to grow a dense LSM 

and LSC layer. A sequence of alternated LSM and LSC layers is deposited (Figure 

5.10). The first parent layer of LSM is grown with 95 laser pulses, over which a second 

layer of LSC is grown with 88 pulses (Table 5.3). Each layer attains a thickness of ~1nm 

with the above number of pulses, which is the maximum thickness at the 

corresponding plume centers of LSM and LSC. This maximum 1nm plume center 

thickness starts to decrease from the center due to the LSM and LSC plume positions 

are fixed at one place during the deposition (Figure 5.10).  

Table 5.3: Deposition conditions of LSM, LSC, 8YSZ layer is organized in the following table. 
Layer Temperature 

(°C) 

Pressure 

(mT) 

Target to 

substrate 

distance 

(cm) 

Energy 

density 

(J/cm2) 

Frequency 

(Hz) 

Growth 

rate 

(Pulses 

nm-1) 

Micro 

structure 

LSM 700 20 9.5 1.1 10 95 Dense 

LSC 700 20 9.5 0.7 10 88 Dense 

8YSZ 600 20 9 1.1 10 120 Dense 
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The substrate is rotated 180° after every deposition in order to make LSC to deposit 

opposite to LSM layer. 

As-prepared LSMC combinatorial sample is given in Figure 5.11 in which  LSM and 

LSC plume centers can be clearly seen, located opposite to each other.  LSMC thin film 

system is attained through the interdiffusion of LSM/LSC multilayers during sample 

preparation itself. A brief introduction to interdiffusion mechanism in ultra-thin film 

layers is given in section 3.3 in chapter 3. 

 

 

Figure  5.11. As-prepared LSMC pseudo-binary system fabricated in PLD. 

 

Therefore a continuous composition spread LSMC pseudo-binary system is 

successfully fabricated from the thickness gradients of LSM and LSC multilayers by 

exposing half-portion of LSM and LSC plumes ablated from corresponding targets.  

5.5 Microstructural characterization of combinatorial sample 

5.5.1 Structural investigation by X-Ray diffraction (XRD) 

Structural investigations in the combinatorial sample are carried out by X-Ray 

diffraction. For that, the central axis where LSM and LSC plume center meet each other 

is selected for XRD measurement. As explained earlier, this is the place where the 

whole La0.8Sr0.2Mn1-xCoxO3±δ (x ≈ 0 to 1) concentration is distributed. This part is cut into 

chips of 1x1cm2 and XRD measurement is performed in these 10 chips and the samples 

are scanned in offset scanning mode in the region 2θ = 20° to 80° with step size of 0.02°. 

Figure 5.12 shows the series of XRD patterns acquired from the diced chips of 
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combinatorial sample which is arranged based on the increment in Co concentration 

from x=0.03 to x=1. 

 

Figure  5.12. XRD pattern of the LSMC system. The arrow marks represent the place where 

XRD patterns are acquired from each chip in the combinatorial sample. 

 

The XRD pattern (Figure 5.12) shows polycrystalline grains with the main 

diffraction peaks come from (012), (110), (104), (202), (006), (024), (300), (214), (018) 

reflections. No impurity or parasitic phases are found in the XRD pattern. The film is 

crystallized in Rhombohedral structure with the R3̅c space group [3, 12, 18, 19]. 

When the Co concentration is x=0.03 (Mn rich side), peak positioned at ≈40° shows 

maximum intensity, which goes down and disappears at x=0.49. Whereas the intensity 

of the peaks positioned at 22.8° and 46.7° starts to increase when Co concentration 

x=0.69 and reach maximum when x=1. The frequent appearance and disappearance of 

peaks from LSM to LSC indicates preferential orientation in LSMC system. But XRD 

measurement was carried out with an offset to avoid peak from the substrate (Si) 

which might have removed the preferential orientations (peaks) of LSMC system.  

When Co concentration increases there is a peak shift towards higher angle 2θ 

(Figure 5.13) which indicates a change in the cell parameter of LSMC crystal structure 

due to Mn replacement by Co atoms. Le Bail refinement [20] is performed on the 

combinatorial XRD patterns for a fixed single crystallographic structure Rhombohedral 
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with the R3̅c space group. The refinement is performed to extract various thin film 

structural information such as cell parameter, volume and reflection intensities (Ihkl). 

 

Figure  5.13.  XRD pattern of 30° to 50° indicates a peak shift over Co concentration. 

 

Since the chips numbered 8, 9, 10 are cracked, XRD pattern acquired from the chips 

from 1to 7 were only used for Le Bail refinement. Crack-formation in LSMC 

combinatorial system from chip 1 to 10 studied by SEM is given in the following figure 

(Figure 5.14). 
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Figure 5.14. SEM top-view images depict crack-formation in the chips of combinatorial sample. The 

chips numbered 8, 9 and 10 with high Co content (x ≈ 0.9 to 1) display cracks in their microstructure. 

As mentioned earlier in chapter 3, high thermal mismatch between LSMC system and Si substrate is 

attributed to be responsible for crack-formation in Co rich compositions. 

 

 

The cell parameters obtained by Le Bail refinement including cell volume (V) are 

plotted against Co concentration in the following figure (Figure 5.15a and 5.15b). 
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Figure 5.15. a) Cell parameters of Rhombohedrally crystallized LSMC system along a-axis, c-

axis obtained by Le Bail refinement is plotted against Co concentration b) Cell volume is plotted 

against Co concentration. The type of strain in LSMC crystal structure is plotted in the inset, in 

which c-axis exhibit tensile strain while a-axis exhibit compressive strain. 

 

There is a significant reduction in cell parameter along a(b) axis when Co 

concentration increases (Figure 5.15a). It is reported that lattice parameter decreases 

with the increment in Co content because Co ions are smaller in size than Mn ions [12, 

18, 21]. Opposite to a(b) axis, there is a linear decrease along c-axis until Co content 

x=0.49, later expansion is observed till x=0.87.  

The anomalous behavior in c-axis cannot be due to phase transition in LSMC 

system. If it is phase change it will affect the total shape, peak position and number of 

peaks in Raman spectra [25]. But such kind of changes have not been observed in the 

Raman study of LSMC system which is given in the upcoming section. Therefore, non-

linearity in c-axis may be due to strain induced by substrate. 

The deposited film is in compressive strain along a(b)-axis, while in tensile strain 

along c-axis (inset in Figure 5.15b). The strain values are calculated for LSMC system 

with Co concentration x ≈ 0, 0.1, 0.2 and 0.5 using the cell parameters given in the 

literature for the corresponding composition in powder form [12].  
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The structural information obtained from Le Bail refinement is summarized in the 

following table. 

Table 5.4: Summary of cell parameters of LSMC system obtained from Le Bail refinement 

 

Lattice parameter 

   

Co 

concentration 

(x) 

a=b (Å) 

(error = 

±0.001Å) 

c (Å) 

(error = 

±0.001Å) 

Volume 

(Å3) 

(error = ±0.1 

to 0.2Å3) 

 

Structure 
Space 

group 

0.03 5.494 13.511 353.3 Rh 𝑹𝟑̅𝒄 

0.05 5.488 13.499 352.1 Rh 𝑹𝟑̅𝒄 

0.12 5.471 13.462 349.0 Rh 𝑹𝟑̅𝒄 

0.22 5.455 13.410 345.6 Rh 𝑹𝟑̅𝒄 

0.49 5.436 13.344 341.4 Rh 𝑹𝟑̅𝒄 

0.69 5.421 13.379 340.4 Rh 𝑹𝟑̅𝒄 

0.87 5.402 13.403 338.7 Rh 𝑹𝟑̅𝒄 

 

5.5.2 Structural investigation by Raman analysis  

Raman spectroscopy is a powerful and sensitive technique to study the local 

structure, phase transition, and oxygen disorder of a crystalline system [22]. Mn site 

replacement by Co in LSMC system definitely cause distortion in Mn(Co)O6 octahedra 

which is expected to produce changes in the phonon modes of LSMC system [23]. 

Raman measurement is applied here to study the structural distortion induced by Co 

doping in LSMC system.  

Perovskite like manganites (LaMnO3) and cobaltites (LaCoO3) are well studied 

materials by Raman spectroscopy due to its interesting magnetic and electrical 

properties [21]. Generally LaMn1-xCoxO3 (LMC) compounds without Sr exhibit in two 

different crystal structures. When x<0.5 these compounds exhibit in orthorhombic 

structure with Pnma space group. When x>0.5 it exist in Rhombohedral structure with 

𝑅3̅𝑐 space group [21, 23, 24]. Interestingly, the whole LaMn1-xCoxO3 system turns to 

Rhombohedral structure when it is doped with Sr in the A-site.  

Figure 5.16 represents Raman mapping acquired at every ≈2mm along the central 

axis of combinatorial sample from Mn rich side to Co rich side. Baseline corrections 

and Silicon peak position adjustments are made before performing fittings on Raman 

spectra in order to extract precise peak position and intensity.  There are changes can 
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be observed in the peak position, size, and intensity of Raman spectra as a function of 

Co content.  

 

Figure 5.16.  Raman mapping performed in LSMC combinatorial system. 

 

5.5.2.1 Phonon modes of LSMC Rhombohedral crystal system 

In general, a rhombohedral LSMC crystal system has a total of 20 phonon modes, 

among them 5 modes (A1g+4Eg) are Raman active modes [24, 25]. In the Raman spectra 

of combinatorial sample there are three main bands positioned between 230-270cm-1, 

460-520cm-1 and 640-680cm-1 can be observed [23, 24, 25].   

Peak centered between the wavenumber 230-270cm-1 is associated with the rotational 

vibration of Mn(Co)O6 octahedra. While peaks corresponding to high frequencies are 

associated with the internal modes of Mn(Co)O6 octahedra. The peaks in between 460-

520cm-1 belongs to the bending vibration, whereas peaks between 640-680cm-1 

represents the stretching vibration of Mn(Co)-O bonds in Mn(Co)O6 octahedra. In 

particular, the bands in between 460-520cm-1, 640-680cm-1 are related to Jahn-Teller 

octahedral distortions (JT-distortion) (Figure 5.17) [23 - 27].  
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Figure 5.17. Visual representation of Rotational and Jahn-Teller distortion in a perovskite 

structure taken from ref [29]. 

 

5.5.2.2 Effect of Co content on Raman mode peak wavenumber  

The peak frequencies of the three main modes in LSMC system between                

230-270cm-1, 460-520cm-1 and 640-680cm-1 found from the fitting are plotted as a 

function of Co content in Figure 5.18. All the three modes display a change in the 

frequencies of their vibration when Co content varies.  

In particular, peak comprises JT-distortion (Figure 5.17) induced bending and 

stretching vibrations (460-520cm-1, 640-680cm-1) of Mn(Co)O6 octahedra shows an 

increase in frequency after Co concentration x=0.54. Whereas peaks constitute 

rotational vibration between 230-270cm-1 increases until x= 0.54 and then maintain a 

constant value of frequency from x=0.6. Therefore, the above changes in peak position 

over Co content confirm the presence of octahedral distortion in LSMC structure. 
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Figure  5.18. The peak frequencies of phonon modes near 250cm-1, 470cm-1, 650cm-1 plotted 

against Co concentration. 

5.5.2.3 Effect of Co content on Raman mode peak intensity  

The intensity corresponding to phonon modes between 230-270cm-1, 460-520cm-1 

and 640-680cm-1 is plotted against Co content in Figure 5.19. Generally, the intensity of 

Raman bands can be affected by two factors such as thickness [14, 15] and local 

structural distortion [23]. Both factors are directly proportional to Raman intensity.  

In Figure 5.19 intensities corresponding to the phonon modes of LSMC layer are not 

proportional to its thickness along the central axis when the plume centers are 8cm 

away (Figure 5.8f). Instead they are sensitive to local structural distortion.  
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Figure 5.19. The intensities of phonon modes near 250cm-1, 470cm-1, 650cm-1 including Si peak 

intensity 520cm-1 plotted against Co concentration. Inset shows the zoom view of the phonon 

mode intensities 250cm-1, 470cm-1. 

 

The intensity of Raman band near 650cm-1 shows a non-linear trend over Co content. 

Here, distortion due to stretching vibration increases over Co content until x≈0.5 and 

then decreases after x≈0.5 [23]. Whereas the band near 470cm-1 shows a decrement in 

intensity over Co content (inset in Figure 5.19) indicates decrement in distortion 

induced by bending vibration of Mn(Co)O6 octahedra [23]. Raman band near 250cm-1 

involving rotational vibration shows almost an invariant response to Co which depicts 

either the rotational distortion is minimum or no distortion.  

As a conclusion Raman analysis on LSMC combinatorial system confirms the 

existence of distortion in LSMC system. The Raman analysis has also explained the 

type of distortion and the effect of Co content on the tendency of distortion. 

5.5.3 Morphology study by Atomic Force Microscopy (AFM) 

The surface morphology of the LSMC combinatorial sample is studied by Atomic 

Force Microscopy (AFM). The samples used for XRD are also used for the morphology 

study by AFM and the measurement is performed in the region where the XRD 

measurement was performed.  

LSMC system on YSZ/Si substrate deposited at 700°C exhibit a dense and smooth 

surface (Figure 5.20a to 5.20j). The average RMS value of roughness is in the range 1nm 
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to 3nm (error is ±0.5nm) which indicates the surface of LSMC system is smooth and 

flat. 

 

Figure 5.20. Morphology study of LSMC combinatorial sample by AFM along the central axis 

(from chip 1 to 10 in Figure 5.12) 

 

The grain size values are determined in each chip using SEM and AFM top-view 

images of LSMC system and the average grain size value estimated from the central 

point of each chip is given in the following figure (Figure 5.21). 

 

 

 



V - Optimization of the combinatorial PLD method for the 

 study of the La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) thin film system

 

113 

 

 

Figure 5.21. Average grain size estimated from AFM, SEM images is plotted against 

combinatorial samples (chips from 1 to 10). 

 

The above figure illustrates the average grain size values associated with the chips 

from 1 to 10 (Figure 5.12) and the grain size values are in the range 20nm to 55nm. The 

increment in grain size values can be observed from chip-4 which has ≈20% Co (an 

average value).  

The grain size values estimated from AFM and SEM are applied in Finite Element 

simulation (FEM) in the following chapter 6 to simulate the oxygen diffusion profiles 

of LSMC combinatorial samples. 

5.5.4 Thickness mapping by Scanning Electron Microscopy (SEM) and 

comparison with parent layers superposition results 

The thickness and composition distribution map in the combinatorial sample are 

characterized by different experimental techniques. The thickness map along the 

central axis of combinatorial sample is obtained by SEM.  

In Figure 5.22 the thickness obtained by SEM measurement is compared with parent 

layer superposition values estimated (section 5.3) at 8cm away LSM and LSC plume 

centers. They are plotted together against the wafer position along central axis.  
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Figure 5.22. Thickness obtained by SEM is compared with plume superposition values plotted 

against wafer position in cm. 

 

The minimum and maximum thickness values obtained when the plume center 

distance 8cm away are 80nm and 192nm (Table 5.2) that exactly matches with the 

minimum and maximum thickness values determined by SEM (which are 192nm and 

79nm). Also, the thickness progresses in the same way in both method of 

measurement. 

Therefore there is a good agreement in thickness obtained between SEM an 

experimental technique and superposition prediction method. 

5.5.5 Composition mapping by Energy Dispersive Spectroscopy (EDS), 

Wavelength Dispersive Spectroscopy (WDS) and comparison with 

superposition results 

The composition distribution along the central axis of combinatorial sample is 

studied by EDS and WDS analysis. In Figure 5.23a atomic percentage of A and B-site 

atoms in LSMC system estimated from WDS technique is plotted against wafer 

position. In which the atomic percentage of A-site atoms such as La and Sr follows the 

nominal percentage of 80% for La, 20% for Sr. The atomic percentage of Mn and Co 

atoms follow Gaussain distribution along the central axis (similar to thickness).  

The atomic ratio between La/Sr (A-site), Mn/Co (B-site), La+Sr)/Mn+Co (A/B-site) 

atoms are also estimated from the atomic concentration of microprobe (WDS) 

measurement. They are plotted against the position along central axis in Figure 5.23b.  
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Figure 5.23. Composition mapping along the central axis of combinatorial sample studied by 

WDS technique a) Atomic percentage of La, Sr, Co, Mn atoms and b) Atomic ratios such as 

La/Sr, Mn/Co, La+Sr/Mn+Co (A/B) are plotted against wafer position. Straight line represents 

nominal values. 

 

In Figure 5.23b the atomic ratio between A-site atoms such as La/Sr ratio follows the 

nominal value 4 throughout the central axis. But the ratio between A and B-site atoms 

(A/B=(La+Sr)/(Mn+Co)) is ≈ 1.2 an average value estimated from the central axis, which 

is slightly higher than the theoretical value 1. Hence, it is clear that there is deficiency 

in the B-site atoms of LSMC system according to WDS measurement which arises from 

the B-site under-stoichiometric PLD targets due to the frequent laser ablation as 

already mentioned in section 2.2.3 in chapter 2.  

Apart from the discrepancy in B-site, the stoichiometry of A-site atoms are La = 0.8, 

Sr = 0.19 which is equal to the nominal stoichiometry La is 0.8, Sr is 0.2. 

Mn/Co relative concentration estimated from EDS, WDS technique is compared 

with the relative concentration predicted from plume superposition study using 

equations 5.5, 5.6 and 5.7 when the distance between plume centers are 8cm away. 

They are plotted together against position along central axis in Figure 5.24.  
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Figure 5.24.  Mn/Co relative concentration obtained by EDS, WDS technique is compared with 

plume superposition values plotted against wafer position. 

 

When the plume centers are 8cm away there was 2.3%mm-1 Mn/Co concentration 

gradient in the middle and 0.1%mm-1 in the wafer edges (Table 5.2). Whereas Mn/Co 

atomic concentration changes with the rate of 2.0%mm-1 estimated by EDS and 

1.97%mm-1 by WDS in the middle region. In the edges it is 0.5%mm-1. Therefore, Mn/Co 

concentration gradient determined by bulk elemental analysis methods such as EDS 

and WDS matches with the prediction by superposition.  

However, concentration predicted in the wafer edges follows a flat profile (0.1% 

mm-1) which is slightly lower than experimental values (Figure 5.24). This is probably 

due to an error (Table 5.1) of the best fitting obtained at the edges.  

5.6 Validation of plume superposition results with experimental 

results 
 

The thickness, concentration distribution and gradient estimated from the parent 

layer superposition at 8cm away plume center and experimental techniques are 

compared in the following table 5.4. 
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Table 5.4: Comparison of thickness and concentration distribution between experimental and parent 

layer superposition values 

Method 

Thickness 

distribution in 

Composition gradient in 

Co 

concentration 

distribution 

 

Middle Edge 

Max 

% 

Min 

% 

Plume 

centers;  

average 

value 

(nm) 

middle 

(nm) 

Gradient  

(% mm-1) 

Span 

(cm) 

Gradient  

( % mm-1) 

Span 

(cm) 

Super 

position of 

Parent 

materials 

(8cm away) 

192 80 2.29 4 0.11 6 93.8 6.3 

SEM 192 79       

EDS   2.03 4 0.5 6 0 0 

WDS   1.97 4 0.45 6 100 2.4 

 

Table 5.4 confirms that the thickness, concentration distribution and gradient 

estimated from the parent layer superposition at 8cm away plume center is in good 

agreement with the values acquired through experimental techniques in the 

combinatorial sample prepared by keeping LSM and LSC plume centers ≈ 8cm away. It 

validates that the technical methodology introduced in this chapter to predict thickness 

and composition distribution map is functioning.  

5.7 Conclusion 

The continuous composition spread LSMC pseudo-binary system was 

successfully fabricated without any parasitic phase based on the best plume center 

position predicted from an analytical superposition study. The microstructure of the 

combinatorial sample was studied by various experimental techniques such as XRD, 

Raman, AFM, SEM, EDS and WDS. The thickness, Mn/Co distribution and gradient 

values determined by experimental techniques is consistent with the values predicted 

from plume superposition when the LSM and LSC plume centers are 8cm away. 

Therefore the new methodology adopted in this chapter to fabricate CCS based 

combinatorial system is trustworthy. 



V - Optimization of the combinatorial PLD method for the 

 study of the La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) thin film system

 

118 

 

References 

[1] K. Rajan, ACS Comb. Sci., 2011, 13, 579. 

[2] R. B. Van Dover, L. F. Schneemeyer, R. M. Fleming, Nature, 1998, 392, 162. 

[3] A. Thursfield , J. C. H. Rossiny, S. Fearn, J. A. Kilner, I. S.  Metcalfe, Solid State 

Ionics, 2012, 225, 182. 

[4] X. D. Xiang, X. Sun, G. Briceno, Y. Lou, K. Wang, H. Chang, W. G. Wallace-

Freedman, S. Chen, P. G. Schultz, Sci., 1995, 268, 1738. 

[5] H. M. Christen, I. Ohkubo, C. M. Rouleau, G. E. Jellison, A. A. Puretzky, D. B. 

Geohegan, D. H. Lowndes, Meas. Sci. Technol., 2005, 16, 21. 

[6] B. C. H. Steele, Curr. Opin. Solid St. M., 1996, 1, 684.  

[7] J. Sunarso, S. Baumann, J. M. Serra,W. A. Meulenberg, S. Liu, Y. S. Lin, J. C. Diniz 

da Costa, J. memb. Sci. Technol., 2008, 320, 13.  

[8] R. A. De Souza, J. A. Kilner, Solid State Ionics, 1998, 106, 175. 

[9] R. A. De Souza, J. A. Kilner, Solid State Ionics, 1999, 126, 153. 

[10] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Appl. Catal. B-Environ., 2005, 58, 

273. 

[11] K. Ahn, H. Kim, Y. C. Chung, H. R. Kim, J. W. Son, H. W. Lee, J. H. Lee, Appl. 

Catal. A-Gen., 2010, 387, 203. 

[12] R. V. Wandekar, B. N. Wani, S. R. Bharadwaj, Solid State Sciences, 2009, 11, 240. 

[13] P. E. Nica, G. B. Rusu, O. G. Dragos, C. Ursu, IEEE Transactions on plasma science, 

2014, 42, 2694. 

[14] S. Shivaraman, M.V.S. chandrashekhar, J. J. boeckl, M. G. spencer, J. Electron. 

Mater., 2009, 38, 725. 

[15] Z. X. Shen, Raman microscopy in characterization of Si devices (Publication from 

National University of Singapore). 

[16] J. A. Greer, J. Phys. D, 2014, 47, 1.  

[17] Robert Eason, Pulsed Laser Deposition of Thin films, Wiley, NJ, USA, 2007 . 

[18] A. N. Petrov, V. I. Voronin, T. Norby, P. Kofstad, J. Solid State Chem., 1999, 143, 

52. 

[19] I. O. Troyanchuk, A. P. Sazonov, H. Szymczak, D. M. Tobbens, H. Gamari-Seale, 

J. Exp. Theor. Phys., 2004, 99, 363. 

[20] V. K. Peterson, Powder Diffr., 2005, 20, 14. 

[21] C. Autret, J. Hejtmanek, K. Knizek, M. Marysko, Z.  Jirak, M. Dlouha,  S. 

Vratislav, J. Phys. Condens. Matter, 2005, 17, 1601. 

[22] S. S. R. kumar, Raman spectroscopy for Nanomaterials characterization, Springer, 

Heidelberg, Germany, 2012. 

[23] N. V. Minh, I. Yang, Vib. Spectrosc., 2006, 42, 353. 

http://link.springer.com/journal/11664
http://link.springer.com/journal/11664


V - Optimization of the combinatorial PLD method for the 

 study of the La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) thin film system

 

119 

 

[24] V. P. Gnezdilov, A. V. Yeremenko, Low Temp. Phys., 2003, 29, 963. 

[25] P. T. Phong, S. J. Jang, B. T. Huy, Y. I. Lee, I. J. Lee, J. Mater. Sci., 2013, 24, 2292. 

[26] M. N. Lliev, M. V. Abrashev, J. Raman. Spectrosc., 2001, 32, 805. 

[27] L. Carron, A. Andres, M. J. Martinez-Lope, M. T. Casais, J. A. Alonso, Phys. Rev. 

B, 2002, 66, 174303. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Study of oxygen transport properties of 

La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) combinatorial thin 
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Chapter VI 

6.1  Chapter outline 

In the previous chapters, by using the combinatorial PLD deposition technique, 

LSMC thin film system was fabricated with a continuous variation in Mn and Co 

concentration. The morphology, composition and phase of LSMC system was 

characterized by various experimental techniques. The purpose of this chapter is to 

assess the oxygen transport properties of LSMC system IEDP-SIMS technique. 

The oxygen transport properties of oxide ion conductors can be studied by various 

experimental techniques such as electrical conductivity relaxation (ECR) [1, 2], AC 

impedance spectroscopy [3], curvature relaxation method [4, 5], gravimetric [6] and 

manometric [7] methods. In this chapter the functional property is examined by the 

mapping of LSMC combinatorial thin film system using Isotope exchange depth-

profiling technique (IEDP) coupled with Secondary ion mass spectrometry (SIMS) [8, 9, 

10]. This is a direct method to determine oxygen kinetic parameters [8] where oxygen 

mass transport takes place under zero electrochemical driving force and the 

parameters acquired from such kind of transport are oxygen surface-exchange 

coefficient (𝒌∗) and oxygen self-diffusion coefficient (𝑫∗). 

Since the samples studied here are in thin film form, some of the traditional sample 

processing steps involved in isotope exchange measurement are not required. As an 

example, a thin film sample has well-defined smooth surface and morphology which 

avoid polishing step that can modify the sample surface and alter 𝒌∗ [9, 10].  

The present chapter is about the functional characterization of LSMC thin film 

combinatorial system is presented in the following way. The crack-study performed in 

combinatorial system and the details of the samples used for IEDP-SIMS1 mapping is 

organized in section 6.2. In section 6.3 Finite Element Method (FEM) simulations are 

carried out in the 18O isotope concentration profiles of LSMC thin film system. The 

oxygen transport coefficients acquired from FEM simulation and the results are 

discussed in sections 6.3.1 and 6.3.2. 

                                                 
1 IEDP-SIMS measurement on LSMC combinatorial system was carried out by Dr. Monica 

Burriel in Imperial College, London. 



 VI - Functional study of La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) 

combinatorial thin film system by IEDP-SIMS technique 

 

121 

 

6.2 IEDP-SIMS measurements in combinatorial sample 

6.2.1 IEDP-SIMS measurement sample details 

The combinatorial sample (4-inch wafer) was diced into chips of 1x1cm2 for IEDP-

SIMS measurement. The graphical representation of LSMC combinatorial system is 

given in Figure 6.1. Among them, only the chips with crack-free microstructure will be 

useful for oxygen isotope exchange study because there is a chance of pore diffusion 

along grain boundaries in cracked layers during oxygen exchange that would alter the 

obtained profile and lead to wrong conclusions [9, 10].  

 

 

Figure 6.1. Illustration of LSMC binary system deposited on YSZ layer and 4-inch Si wafer. 

The top layer shows a typical thickness gradient profile obtained from combinatorial deposition 

in PLD. 

 

In order to avoid that, the chips exhibit gas-tight dense microstructure, chips 

labelled from 1 to 7 (x < 0.85) were used for IEDP-SIMS measurement (Figure 6.2). The 

crack-evolution with thickness study performed in combinatorial chips can be found in 

Figure 5.14 in chapter 5.  

 

Figure 6.2. Illustration of chips used for IEDP-SIMS measurement and the location of punctual 

SIMS measurement points in chip-4 belonging to combinatorial sample. 
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In these chips, 18O isotope was exchanged for around 30 minutes under 

temperatures 600°C, 700°C and 800°C. Each step involved in oxygen isotope exchange 

process is explained in detail in section 2.4.2 in chapter 2. 

Following the exchange step, punctual SIMS measurement was performed in 3 to 5 

points in every chip at every 1 to 3mm distance approximately. The graphical 

representation of punctual SIMS measurement points in chip-4 including real image of 

the same chip is given as an example in Figure 6.2.  

The samples are sputtered with Bi+ primary ion beam that created a 200x200µm 

crater. Simultaneously, the secondary ion intensities of the milled ions are recorded in 

the detector based on the time of flight of arrival (ToF) of the secondary ions. As an 

example, Figure 6.3 shows an image of a crater taken by SEM in chip-2 at position 

8mm (sample code-C2-700-c).   

 

 

Figure 6.3. SEM image depicts 200x200µm size crater created during sputtering of sample 

surface by Bi+ primary ion beam. The image corresponds to sample code-C2-700-c located in 

chip-2 at 8mm. 

 

 

Also, the list of samples used for IEDP-SIMS measurement including 18O-exchange 

temperature and time is given in the following Table.6.1. 
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Table 6.1: List of samples used for IEDP-SIMS measurement. 

Chip Sample code Temperature (°C) Exchange time (s) 

6 C6-600-a 600 1244 

6 C6-600-b 600 1244 

6 C6-600-c 600 1244 

7 C7-600-a 600 1244 

7 C7-600-b 600 1244 

7 C7-600-c 600 1244 

2 C2-700-a 700 1318 

2 C2-700-b 700 1318 

 2 C2-700-c 700 1318 

3 C3-700-a 700 1591 

3 C3-700-b 700 1591 

3 C3-700-c 700 1591 

4 C4-700-a 700 1318 

4 C4-700-b 700 1318 

4 C4-700-c 700 1318 

5 C5-700-a 700 1472 

5 C5-700-b 700 1472 

5 C5-700-c 700 1472 

6 C6-700-a 700 1472 

6 C6-700-b 700 1472 

6 C6-700-c 700 1472 

4 C4-800-a 800 1322 

4 C4-800-b 800 1322 

4 C4-800-c 800 1322 

4 C4-800-d 800 1322 

4 C4-800-e 800 1322 

 

6.2.2 18O concentration profile in LSMC combinatorial system 

In order to determine oxygen transport parameters such as oxygen surface exchange 

coefficient 𝒌∗ and oxygen diffusion coefficient  𝑫∗, 18O concentration profile obtained 

from IEDP-SIMS measurement has to be analyzed with the normalized value of 18O 

intensities. For that, 18O oxygen isotope fraction is first calculated from 18O, and 16O 

secondary ion intensities which can be written as, 

 

 
𝐂(𝐱, 𝐭) =

𝐜𝐨𝐮𝐧𝐭𝐬(𝐎𝟏𝟖)

𝐜𝐨𝐮𝐧𝐭𝐬(𝐎𝟏𝟔 ) + 𝐜𝐨𝐮𝐧𝐭𝐬(𝐎𝟏𝟖)
 

 

(6.1) 

Then the oxygen isotope fraction can be normalized with the following equation,   

 
𝐂′ =

𝐂(𝐱, 𝐭) − 𝐂𝟏

𝐂𝟐 − 𝐂𝟏
 

 

(6.2) 

Where 𝑪′ is normalized oxygen isotope concentration, 𝑪(𝒙, 𝒕) is oxygen isotope 

concentration at certain time and depth in the sample, 𝑪𝟏 is the natural abundance of 

18O isotope which is always 0.002 (0.2%), 𝑪𝟐 is 18O gas concentration in isotope enriched 



 VI - Functional study of La0.8Sr0.2Mn1-xCoxO3±δ (x=0 to 1) 

combinatorial thin film system by IEDP-SIMS technique 

 

124 

 

surrounding atmosphere which is 0.553 (55.3%) in the oxygen isotope exchange gas 

used for the combinatorial sample. The above equation 6.1 is also used to determine 

the elemental fraction of other secondary ion intensities such as LaO-, SrO-, MnO-,   

CoO-, YO-, ZrO-, Si-.  

In Figure 6.4 the in-depth distribution of ion concentration acquired by IEDP-SIMS 

in LSMC/8YSZ bilayers (sample-C2-700-c) is given as an example. The secondary ion 

signals such as LaO- was used to determine LSMC/8YSZ interface. The drop of LaO- 

counts from 90% to 10% was located as LSMC/8YSZ interface position. The sputter-

time axis was converted into thickness axis using the thickness of LSMC and 8YSZ 

layers determined by SEM (see section 5.5.4 in chapter 5 for more details about 

thickness). 

 

 

Figure 6.4 Typical SIMS depth profile of the different species contained in the LSMC/YSZ 

bilayer corresponding to sample C2-700-c.  Sharp interfaces with short interdiffusion close to 

the LSMC/YSZ interlayer can be observed ensuring the high quality of the films. 

 

In Figure 6.4, it is noticeable that the intensity of Si in LSMC and 8YSZ layers are in 

the order of 10-5 to 10-4 which is close to zero that indicates there is no Si diffusion from 

the substrate to the deposited top layers. Similarly, intensities of YO-, ZrO- in LSMC 

layer are in the same range, which confirms that the sample C2-700-c used for oxygen 

exchange is a pure composition unaffected by the diffusion of substrate atoms. 
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Similarly, the concentration profile of other samples (sample list in Table.6.1) were 

analyzed confirming that any impurity is found in LSMC layer.  

The 18O normalized concentration depth profile obtained in LSMC/8YSZ bilayers 

with varying Co content are organized based on different oxygen exchange 

temperatures 600°C, 700°C and 800°C which is given in the following figures  (Figure 

6.5a, b and c).  
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Figure 6.5. 18O normalized concentration depth profile obtained in LSMC/8YSZ bilayers 

obtained through IEDP-SIMS measurement which is categorized based on different oxygen 

isotope exchange temperature a) 600°C  b) 700°C c) 800°C. x-axis represents distance 

(thickness) of LSMC/YSZ layer over Si interface. 

 

It can be seen clearly in Figure 6.5 that the influence of Co content on 18O oxygen 

isotope concentration which seems highly sensitive to the amount of Co content 

present in LSMC system. The different length of diffusion profiles corresponding to 

different thickness of the LSMC system as seen in section 5.5.4 in chapter 5.  

There was difficulty in achieving 18O concentration profile at high temperature 

800°C due to fast oxygen diffusion that produced saturation of 18O isotope in LSMC 

layer. The sample with Co fraction above 0.26 at 800°C is saturated with 18O isotope, 

hence SIMS mapping was not performed for higher that concentration of Co.  

The total amount of oxygen isotope concentration in LSMC surface and the 

diffusion concentration inside LSMC layer increase over Co concentration. Also the 

concentration profile becomes straight with respect to Co. This trend suggests an 

increment in diffusion coefficient 𝑫∗ and surface exchange coefficient 𝒌∗ values over 

Co percentage in LSMC system that can be expected from oxygen isotope depth profile 

fittings.  
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6.3 Determination of oxygen transport parameters of LSMC 

system by FEM simulation 

There are numerous analytical solutions available in the literature to extract 𝑫∗ and 

 𝒌∗ values from the oxygen isotope concentration profile which depends on the 

particularity of the system studied [12]. In appendix A, some commonly used models 

to study the oxygen transport in oxides are explained. In addition to that, Two-slab 

model is also introduced to study bilayer systems. (Readers are recommended to go-

through appendix A for more information about Two-slab model). 

Initially, oxygen diffusion profiles of LSMC/8YSZ bilayers (Figure 6.5a, b and c) are 

fitted using a Two-slab model. As an example, the fitting obtained in LSMC layer 

(sample code - C2-700-c) with 6% Co using Two-slab model is given in Figure 6.6.  

 

 

Figure 6.6. Fitting of oxygen isotope diffusion profile using Two-slab model corresponding to 

LSMC layer with 6% Co (sample code - C2-700-c). 

 

The experimental profile in Figure 6.6 corresponding to the sample C2-700-c seems 

to have three regions constitute of a gradual decay in LSMC surface, a deep-

penetrating tail inside LSMC layer and a small dip at LSMC/YSZ interface. In addition, 

there is back-diffusion can always be observed in all oxygen diffusion profiles at 

gas/LSMC interface (Figure 6.5a, b and c). 
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In Figure 6.6 it is clear that the whole experimental profile cannot be fitted using 

Two-slab model. The reason can be due to LSMC system may act as a heterogeneous 

medium with multiple pathways for oxygen transport. The presence of such 

heterogeneity could be due to columnar-shaped grains obtained by PLD deposition. 

The associated vertically aligned grain boundaries may act as highway for oxygen 

transport, compared to the samples prepared with other techniques. These grain 

boundaries can offer extra diffusion and exchange pathways, with different properties 

compared to bulk.  

Generally, Two-slab model is defined for homogeneous media, with that it is not 

possible to distinguish   𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  or more than one  𝑫∗ and 𝒌∗ values 

embedded in an oxygen isotope diffusion profile of particular composition. where 𝑫𝒃
∗  

is oxygen self-diffusion coefficient along bulk, 𝑫𝒈𝒃
∗  is oxygen self-diffusion coefficient 

along grain boundary. Similarly, 𝒌𝒃
∗  is oxygen self-exchange coefficient along bulk, 𝒌𝒈𝒃

∗  

is oxygen self-exchange coefficient along grain boundary. 

Since there is no analytical solution available for a bilayer heterogeneous thin film 

system with different  𝑫∗ and 𝒌∗ values, the oxygen isotope diffusion profiles of 

LSMC/8YSZ bilayer are studied by numerical solutions using Finite Element method 

(FEM) to extract the oxygen transport parameters along the bulk and grain boundaries 

( 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗ ) of the LSMC layer.  

The isotope oxygen concentration in LSMC/8YSZ bilayer was simulated by 

constructing a geometry equivalent to LSMC/8YSZ nanostructure. The geometry 

consists of a vertically aligned columnar set of grains associated with LSMC and 8YSZ 

layer in which the top-layer LSMC is exposed to oxygen enriched isotopic atmosphere 

(55.3% of 18O). In the vertically aligned LSMC/8YSZ nanostructure, a unit cell is taken 

into account for FEM simulation, consisting of two-half grains in series which is 

parallel to other two half-grains arranged in series. These grains are separated by 1nm 

thick grain boundary. The top-view of unit cell is equivalent to the microstructure of a 

brick-layer model [13]. The thickness and average grain size values estimated by SEM, 

AFM studies in the previous chapter-5 (section 5.5.3 and 5.5.4) was applied in the 

construction of the sample geometry for FEM simulation. 

In grain bulk, De-souza et al. [14, 15] values of oxygen diffusion and exchange 

coefficients (𝑫𝒃
∗  and 𝒌𝒃

∗ ) are used as reference to simulate the oxygen isotope profiles. In 

grain boundary, manually adjusted values of diffusion and exchange coefficients 
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(𝑫𝒈𝒃
∗  and 𝒌𝒈𝒃

∗ ) are used to simulate the experimental profile. It is found that the shape 

of experimental profile is very sensitive to  𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  values and they are 

adjusted till a good fitting was obtained.  

As an example, the oxygen isotope profile simulated in LSMC/8YSZ bilayer sample 

with 6% Co (sample code - C2-700-c) is given in Figure 6.7 which shows that the 

simulated profile is in good agreement with the experimental profile and confirms the 

possibility of fitting the whole experimental profile with FEM simulation that was not 

possible using a simple Two-slab model. 

 Also, 3D isotopic concentration distribution in sample C2-700-c (Figure 6.7b) reveals 

that both grain boundary and grain bulk are active for oxygen exchange and diffusion. 

Although both pathways are active, oxygen isotope concentration inside and 

surrounding region of grain boundary (top-view image in Figure 6.7b) is particularly 

high compared to the grain bulk region, which confirms that the grain boundary 

pathway acts as the most desirable preferential pathway for oxygen entry on LSMC 

surface (exchange process) and oxygen transport (diffusion transport) inside LSMC.  
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Figure 6.7. a) Oxygen isotope simulated concentration profile is compared with experimental 

profile corresponding to sample C2-700-c with 6% Co. b) Top-view and cross-section 3D images 

of oxygen isotope 18O concentration distribution map in LSMC/8YSZ bilayer for the intersection 

of four quarters of grain generated by FEM simulation belong to the same sample C2-700-c. 

 

In the previous study on pure LSM (chapter-4) [16] it was found that the grain bulk 

pathway was orders of magnitude lower diffusivity than GB as it is known that LSM is 

a bad oxygen-ion conductor. In the present stud on LSMC thin film combinatorial 

system, oxygen vacancies may present everywhere in LSMC which is proportional to 

Co concentration, but the amount of vacancies available in grain boundary should be 

comparatively higher than grain bulk region. Therefore higher amount of oxygen 

vacancy concentration is supposed to be responsible for the higher amount of oxygen 

isotope concentration in the surface and innermost part of grain boundary. 

Similarly, an appropriate profile was simulated for various oxygen isotope diffusion 

experimental profiles acquired in LSMC combinatorial thin film system (Figure 6.5a, b 

and c). A collection of   𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  values of LSMC combinatorial system 

acquired from FEM simulation is plotted and the results are discussed in sections 6.3.1 

and 6.3.2. 
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6.3.1  Oxygen self-diffusion coefficients 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  Vs Co content   

In Figure 6.8a, b and c both diffusion coefficients along grain bulk 𝑫𝒃
∗  and grain 

boundary 𝑫𝒈𝒃
∗  increase as a function of Co content, as well as with temperature 600°C, 

700°C and 800°C. However, the oxygen diffusivity values of 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  at 700°C and 

800°C remains almost constant until Co content x ≈ 0.2 and increases after x ≈ 0.2. A 

similar trend was also observed by De Souza et al. [14, 15] in his oxygen self-diffusion 

coefficient values on LSMC bulk until x = 0.2 fraction of Co substitution. This trend 

shows that Co substitution (from x ≈ 0.04 to 0.2) in LSM perovskite structure does not 

produce any remarkable change in the oxygen diffusivity values of grain boundary 

and bulk pathways.  
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Figure 6.8. Oxygen self-diffusion coefficient along grain bulk 𝑫𝒃

∗  and grain boundary 𝑫𝒈𝒃
∗  

extracted at a) 600°C b) 700°C c) 800°C is plotted against Co content. The values are compared 

with literature [14, 15, 16]. 

 

𝑫∗ dependency on Co fraction can be explained by the defect chemistry of parent 

materials [17-20]. It is well-known that LSM is an oxygen hyper-stoichiometric material 

system where the metal vacancies, electron and holes are the predominant defects 

while oxygen vacancy concentration [𝑉̈𝑜] is very low. In opposite to LSM, LSC is an 

oxygen sub-stoichiometric material where oxygen vacancies are the major defects 

including electrons and holes [11, 14, 15, 21]. Typically, Oxygen diffusivity is promoted 

by the concentration of oxygen vacancies 𝑉̈𝑜 [11, 14, 15, 21]. The following equation 
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shows the relation between 𝑫∗ and oxygen vacancy concentration [𝑽̈𝒐] which can be 

given as, 

 

 𝑫∗ =  𝒇∗𝑫𝒗 [𝑽̈𝒐] (6.3) 

Where 𝑓∗ is oxygen isotope correlation factor which is 0.69 for perovskites [14, 22], 𝐷𝑣 

is vacancy diffusion coefficient.   

Alan et al. [23] studied oxygen non-stoichiometry (δ) values in LSMC system and it 

is found that δ = 0.006 when Co content x = 0 and δ = 0.002 when X = 0.1, measured by 

TGA at 1040°C in air.  Even though TGA measurement is higher than 700°C, almost 

constant values of 𝑫𝒃
∗  and 𝑫𝒈𝒃

∗   from x ≈ 0.04 to 0.2 in Figure 6.8b is attributed to there 

is no considerable change in the oxygen non-stoichiometry values based on Alan et al. 

results. Therefore, increment in 𝑫𝒃
∗  and  values above x > 0.2 may due to an increment 

in the oxygen vacancy concentration [𝑉̈𝑜] or non-stoichiometric (δ) values in LSMC 

system over Co content. But 𝑫𝒈𝒃
∗  values are not in the same order of magnitude as 𝑫𝒃

∗  

instead it is 3 to 6 orders greater than 𝑫𝒃
∗ .  

In Figure 6.8 it is also noticed that as temperature increases, the gap between 𝑫𝒃
∗  and 

𝑫𝒈𝒃
∗  values of particular temperature also increases in order of magnitude. At 600°C 

𝑫𝒈𝒃
∗  values are 3 orders of magnitude higher than 𝑫𝒃

∗  values, at 700°C it is 4 orders of 

magnitude higher. Similarly, at 800°C 𝑫𝒈𝒃
∗  is approximately 6 orders of magnitude 

higher than 𝑫𝒃
∗ . 

Based on the knowledge gained in oxide-ion transport in grain boundary region of 

pure LSM by IEDP-SIMS, impedance and TEM studies [16] strain induced high density 

of dislocations in grain boundary region can be responsible behind the remarkable 

enhancement in the diffusivity along the grain boundary 𝑫𝒈𝒃
∗  of LSMC nanostructures. 

It can be the explanation for increment in 𝑫𝒈𝒃
∗  observed above x > 0.2 and the increment 

in magnitude difference between 𝑫𝒃
∗  and 𝑫𝒈𝒃

∗  values against temperature. Further, the 

increase of 𝑫𝒈𝒃
∗  as a function of Co goes in parallel to 𝑫𝒃

∗ . It is probably due to the effect 

of Co on the grain boundary is similar to bulk. 

The activation energy or enthalpy of oxygen diffusion ∆𝑯𝑫∗  is the sum of oxygen 

migration enthalpy ∆𝑯𝒎 and association enthalpy ∆𝑯𝒂 which can be written as, 
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 ∆𝑯𝑫∗ =  ∆𝑯𝒎 +  ∆𝑯𝒂 (6.4) 

Association enthalpy is related to the enthalpy associated with formation of 

complex defects such as oxygen vacancies due to A or B-site substitution, here Mn is 

replaced by Co. The representation of 𝑫𝒃
∗  and 𝑫𝒈𝒃

∗  values in the form of arrhenius plot 

and the estimation of ∆𝑯𝑫∗  from arrhenius plot cannot be attained in the present work 

because LSMC compositions measured at different temperatures are not exactly the 

same composition and very limited.  

 

6.3.2  Oxygen self-exchange coefficients 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  Vs Co content 

In Figure 6.9a, b and c it is clear that both oxygen surface coefficient along grain 

bulk 𝒌𝒃
∗  and grain boundary 𝒌𝒈𝒃

∗  increases as a function of Co content and temperature, 

however changes in 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  over Co content is relatively smaller than 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  values.  
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Figure 6.9. Oxygen self-exchange coefficient along grain bulk 𝒌𝒃
∗  and grain boundary 𝒌𝒈𝒃

∗  

extracted at a) 600°C b) 700°C c) 800°C is plotted against Co content. The values are compared 

with literature values [14, 15, 16]. 

 

At 600°C and 800°C both 𝒌𝒃
∗  and 𝒌𝒈𝒃

∗  (Figure 6.9a and c) increases upon Co content. 

Although 𝒌𝒃
∗  increases against Co fraction at 700°C (Figure 6.9b), oxygen exchange 

along grain boundary 𝒌𝒈𝒃
∗  remains same until Co content x = 0.18 and starts to decrease 

reach minimum at x = 0.29. Then 𝒌𝒈𝒃
∗  values remain constant from x = 0.29. According 

to FEM simulation 𝒌𝒈𝒃
∗  decreases after x = 0.18 amount of Co concentration. The values 
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from x = 0.29 to 0.42 is two orders of magnitude lower than than the value around x ≈ 

0.18.  

Although the 𝒌𝒈𝒃
∗  values are attained by good fitting at 700°C, it is not clear whether 

the step-down trend in 𝒌𝒈𝒃
∗  after x = 0.18 is due to change in LSMC nanostructure that 

can affect the surface exchange rate with single or multiple exchange coefficients. FEM 

model has to be modified according to change in nanostructure of the thin film in order 

to extract accurate oxygen exchange coefficient values. Hence, Two-slab model is used 

to fit the oxygen diffusion profile with Co concentration x = 0.29 to 0.42 in order to find 

the average value of surface exchange coefficient 𝒌∗ which is plotted in Figure 6.9b.  

Similar to 𝑫𝒃
∗  and 𝑫𝒈𝒃

∗  magnitude gap observed in the last section, the oxygen 

exchange coefficient gap between 𝒌𝒃
∗  and 𝒌𝒈𝒃

∗  also increases with respect to 

temperature. At 600°C, 𝒌𝒈𝒃
∗  values are 3 orders of magnitude higher than 𝒌𝒃

∗  values, 

whereas it is 3 to 5 orders of magnitude higher at 700°C. Similarly, at 800°C the value 

of 𝒌𝒈𝒃
∗  is 7 orders of magnitude higher than 𝒌𝒃

∗ .  

Normally, oxygen surface exchange coefficient k* describes the rate of oxygen 

exchange flux between the gas phase and solid electrode. In Kroger-Vink notation, the 

oxygen exchange equilibrium reaction can be written as, 

 𝟏
𝟐⁄ 𝑶𝟐(𝒈) + 𝑽̈𝒐 ↔  𝑶𝒐

𝒙 + 𝟐𝒉. (6.5) 

In the forward side of above equation, oxygen from gas phase is exchanged into 

solid surface occupies oxygen vacancy 𝑉̈𝑜 by generating holes.  

Generally, oxygen exchange process constitute of several steps such as gas phase 

diffusion, adsorption, electronation, dissociation, vacancy migration and incorporation 

of oxygen ions into the crystal lattice [24-28], which act as rate-limiting steps. The 

oxygen exchange coefficient values 𝒌𝒃
∗   and 𝒌𝒈𝒃

∗  attained through tracer exchange 

measurements is an average value of all these rate-limiting steps [20].  

A recent study on oxygen exchange kinetics in LSMC like perovskites by ab-initio 

calculations states that when there is a high concentration of oxygen vacancies, vacancy 

mobility on the surface are the key factors of oxygen exchange rate. In a system like 

LSMC, electrons cannot not influence the surface-exchange rate because LSMC is a 

very good electronic conductor its conductivity is several orders of magnitude higher 

than ionic conductivity.  
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Apart from the defects, there are other factors such as cation (Sr in most cases) 

segregation [30, 31], surface termination (AO, BO2 type) [28, 23], surface electronic 

structure that can also affect oxygen exchange rate on the surface. Alan et al. [23] found 

that the dominance of A-site cations on LSMC surface in which surface oxygen species 

(𝛼-oxygen) are unaffected by Co concentration.  

If oxygen exchange along grain boundary and grain bulk of LSMC is influenced by 

oxygen vacancy concentration[𝑉̈𝑜], 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  should follow the same trend as 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗ . 

Instead the relative changes of 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  over Co fraction is smaller than 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗ . 

The surface chemistry and type of defects present in surface of LSMC grain bulk 

and grain boundary is not clear, however grain boundary region acts as a favorable 

path for oxygen introduction in certain range of compositions in LSMC system. A 

further examination on the surface state of LSMC is necessary in order find a valid 

explanation about 𝒌𝒃
∗  and 𝒌𝒈𝒃

∗  trend in LSMC system. 

6.4  Conclusion 

The oxygen transport properties of LSMC/8YSZ bilayer combinatorial system was 

mapped by isotope exchange depth-profiling (IEDP) coupled with punctual SIMS 

measurement. The oxygen self-diffusion coefficients 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and self-exchange 

coefficients 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  obtained by FEM simulation reveal that grain boundary act as fast 

diffusion and exchange pathways for oxygen ion transport. However, further 

investigation on the surface chemistry and structure of LSMC system is required to 

understand the influence of Co on enhanced 𝒌𝒈𝒃
∗  values and the step down trend in 𝒌𝒈𝒃

∗  

values at 700°C. 
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7. Conclusions 

The work developed in this thesis was devoted to investigate the oxygen ion 

transport in perovskite-related Mixed Ionic and Electronic Conducting (MIEC) oxides 

of thin film cathodes to correlate the oxygen ion transport with thin film nanostructure 

consisting of grain bulk and grain boundaries. There are various experimental, 

technological and theoretical strategies have been adopted to achieve the goal. The 

most relevant achievements attained in this thesis are listed below, 

 

 In the chapter about interdiffusion mechanism and parent layer optimization 

in PLD - Interdiffusion mechanism is validated through the experiments on 

LSC/LSF and LSM/LSC multilayer depositions. It was found that thickness 

below 3nm is an optimum thickness value for growing LSM, LSC and LSF 

parent layers involved in multilayer deposition to achieve the pure desired 

product from the diffusion-limited homogeneous intermixing. This result laid a 

foundation to fabricate LSMC binary system. 

 In the work on the investigation of oxygen ion transport in LSM thin film 

nanostructure – LSM an electronic conductor is converted into a good mixed 

ionic electronic conductor by synthesizing a nanostructure with high density of 

vertically aligned GBs in PLD with high concentration of strain-induced 

defects. Further, a remarkable enhancement is observed in the oxide ion mass 

transport (up to 5 to 6 orders of magnitude) along the grain boundary region of 

LSM in the temperature range 500-700°C. The result confirms the possibility of 

tailoring the electrical nature of the whole material by nanoengineering, 

especially at low temperatures. 

 In LSMC binary thin film system fabrication - The continuous composition 

spread (CCS) LSMC Pseudo-binary system is successfully fabricated without 

any parasitic phase based on the best plume center position predicted from the 

parent layer superposition study. Hence, the adopted new methodology to 

predict the thickness and Mn/Co concentration has been proved as trustworthy 
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to fabricate LSMC binary system. It validates that the same methodology is 

applicable to fabricate a ternary or quaternary system. 

 In the functionality study of LSMC binary system - The oxygen transport 

properties of LSMC/8YSZ bilayer combinatorial system is successfully mapped 

by isotope exchange depth-profiling (IEDP) coupled with punctual SIMS 

measurement. The oxygen self-diffusion coefficients 𝑫𝒃
∗ , 𝑫𝒈𝒃

∗  and self-exchange 

coefficients 𝒌𝒃
∗ , 𝒌𝒈𝒃

∗  obtained by FEM simulation reveal that grain boundary act 

as fast diffusion pathway for oxygen ion transport in LSMC system. 

 The oxygen transport coefficients of LSM thin film and LSMC binary system are 

determined by FEM simulation and two-slab model, first ever two models are 

introduced in this thesis to fit the oxygen diffusion profiles. 

The presented results lead to fundamental insights into oxygen diffusion along GBs 

(charge transport along interfaces) and to the application of these engineered 

nanomaterials in new advanced solid state ionics devices such are micro solid oxide 

fuel cells.  
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Introduction to Two-slab model 
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Appendix-A 

A.1 Outline 

18O diffusion profile obtained from IEDP-SIMS measurement can be fitted using 

different models. A model is a solution of the diffusion equation, obtained by fixing 

boundary conditions and solving the diffusion equation for a particular geometry of a 

system. In most cases the system is treated as isotropic medium where diffusion 

coefficient 𝑫 is constant in all directions [1, 2].  

Most of the samples employed for IEDP-SIMS measurement in this thesis are semi-

infinite or thin film system composed of oxide bilayers deposited on Si substrate that 

can be called as “Cathode/Electrolyte/Substrate (CES)” system. There are two kinds of 

classical models that are commonly applied to fit the 18O diffusion profile which are the 

models for semi-infinite medium and plane sheet medium [1]. However, each model 

has its own limitation of application based on the system geometry and boundary 

conditions that cannot be applicable in the system studied in this thesis. 

In this appendix a new model is proposed as an alternative to classical semi-infinite 

and plane sheet model to determine oxygen diffusion coefficient 𝑫∗, oxygen surface 

exchange coefficient 𝒌∗ in oxide bilayers deposited on oxygen insulating substrate. The 

proposed model arises from the “Two-slab model”, a remarkable work of E. Mayer 

entitled “Heat flow in composite slabs”, [3] suitable to apply in the thin film system 

(CES) studied in this thesis. 

Appendix A is organized in following way. The classical models and its place of 

validity are explained in section A.2. The solution to Two-slab model is given in terms 

of diffusion equations in section A.3. To validate the Two-slab model, IEDP-SIMS 

profile corresponding to a sample with 4% Co is tested by fitting the experimental 

profile. The results and validity of two-slab model is discussed in section A.3.5.  

A.2 Classical models and its validity 

A.2.1 Solution to semi-infinite medium 

In most cases, traditional semi-infinite solution is used to determine the oxygen-

diffusion and surface exchange coefficient (𝑫∗ and 𝒌∗) values in a medium that can be 

approximated to have an infinite thickness. When the sample is thicker in comparison 
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with the diffusion length √𝑫𝒕 of the tracer (18O isotope), then the tracer diffusion 

profile can be modeled using solution to a semi-infinite medium.   

In a semi-infinite medium, isotopic concentration 𝑪𝒙 is associated with the 

concentration value at depth x equal to the background concentration 𝑪𝒃𝒈 which is 

0.002 (natural abundance of 18O). 

Regarding boundary condition at gas-solid interface, the rate of transfer of 

exchanging gas (18O) at gas-solid interface is proportional to the difference between 18O 

isotopic concentration in the sample surface (𝑪𝒔) and isotopic concentration in the 

surrounding atmosphere (𝑪𝒈𝒂𝒔) at any time which is equivalent to surface evaporation 

boundary condition. It can be expressed as, 

 

 
−𝐷∗  

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝑘∗ [𝐶𝑔𝑎𝑠 − 𝐶𝑠] 

 

(A.1) 

 

Where 𝑘∗is constant of proportionality nothing but oxygen surface exchange 

coefficient.  

The solution to Fick’s 2nd law of diffusion equation for semi-infinite medium after 

isotope exchange-anneal time duration 𝑡, is given by crank (page 36, equ.3.35) [1],  

 

 
𝑪′ =

𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈

𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈
= 𝑒𝑟𝑓𝑐 [

𝑥

2√𝐷∗ 𝑡
] − exp[ℎ 𝑥 + ℎ2 𝐷∗ 𝑡] . 𝑒𝑟𝑓𝑐 [

𝑥

2√𝐷∗ 𝑡
+ ℎ√𝐷∗ 𝑡] 

 

(A.2) 

Where 𝒉 = 𝒌∗ 𝑫∗⁄ . 𝑪(𝒙, 𝒕) represents tracer concentration within the material as a 

function of depth 𝒙 and time 𝒕.  𝑪𝒃𝒈 represents natural abundance of 18O isotope which 

is always 0.002. 𝑪𝒈𝒂𝒔 represents gas concentration in the surrounding atmosphere. 

𝑪′ 𝑜𝑟 𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈 𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈⁄  is the normalized tracer concentration. The term 𝟐√𝑫∗ 𝒕 

is called diffusion length explains the decay of diffusing species concentration as a 

function of thickness 𝒙.  

A.2.2 Solution to Plane-sheet model 

In thin films, during 18O isotope exchange-annealing, isotopic concentration gradient 

inside the sample can create a significant amount of isotope concentration at film-

substrate interface. This concentration will exceed 𝑪𝒃𝒈 (0.002) due to the thickness 

constraint in thin films. In this condition semi-infinite solution cannot be applicable in 
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thin films. Therefore plane-sheet solution is commonly applied in thin films to fit 

oxygen diffusion profile.  

In a typical plane sheet sample system (Figure A.1), 18O diffuses into both sides of 

thin parallel plane sheet from the gas phase, which can be considered as a symmetrical 

system. But in a typical thin film sample system, a thin film deposited on oxygen 

blocking substrate (Oxide layer/Insulating substrate) where 18O can diffuse only 

through the one side of the plane sheet, which is equal to one-half of the diffusion 

profile obtained in Crank’s plane sheet model (page 60, equ.4.50) [1].   

 

 

Figure A.1. Illustration of  18O diffusion in a plane sheet medium through both  sides of  flat 

surface whose thickness is -l to 0 and l to 0 . 𝑪𝒈𝒂𝒔 is 18O  gas concentration in the surrounding 

atmosphere, 𝑪𝒔 is 18O concentration on the sample surface, 𝑪𝒃𝒈  is the 18O background 

concentration (0.002). 

 

Similar to semi-infinite solution an Oxide layer/oxygen insulating substrate system 

has surface evaporation boundary condition at film-air interface (𝒙 = −𝒍 𝒐𝒓 𝒙 = 𝒍) 

which is given as,  

 
−𝐷∗  

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝑘∗ [𝐶𝑔𝑎𝑠 − 𝐶𝑠] 

 

(A.3) 

At film-substrate interface, the substrate acts as an insulator to oxygen where 

adiabatic or insulating boundary condition (equation A.10) can be applied. 

Therefore, the solution to Fick’s second law of diffusion in a plane sheet medium is 

given by (page 60, equ.4.50) [1], 
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𝑪′ =

𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈

𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈
= 1 −∑

2𝐿. 𝑐𝑜𝑠(𝛽𝑛. 𝑥 𝑙) 𝑒𝑥𝑝 ( − 𝛽𝑛
2𝐷∗𝑡 𝑙2)⁄⁄

( 𝛽𝑛
2 + 𝐿2 + 𝐿)𝑐𝑜𝑠 (𝛽𝑛)

∞

𝑛=1

 
 

(A.4) 

where 𝑪′ 𝒐𝒓 𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈 𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈⁄  is normalized 18O isotropic concentration, 𝒍 is film 

thickness, 𝒕 is the duration of isotope exchange-annealing. 𝜷𝒏 (n=1, 2, 3, …..) are 

positive roots of transcendental equation,  

 𝜷𝒏 𝐭𝐚𝐧𝜷𝒏 = 𝑳 (A.5) 

Where 𝐿 is critical length which is a dimensionless parameter, 

 
𝑳 =

𝒍𝒌∗

𝑫∗
 

 

(A.6) 

 In general the first nine roots of 𝛽𝑛 (n = 1 to 9) is far enough to determine 𝑫∗ and 𝒌∗ 

values accurately by fitting 18O diffusion profile using Least square minimization 

routines. 

A.3 Two-Slab model  

A.3.1 Plane sheet model Vs Two-Slab model  

All samples committed to IEDP-SIMS measurement in this work have two oxide ion 

conducting layers where the first layer is a cathode material (MIEC), second layer is an 

electrolyte (8YSZ) which are deposited on top of Silicon substrate constitute a “CES 

system”. Each oxide layer has its own characteristic oxygen diffusion coefficient 𝑫∗ 

and surface exchange coefficient 𝒌∗ values. Therefore, plane sheet solution cannot be 

applicable in this kind of oxygen ion conducting bilayer system. In the following 

section, the solution to Two-slab system is given in terms of diffusion problem simply 

by converting the heat equations to the diffusion equations [3, 4].   

A.3.2 Solution to Two-Slab model 

Consider a system consisting of two different oxide layers which are oxide layer 1, 

oxide layer 2 with different oxygen transport 𝑫𝟏
∗ , 𝑫𝟐

∗   and exchange properties 𝒌𝟏
∗ , 𝒌𝟐

∗   

deposited on oxygen blocking substrate. The  first layer extends from −𝒍𝟏 to 0 and the 

second layer is 0 to 𝒍𝟐. 

The system is surrounded by 18O gas enriched atmosphere where the tracer 

incorporation occurs through the flat-surface of first oxide layer (Figure A.2). 
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Figure A.2. Illustration of 18O diffusion in cathode/electrolyte/substrate (CES) system of 

thickness −𝒍𝟏 to 0 and 0 to 𝒍𝟐. Where 𝑪𝒈𝒂𝒔 is 18O  gas concentration in the surrounding 

atmosphere, 𝑪𝒔 is 18O concentration on the surface, 𝑪𝒃𝒈   is 18O background concentration 

(0.002).  

 

One-dimensional 18O concentration distribution  𝐶(𝑥, 𝑡)  inside the sample is 

governed by Fick’s second law of diffusion which can be given as, 

 
 
𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝐷∗

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 

 

(A.7) 

Where 𝐷∗ represents oxygen self-diffusion coefficient is a constant. 𝐷∗ for each solid 

oxide layer is given by,  

 𝐷∗ = {
𝐷1
∗   −𝑙1 ≤ 𝑥 ≤ 0

𝐷2
∗     0 ≤ 𝑥 ≤ 𝑙2

  

(A.8) 

The boundary condition at gas-solid interface (𝑥 = −𝑙1) is the surface evaporation 

boundary condition which can be expressed as, 

 
−𝐷1

∗
𝜕𝐶(−𝑙1,   𝑡)

𝜕𝑡
= 𝑘∗ [𝐶𝑔𝑎𝑠 − 𝐶𝑠(−𝑙1, t)] 

 

(A.9) 

The solid-insulating interface (𝑥 = 𝑙2) has vanishing 18O concentration, therefore 

adiabatic or insulating boundary condition at film-substrate interface is given by,  

 𝜕𝐶(−𝑙2,   𝑡)

𝜕𝑡
= 0 

 

(A.10) 
18O concentration distribution 𝐶(𝑥, 𝑡) in the 1st and 2nd layer can be represented by two 

different functional forms in two regions which is, 
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 𝐶(x, t) = 𝐹1(𝑥, 𝑡)     −𝑙1 ≤ 𝑥 ≤ 0 

 

𝐶(x, t) = 𝐹2(𝑥, 𝑡)     0 ≤ 𝑥 ≤ 𝑙2 

 

 

(A.11) 

Equation 11 in terms of equation 7 is,  

 
𝐷1
∗
𝜕2𝐹1(𝑥, 𝑡)

𝜕𝑥2
= 
𝜕𝐹1(𝑥, 𝑡)

𝜕𝑡
     −𝑙1 ≤ 𝑥 ≤ 0 

 

𝐷2
∗
𝜕2𝐹2(𝑥, 𝑡)

𝜕𝑥2
= 
𝜕𝐹2(𝑥, 𝑡)

𝜕𝑡
    0 ≤ 𝑥 ≤ 𝑙2  

 

 

 

(A.12) 

The continuity boundary condition at Oxide layer 1-Oxide layer 2 interface (𝑥 = 0) is 

given by,  

 

  𝐹1(0, t) =  𝐹2(0, t) 

 

(A.13) 

 

 

 
𝐷1
∗
𝜕𝐹1(0, t)

𝜕𝑥
=  𝐷2

∗
𝜕𝐹2(0, t)

𝜕𝑥
 

 

(A.14) 

By solving the diffusion equation A.7 using aforementioned boundary conditions 

(equations A.9, A.10, A.14), the following two kinds of solutions are obtained under 

two different cases. Readers are suggested to go through reference [3] for detailed 

solution. 

A.3.3 Special case 1: 𝑫𝟏
∗ , 𝑫𝟐

∗  are finite 

The following general solution equation A.15 is obtained by assuming oxygen 

diffusion coefficients of 1st and 2nd layer 𝑫𝟏
∗ , 𝑫𝟐

∗  are finite. Therefore, solution to Fick’s 

second law of diffusion equation in a Two-slab medium after isotope 18O exchange-

anneal time duration 𝑡 is given by, 

 

𝑪′ =
𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈

𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈
=

{
 
 

 
 𝐶𝑔𝑎𝑠 + ∑𝐴𝑛  (cos 𝜷𝟏𝒏

𝒙

𝒍𝟏
+ 𝜇1𝑛 sin𝜷𝟏𝒏

𝒙

𝒍𝟏
) 𝑒−𝜆𝑛

2 𝑡

∞

𝑛=1

   −𝑙1 ≤ 𝑥 ≤ 0

𝐶𝑔𝑎𝑠 +∑𝐴𝑛

∞

𝑛=1

(cos𝜷𝟐𝒏
𝒙

𝒍𝟐
+ 𝜇2𝑛 𝑠𝑖𝑛 𝜷𝟐𝒏

𝒙

𝒍𝟐
) 𝑒−𝜆𝑛

2 𝑡       0 ≤ 𝑥 ≤ 𝑙2

 

 

 

 

(A.15) 

Where , 

 
𝑨𝒏 = −𝐶𝑔𝑎𝑠

𝑁𝑚𝑛 +𝑁2𝑛
𝐷1𝑛 +𝐷2𝑛

 
 

(A.16) 
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𝑫𝟏𝒏 =

𝑙1
2𝛽1𝑛

[(1 + 𝜇1𝑛
2 )𝛽1𝑛 + (1 − 𝜇1𝑛

2 )𝑠𝑖𝑛 𝛽1𝑛 cos𝛽1𝑛 − 2𝜇1𝑛 𝑠𝑖𝑛
2𝛽1𝑛] 

 

(A.17) 

 

 

 
𝑫𝟐𝒏 =

𝑙2
2𝛽2𝑛

[(1 + 𝜇2𝑛
2 )𝛽2𝑛 + (1 − 𝜇2𝑛

2 ) 𝑠𝑖𝑛 𝛽2𝑛 cos𝛽2𝑛 + 2𝜇2𝑛 𝑠𝑖𝑛
2𝛽2𝑛] 

     

(A.18) 

 

 

 
𝑵𝟏𝒏 =

𝑙1
𝛽1𝑛

[sin 𝛽1𝑛 + 𝜇1𝑛(cos 𝛽1𝑛 − 1)] 
 

(A.19) 

 

 
𝑵𝟐𝒏 =

𝑙2
𝛽2𝑛

[sin 𝛽2𝑛 − 𝜇2𝑛(cos𝛽2𝑛 − 1)] 
         

(A.20) 

 

Amplitude ratios are given by, 

 

𝝁𝟏𝒏 =
𝑡𝑎𝑛 𝛽2𝑛 

𝜎
=  
𝑡𝑎𝑛 𝜂𝛽1𝑛 

𝜎
=

𝑡𝑎𝑛 ( 
√𝐷1

∗ 𝑙2

√𝐷2
∗ 𝑙1

  𝛽1𝑛 )

𝜎
  

         

 

(A.21) 

 

 

Eigen value equation for equation A.15 is given by,  

 
tan [𝛽𝑚𝑛 + 𝑡𝑎𝑛

−1
𝛽1
𝐿1
] = 𝜎 cot  𝜂𝛽𝑚𝑛 

   

(A.23) 

 

where 𝜷𝒎𝒏 = 𝜷𝟏𝟏, 𝜷𝟏𝟐, … . 𝜷𝟏𝒏 are the positive roots of eigen value equation.  

 
 𝑳𝟏 =

𝑙1𝑘
∗

𝐷1
∗  ;       𝝈 =

√𝐷1
∗

√𝐷2
∗
 ;       𝜼 =

√𝐷1
∗ 𝑙2

√𝐷2
∗𝑙1

=
 𝛽2
𝛽1
      

 

 

To determine eigen values, the parameters such as  𝐿1 , 𝜎, 𝜂 need to be computed for 

different values of 𝑫𝟏
∗ , 𝑫𝟐

∗ , 𝒌∗values. Eigen values are located at branches of tangent on 

left of equation A.23 intersect with branches of cotangent on the right at an infinite set 

of points as abscissae of intersections. 

A.3.4 Special case 2: 𝑫𝟏
∗  is finite and 𝑫𝟐

∗  is ∞ 

When the oxygen diffusion coefficient of 1st oxide layer is lower than the 2nd layer 

(𝑫𝟏
∗ ≪ 𝑫𝟐

∗ ) or thickness of  𝒍𝟏 ≫  𝒍𝟐 where 18O concentration diffuses through              

 
𝝁𝟐𝒏 = 𝑡𝑎𝑛 𝛽2𝑛 =   𝑡𝑎𝑛 ( 

√𝐷1
∗ 𝑙2

√𝐷2
∗ 𝑙1

  𝛽1𝑛 ) 
        

(A.22) 
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oxide 1/oxide 2 interface (at 𝑥 = 0) with small value of tracer concentration. 

Consequently 18O concentration throughout the 2nd oxide layer will remain at interface 

concentration 𝑪(𝟎, 𝐭). As a result 18O diffusion profile in the 2nd oxide layer becomes 

straight due to infinite self-diffusion coefficient 𝑫𝟐
∗ = ∞ of the second layer. Therefore 

solution to Fick’s second law of diffusion equation in such condition after isotope 18O 

exchange-anneal time duration 𝑡 is given by, 

𝑪′ =
𝑪(𝒙, 𝒕) − 𝑪𝒃𝒈

𝑪𝒈𝒂𝒔 − 𝑪𝒃𝒈
=

{
 
 

 
 𝐶𝑔𝑎𝑠 + ∑𝐴𝑛  (𝐜𝐨𝐬 𝛽1𝑛

𝑥

𝑙1
+ 𝜇1𝑛 𝐬𝐢𝐧 𝛽1𝑛

𝑥

𝑙1
) 𝑒−𝜆𝑛

2𝑡

∞

𝑛=1

   −𝑙1 ≤ 𝑥 ≤ 0

𝐶𝑔𝑎𝑠 +∑𝐴𝑛

∞

𝑛=1

𝑒−𝜆𝑛
2𝑡                                                                0 ≤ 𝑥 ≤ 𝑙2

 

         

 

(A.24) 

 

Where, 

 
𝑨𝒏 =

sin  𝛽1𝑛 +  𝜇1𝑛 cos  𝛽1𝑛 
[(1 + 𝜇1𝑛

2 ) 𝛽1𝑛 + (1 − 𝜇1𝑛
2 ) 𝑠𝑖𝑛 𝛽1𝑛 cos𝛽1𝑛 + 2𝜇1𝑛 𝑐𝑜𝑠

2𝛽1𝑛]
 

         

(A.25) 

 

 

Eigen value equation for equation A.24 is given by,  

where 𝜷𝒎𝒏 = 𝜷𝟏𝟏, 𝜷𝟏𝟐, … . 𝜷𝟏𝒏 are the positive roots of eigen value equation.  

 
 𝑳𝟏 =

𝑙1𝑘
∗

𝐷∗
  

 

Eigen values can be determined by computing  𝐿1  for different values of 𝐷∗ and 𝑘∗ 

values.  

A.3.5 Validation of Two-slab model by manual fitting and MATLAB fitting 

routine 

The system studied in this thesis are LSMC/8YSZ/Si multilayers in which the 

straight diffusion profiles are always obtained in 8YSZ layer through the IEDP-SIMS 

measurements performed at temperatures 600°C, 700°C and 800°C. The sfstraight 

diffusion profile in 8YSZ layer represents infinite oxygen diffusion coefficient for 8YSZ 

 
  𝝀𝟏 =

𝛽11 √𝐷
∗ 

𝑙1
;  𝝀𝟐 =

𝛽12 √𝐷
∗

𝑙1
 

         

(A.26) 

 

 
𝐭𝐚𝐧 [𝜷𝒎𝒏 + 𝒕𝒂𝒏

−𝟏
𝜷𝒎𝒏
𝑳𝟏

] =  
𝟏

𝜷𝒎𝒏

𝒍𝟏
𝒍𝟐

 
 

(A.27) 
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(𝑫𝟐
∗  = ∞). Therefore, the diffusion solution equation A.24 (in special case 2) is suitable 

to apply in our system. 

Before programming equations A.24 to A.27 in MATLAB, the equations are 

validated by fitting the experimental profile manually. The experimental data used for 

testing corresponds to the combinatorial sample LSMC/8YSZ/Si with 4% cobalt (Figure 

A.3) where 18O diffusion profile was obtained at 700°C under 21.97min of 18O 

exchange-annealing. After validating the equations by manual fitting, the same 

experimental data is fitted by MATLAB numerical routine using least-square fitting 

method in order to determine 𝑫∗ and 𝒌∗ of LSMC layer.  

 

Figure A.3. Experimental isotope diffusion profile obtained in sample LSMC/YSZ/Si with 4% 

Co. y-axis represents normalized concentration C’ which is plotted against thickness (nm) in x-

axis. 
 

Further, the fitting requires the calculation of n roots of 𝛽𝑚𝑛 in the transcendental 

eigen value equation A.27 which is, 𝐭𝐚𝐧[𝜷𝒎𝒏 + 𝒕𝒂𝒏
−𝟏𝜷𝟏𝒎𝒏 𝑳𝟏⁄ ] =  𝒍𝟏 𝜷𝒎𝒏𝒍𝟐⁄ . These 

roots can be determined by computing the equation with different combinations of 𝑫∗ 

and 𝒌∗ until the best combination is obtained. Therefore, a complex routine was coded 

in a way to determine the first two positive roots of 𝜷𝒎𝒏 = 𝜷𝟏𝟏, 𝜷𝟏𝟐 which is sufficient 

to determine 𝑫∗ and 𝒌∗ values of LSMC layer accurately [3]. 

Figure A.4 represents the fitting of experimental profile corresponds to the sample 

with 4% Co (Figure A.3) which is fitted using MATLAB numerical routine. A good 

fitting is obtained in general, which shows that the Two-slab model is functioning.  
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Figure A.4. 18O diffusion profile of LSMC sample with 4% Co is fitted by MATLAB numerical 

fitting routine usingTwo-slab solution. 

 

There are two slopes that can be seen in the experimental profile (Figure A.3). The 

first slope is located in the sample surface which spans for around ≈30nm and the 

presence a deep penetrating profile inside the sample until LSMC/YSZ interface is the 

second slope. The presence of more than one slope confirms that LSMC layer behaves 

as an inhomogeneous medium. Further, the presence of two slopes in the experimental 

profile represents two different diffusion pathways in the LSMC layer.  

Although Two-slab model can fit the bilayer diffusion profile in Figure A.4, it fits 

only a part of the diffusion profile which is the second slope. In chapter 4 and 6, FEM 

simulation was performed to fit the oxygen diffusion profiles of LSM and LSMC 

system due to the multiple diffusion pathways in the diffusion profile. In the following 

section, the place of validity of Two-slab model is explained. 

A.3.6 Two-slab model - Place of validity  

Two-slab model cannot be applicable in diffusion profile having two or more slopes 

with slope arise from the fast diffusion pathway like grain boundaries. Even though 

Two-slab model is inoperative in certain conditions, it can be applied in some special 

cases which are, 

Case (i): When the oxygen diffusion and exchange coefficients along the grain bulk 

(b) and grain boundary (gb) are the same, that is, 𝑫𝒃
∗   = 𝑫𝒈𝒃

∗ = 𝑫∗and 𝒌𝒃 
∗ = 𝒌𝒈𝒃

∗  = 𝒌∗. 

where 𝑫𝒃
∗  𝒂𝒏𝒅 𝑫𝒈𝒃

∗  represents oxygen diffusion coefficients along grain bulk and grain 
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boundary. Similarly, 𝒌𝒃
∗  𝒂𝒏𝒅 𝒌𝒈𝒃

∗  represents oxygen exchange coefficients along grain 

bulk and grain boundary.  

Case (ii):  Either 𝑫𝒃
∗  and 𝒌𝒃

∗  is dominating ie. 𝑫𝒈𝒃 
∗ ≈ 𝒌𝒈𝒃

∗  ≈ 0 or 𝑫𝒈𝒃
∗  and 𝒌𝒈𝒃

∗  is 

dominating ie. 𝑫𝒃
∗  ≈ 𝒌𝒃

∗  ≈ 0.  

Therefore, 𝑫∗ and 𝒌∗ values obtained in Figure A.4 using Two-slab model represents 

an average value along grain bulk and grain boundary region. The main drawback of 

Two-slab model is it cannot differentiate fast and slow diffusion and exchange 

pathways however an average fitting can be obtained. Readers should choose the 

model accordingly, after carefully analyzing the oxygen diffusion profiles. 
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Appendix-B 

B.1 LSM-LSC-LSF multilayer test deposition 

The first LSM/LSC/LSF multilayer trial deposition is performed in PLD. The 

periodic layers of LSM with 1nm thickness, LSC with 1nm thickness and LSF with 1nm 

thickness are deposited on a Si chip with 100 thickness 8YSZ layer on top of it. The 

deposition condition is given in the following section B.2.  

XRD pattern in Figure B.1 represents the formation of a single pure composition 

attained from LSM/LSC/LSF multilayers with thickness ratio 1nm:1nm:1nm. 

 

 

Figure B.1. XRD pattern of LSM/LSC/LSF multilayers with the thickness ratio 1nm:1nm:1nm 

per cycle. 

B.2 LSM-LSC-LSF Ternary sample preparation 

After making sure that there is no reaction between LSM, LSC and LSF multilayers 

in chip level deposition, a ternary trial deposition is performed on a 4-inch Si wafer. 

Before the ternary deposition, a thin uniform 8YSZ layer is deposited on the Si wafer. 

Then a dense LSM, LSC and LSF multilayers are grown under the deposition 

condition T = 700°C, P = 20mT, d = 9.5cm, f = 10Hz, F ≈ 1.1Jcm-2 (LSM), 0.7Jcm-2 (LSC) 

and 1.1Jcm-2 (LSF). The parent layer LSM is grown with 95 pulses as a first layer. Over 

that the second layer LSC is grown with 88 pulses and LSF is grown with 98 pulses as a 

third layer. All the three layers reached a thickness of 1nm with the above pulse rates 
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and it is repeated for 180cycles. The substrate is rotated to 120° every time before each 

successive layer deposition.  

Finally, LSM-LSC-LSF a Pseudo-ternary thin film sample is successfully fabricated 

in PLD. The as-prepared sample is given in Figure B.2 where the presence of LSM, LSC 

and LSF plumes can be seen at the three different corners of wafer.  

 

 

Figure  B.2. As-prepared LSMCF Pseudo-ternary system fabricated in PLD. 

 

Because of time constraints the microstructural characterizations such as XRD, SEM, 

AFM including functional characterization could not be performed. But Mn, Co and Fe 

distribution in the ternary sample was studied by EDS and the result shows that Mn, 

Co and Fe atoms exhibit a maximum concentration of ≈ 90% in the plume center region 

and the concentration starts to decrease if one move away from the plume center.  

The concentration and thickness distribution in the ternary sample can be altered 

and controlled by adjusting the parent layer plume position explained in section 5.3 in 

chapter 5.  
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