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Abstract: This work deals with the phenomenology of the Ginzburg-Landau model, taking account on lateral 
inhibition coupling, to study some pattern formation when the homogenous stationary state is perturbed. The system 
evolution tends to restore this homogenous state or tends to evolve to a pattern, which is controlled by the lateral 
inhibition intensity parameter, D, given value. This work contains a linear stability analysis to get the critical value �� for the patterns to be formed, and a computational program has been built to check those results and to visualize 
the patterns.  

I. INTRODUCTION. 

The spatial pattern formation is an interesting phe-
nomenon occurring when certain systems are driven away 
from equilibrium. These patterns can be found in different 
situations and in many types of systems. Examples include 
patterns in hydrodynamic systems such as the Rayleigh-
Bénard convection, Taylor-Couette flow, as well as reactive-
diffusive chemical systems, solidification fronts, biological 
tissues and other cases. 

The theoretical starting point for dealing with this 
phenomenon is usually a set of deterministic equations of 
“motion”, typically in the form of nonlinear partial 
differential equations. An aim of theory is to describe 
solutions of the deterministic equations that are likely to be 
reached starting from typical initial conditions and to persist 
at long times. For many systems, appropriate starting 
equations are either not known or too complicated to analyze 
conveniently. It is thus useful to introduce phenomenological 
order-parameter models, which lead to good behavior 
approximation near the point where the homogeneous state 
symmetry brakes and which may be solved analytically or 
numerically [1][2]. 

The present work, focus its attention in biological pattern 
appearance, in cellular tissue development, when the cells 
undergo a lateral inhibition interaction between them. This 
kind of interaction favors different values of certain 
substance concentration in neighboring cells. This is the 
opposite situation when diffusive interaction takes place and 
tends to homogenize the concentration in the cells.  

This study considered a cellular tissue as an LxL squared 
cell lattice where each cell contains an homogeneous 
concentration,	���, of certain substance. The Ginzburg-Lan-
dau theory has been chosen to establish a simple framework 
to understand the phenomena and to state a set of differential 
motion equations for the cell concentration time evolution 
[3]. This theory was initially thought to explain phase 
transitions and critical phenomena but it has been proved to 
be very successfully to understand the pattern appearance in 
different physical systems.  

A program has been built to solve the set of differential 
equations obtained for the cell-lattice with lateral inhibition 
in the Ginzburg-Landau theory. It finds numerical solu-
tions,	���(�), using the Runge-Kutta 4 method when the 
system is perturbed from his homogeneous steady state. For 
this perturbation it uses random and different, but close to the 
steady state, initial conditions in each cell. The goal of the 
program was to validate the theoretical analysis of the 

Ginzburg-Landau model to explain the pattern formation and 
to visualize some of them. 

II. THE GINZBURG-LANDAU MODEL. 

The Ginzburg-Landau theory (GL) makes an assumption 
that changes the manner of solving problems on statistical 
physics. Instead of getting the system’s thermodynamics by 
determining its microscopic Hamiltonian and computing the 
corresponding partition function, it takes into account that the 
correlation length is much greater than the microscopic 
separation. This observation suggests that the system’s pro-
perties are insensitive to the microscopic details and the point 
is to avoid dealing with the underlying microscopic structure 
[4]. For this reason, the GL theory presents a pheno-
menological approach that only uses macroscopic system 
variables. But, it has to be said that, instead of dealing with 
the microscopic details, this approach is only valid close to 
those states where the order parameter is small.  

The theory makes the hypothesis that the free energy can 
be expanded in powers of the order parameter, c, specific for 
each system. This order parameter indicates when the system 
is in a disordered phase or in an ordered one. 

For those uniform systems with null external fields, the 
expansion of the Helmholtz free energy, in powers of the 
order parameter, can be performed and then only a few terms 
are needed to understand the macroscopic properties near the 
transition [5]. 

In the case of an LxL system, the concentration ��� of a 
certain substance is the order parameter and each cell is 
considered as a uniform subsystem. Then, one gets a free 
energy expansion for each cell in the form: 

 

 
����� = �� 	+ 	�2 ���� +	
b
4 ���� 	, (1) 

 
where ��, � and � are constants and b is positive.   

In terms of the Ginzburg-Landau description, the steady 
states are those for which the free energy becomes minimal. 
To minimize the free energy for the whole system the 
minimization of the free energy in each cell has to be also 
minimal so the steady states are determined by the condition: 

 

 
�
(���)���� �

���∗
= 0		 → 		����∗ + ����∗	 = 0 (2) 

 
It is clear to see that the homogeneous state, ���∗ = 0 in 
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each cell, is always a steady state independently of the a and 
b given values.  

If the system is driven away from the homogeneous 
steady state, for example applying a field, the condition (2) 
will be true no longer and the system will evolve to find a 
new steady state. During the transient, the order parameter is 
also depending on time, ��� = ���(�), and it has to be 
determined from posing and solving the motion equations 
corresponding to the dynamical situation considered for the 
studied system.        

The starting point for this work is the differential equation 
obeying a relaxational dynamics to the steady state with 
diffusive effect occurring for continuous and non-uniform 
systems. The order parameter, in this general case, depends 
on the position and on time, � = �(!", �), and the considered 
equation is:  

 
#�
#� = −Γ #
#� + &∇�� + ((!", �) (3) 

 
where the concentration time variation rate is due to three 
causes reflected in these three terms on the right side of the 
equation (3).  

The first term contains the free energy partial with respect 
to c, and the kinetic coefficient, Γ. The minus sign appears 
because a relaxational dynamics is considered and one 
expects that perturbing the system, from a steady state, would 
return it to the same state. 

The second term takes into account the substance 
diffusion in each point of the system. The existence of a non-
null concentration gradient is responsible for the substance 
flows appearances that contribute to the concentration time 
variation rate too. The k constant is called the diffusion 
coefficient and 	∇� is the laplacian operator.   

Finally, the equation could be supplemented by stochastic 
terms [1][4] representing thermal noise, ((!", �), i.e.the 
fluctuations, but this term is not considered in this work.   

A. Dynamic equations for a cell lattice.  

Once the dynamical equation for a continuous system has 
been established, the next step consists in adapt this situation 
to a discrete LxL cell lattice system. 

Firstly, the order parameter has also to be spatial discrete 
defined. Its position dependence is no longer point 
dependence in a continuous media, and now it depends on the 
cell position inside the system:  

 � = �(!", �) → ���(�)	, (4) 

where i, j are the cell position index in the lattice and ���(�) 
can represent the concentration of  certain substance in each 
cell or the ferromagnet magnetization, etc.  

The diffusive term in (3) has also to be redefined to the 
discrete situation because the laplacian is a continuous field 
operator. If we take into account that the diffusion 
phenomenon appears because two neighbor points have 
different concentrations, one can make a guess and propose a 
term of the form: 

 

 &∇��(!", �) → −&(���(�) − 	��̅�(�)),   (5) 

where  

 ��̅�(�) = 1
+ , ��� 	
-��.

,   (6) 

 
is the n first neighbors concentration average of the ij-cell. In 
this case, k, is the lateral activation coefficient and it is 
positive defined. 

With this readaptation of the continuous proposed model 
into a LxL discrete, non-uniform, and diffusive system, the 
equivalent dynamic equation (3) for each ij-cell is:   
   

 
#���#� = −Γ #


#��� −&(��� − 	��̅�) + ((!", �)   (7) 

 
where  Γ is still called the kinetic coefficient, k is the lateral 
activation coefficient, k > 0, and ((!", �) is a noise term as it 
was explained before.  

B. Diffusion vs Lateral Inhibition. 

In section II.A the dynamic equation (3) has been raised 
considering the existence of diffusive phenomenon in the 
system. In consequence, a positive signed laplacian term 
appears in the equation to realize that a diffusive mechanism 
is favored from high concentration points towards low ones. 
The diffusion mechanism is the cause of the system evolution 
to stable states tending to be homogeneous. All cells try to 
equate their substance concentration with their neighbors. 

In the other hand, there exists another mechanism called 
lateral inhibition mechanism. Under this situation, the system 
evolution is ruled in a different way and the cells try to 
differentiate, as much as possible, from their neighbors. It can 
be understood like a “negative diffusion”, in a sense that, this 
phenomena can be mathematically modeled assuming a 
diffusive opposite effect and then a negative defined k is 
proposed, k < 0.  

The dynamic equations set for an LxL system with lateral 
inhibition mechanism is: 

 
 #���#� = −Γ #


#��� + �(��� − 	��̅�) + ((!", �),	 (8) 

 
where, unlike equation (7), here D is the lateral inhibition 
intensity parameter and is positive defined, > 0 .  

For this study, in the dynamic equations set (8), the free 
energy derivative has been computed taking the expansion 
(1) with the constant values a = b = Γ = 1, and no noise term 
has been considered. This is the simplest case to be solved 
and to show all its phenomenological content in the pattern 
formation. 

 #���#� = −��� − ��� + �(��� − 	��̅�), � > 0 (9) 

 
where 	��̅�  is the first neighbor concentration average of the 
considered ij-cell as it was defined in the equation (6). 
 

III. 2-d PATTERN FORMATION. 

Trying to solve the LxL, nonlinear, coupled, set of partial 
differential equations to verify if the system stabilizes in a 
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spatial pattern configuration could not be good idea. It is 
possible to proceed in an alternative way and obtain 
interesting results. This way is to assume that a particular 
pattern is a steady solution of the problem and check if this 
solution is stable from de equations (9) [3].   

A. Chessboard Pattern (4 neighbors 2-d). 

This type of pattern can be obtained through a lateral 
inhibition mechanism where each cell interacts with its 4 first 
neighbors. 

We are considering the chessboard pattern formation 
when a lateral inhibition mechanism is imposed with the four 
close neighbors. There exist the chessboard pattern using 
lateral inhibition with the eight closest neighbors but it has 
not been seen in this work and then, the analogous analytical 
result, are not exposed here.  

There has been assumed that the chessboard pattern is a 
steady solution, #���/#� = 0, for the set of equations (9), 
where each cell has taken one of the two possible values: ��� = �1 or ��� = �2. In this case, the 4 neighbor concentra-
tion average in each cell, ��̅� , is:  

 
 ��̅� = �2	,							3�				��� = �1,  

 ��̅� = �1 	,							3�				��� = �2	, (10) 

 
Substituting this result in the set of differential equations, 

one finally finds a system of two nonlinear equations for �1 
and �2 which depends on the D parameter. 

  
 −�1 − �1 + �(�1 − �2) = 0,  
 −�2 − �2 + �(�2 − �1) = 0, (11) 

 
A qualitative solution can be found by using a graphic 

representation method and obtain relevant information about 
the pattern appearance in the cell lattice. From the first 
equations (11) one gets	�2(�1) and from the second	�1(�2). 
When these curves are plotted in a	�1	45	�2 space, see        
Fig. (1), the points where the curves cut each other are said to 
be the system solutions.    

 

 
Fig. 1: ca vs cb diagram showing system (11) solutions for the 

two possible situations. The system only presents one real solution 
(homogeneous) when D < 0,5 and shows 3 real solutions in the other 
case  

It could be observed that a critical �� value exists for the 
pattern formation (� > ��). It could be recognized because 
the system has three real solutions, one of them is the 
homogenous solution	�1 = 	�2 = 0, and the other two,	�1 ≠	�2	, are the pattern solutions as the hypothesis was made. 
Under this critical value (� < ��), there exists only one real 
solution which corresponds to the homogenous solution and 
therefore there is no pattern formation in the cell lattice.  

Going further, it is possible to assume that, given the 
equation symmetry observed on (11), then 	�1 = −�2 is the 
corresponding pattern concentration solution. Substituting it 
in the system, one gets: 

    

 �1 = ±√2� − 1			,	  	�2 = −�1 (12) 

 
The system has real solutions, different from the homoge-

neous one, when the criticality condition is fulfilled. 
 

 2� − 1 > 0	 → � > :
�		,	  (13) 

Therefore, the chessboard pattern considering lateral in-

hibition with the four close neighbors appears when > :
�	 . 

The corresponding linear stability analysis [6] for the 
homogeneous fixed point, �1∗ = �2∗ = 0, shows that it is no 
longer a stable point and the chessboard pattern appear from 
a particular D value, when considering lateral inhibitions with 
the four closest neighbors. In this case, the linear expansion 
for the displacements close to the fixed point (�1∗ , �2∗) = (0,0) 
has a jacobian matrix in the form:  

 

  ; = <� − 1 −�−� � − 1=	,	  (14) 

 
where its eigenvalues are obtained solving det(; − AB) = 0 
and are found to be A: = 2� − 1 y	A� = −1. The fixed point 
is meant to be stable while A: < 0 y A� < 0 is satisfied. This 
implies that the homogeneous state is a steady state for 

	� < :
�. The same analysis, now taking the pattern solution 

(12) as a fixed point, gets that the pattern is stable for � > :
�. 

This result means that a little displacement from the 

homogeneous state when � > :
� ends in a chessboard pattern 

when the lateral inhibition interaction with the four neighbors 
is considered.      

B. Stripes Patterns (8 neighbors 2-d). 

This is the other type of pattern considered. The stripes 
pattern appears when the lateral inhibition mechanism is the 
interaction in each cell with its 4 or 8 closest neighbors. As it 
happened in section A with the chessboard pattern, in this 
work no stripes pattern has been seen considering a 4 
neighbor lateral inhibition interaction, then the analytical 
results for this case are not exposed here. The present work 
only accounts for the stripes pattern formation with the eight 
close neighbors lateral inhibition interaction.    

There has been assumed that the stripes pattern is a steady 
solution, #���/#� = 0,	 in (9) and each cell has one of the two 
possible concentration values ��� = �1 or ��� = �2. Unlike the 
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chessboard pattern case, the neighbor’s concentration average 
(6) considering the eight close ones is in this case: 

 
 ��̅� = :

C (2�1+6�2)	,								53				��� = �1   

 ��̅� = :
C (6�1+2�2)		,							53				��� = �2	  (14) 

 
Substituting it in the differential equation set (9) there is 

going to be find another system of two equations for �1 and �2, depending on the D parameter.  
 
 −�1 − �1 +  

��(�1 − �2) = 0,   

 −�2 − �2 +  
��(�2 − �1) = 0,  (15) 

 
and analogously to the chessboard pattern case, plotting the 
corresponding	�2(�1) and 	�1(�2) curves, shows that there is 
also a criticality condition for the stripes pattern formation. 
Given the symmetry of the equations (15), a solution of the 
type	�1 = −�2 is a system solution. Substituting again in the 
equations set,: 
  

 �1 = ±E	 �� − 1			,	  	�2 = −�1 (16) 

 
so a stripes pattern appear, when eight neighbors are 

considered, if � > 	 � 		. 
The linear stability analysis for the homogeneous steady 

state gives, in this case, a jacobian matrix: 
 

 ; = 1
4 <3� − 4 −3�−3� 3� − 4=	,	 (17) 

 
with the eigenvalues A: = 6� − 4 y	A� = −4. The stability 
condition that is required for the fixed point to be stable, 
imposes, in this case, that the homogeneous state is stable for 

� < �
 . It is, also, verified that the stripes solution fixed point 

is stable for � > �
 . Therefore, a little displacement respect to 

the homogeneous state would drive away the system to a 

stripe pattern if � > �
  parameter value is considered. 

IV. NUMERICAL RESULTS. 

The analytical results found in section III have been 
verified by numerical simulations.  

It solves, numerically, the LxL set of differential 
equations given in (9), with the four or the eight neighbor 
concentration average considered term. The aim was to test 
the starting hypothesis made assuming the Ginzburg-Landau 
model as a phenomenological approach to the pattern 
formation phenomena and to verify the conclusions extracted 
from the analytical results. 

 In the program, the desired D value can be chosen as a 
parameter, and a Runge-Kutta 4 method [7] solves	���(�G) in 
each cell, when the cell lattice system is perturbed away from 
his steady homogeneous state. To take into account this 
perturbation, the program generates random small displace-
ments in each cell concentration, and they are entered as 
initial conditions to the set of differential equations to be 

solved. The concentration evolution in each cell is computed 
for a set of discrete instants of time {�G} which have been 
chosen to be equidistant with a time interval step of h, �G = �� + &ℎ. The program computes until the concentration 
in each cell ends in a stationary regime.  

The program has been run to test the analytical results, 
starting from low, D, inhibition parameter values and then 
increasing them progressively expecting the pattern forma-
tion occurs from the predicted critical value, ��.  

 
The Patterns are shown in Fig. (2), Fig. (3) and Fig. (4): 

Fig. 2: Chessboard pattern found setting lateral inhibition with 
the four close neighbors and D = 0.8, when the homogeneous state 
was perturbed with random initial conditions, -0.01 < cij(0) < 0.01, 
and choosing a time step of h = 0.01 for the RK4 method. 

Fig. 3: Stripes pattern found setting lateral inhibition with the 
eight close neighbors and D = 0.7, when the homogeneous state was 
perturbed with random initial conditions using the same values as in 
Fig. (2). 

 
Another interesting result, we were not searching for, 

came out from simulating results. Sometimes the cell lattice 
system, being perturbed from the homogeneous state as the 
same manner as explained before, ended in a different 
stationary state. For the given D value, it was expected to end 
in a known pattern but, instead of that, it finally evolved to a 
different stationary state, not too ordered, where the pattern 
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started to form. Those stationary states looked like not 
ordered patterns, maybe disordered ones, but not like 
completely disordered random configurations Fig. (4). When 
it happened, the first sensation was that the program wasn’t 
well designed. After revisiting it many times, making 
computing tests and fixing different initial conditions, it 
seemed to run correctly and was assumed that the appearance 
of this kind of patterns was another type of solutions for the 
set differential equations (9).   

Fig. 4: Stationary pattern found setting lateral inhibition with 
the eight close neighbors and D = 1.1, when the homogeneous state 
was perturbed with random initial conditions using the same values 
as in Fig. (2).. 

V. CONCLUSIONS. 

The Ginzburg-Landau theory offers a simple model that 
allows stating a set of dynamical equations for a discrete cell 
system with lateral inhibition, to explain the phenomenology 
of the chessboard and stripes pattern formation when the 
homogeneous state in these systems is perturbed. 

The set of the differential equations obtained with the GL 
model are also analytically treatable and it is possible to 
obtain some relevant information about the pattern formation.  

The first result exposed is that the chessboard and the 
stripe patterns are effectively stationary states of the system.  

 Another interesting result comes out from the linear 
stability analysis. It reveals that for the inhibition intensity 
parameter values, D, smaller than a critical value, say �� , the 

homogeneous state is a stable state and the system is always 
returning back when perturbed from it. But, for D values 
greater than the critical	��, the homogeneous state becomes 
unstable and the system evolves to form a pattern.  

All these results have been checked with numerical 
simulations, developed for this aim, and the patterns have 
been visualized. But this simulations also showed another 
types of stationary states, which looked like semi ordered 
ones.  

The chosen way to proceed analytically for solving 
nonlinear equations as (9) is to assume a particular steady 
solution and verify if that solution fulfill these equations. 
That is what has been done here with the chessboard and the 
stripes solution. But nowhere is said that they are the unique 
solutions. It makes me think that the encountered defects are 
steady solutions of the equations we couldn’t predict because 
of the difficulty to solve all the cases for a nonlinear set of the 
differential equations.   

  
For future studies, I’d like to encourage the research of 

these defects as possible stationary solutions for the 
Ginzburg-Landau model with lateral inhibition coupling. 
Interesting answer can be searched for questions like, are 
they really stationary patterns? Can a very simple defect be 
designed and assumed as a steady solution of the equations 
(9) and probe, effectively, that they are stationary solutions? 
Are they stable or unstable, what happen if one of them is 
perturbed? Which is the cause that, instead of the expected 
pattern, one gets a defect for a given D? Taking a pattern and 
perturbing it, would it be possible to obtain defects as the 
same way as the homogeneous state is perturbed? To answer 
these questions numerical simulations could be a good tool to 
study the phenomenology as the program for this report 
helped me a lot in understanding the phenomena.   
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