Pattern formation in Ginzburg-Landau model with lateral inhibition
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Abstract: This work deals with the phenomenology of the ZBurg-Landau model, taking account on lateral
inhibition coupling, to study some pattern formatishen the homogenous stationary state is perturfiea system
evolution tends to restore this homogenous staterats to evolve to a pattern, which is controlgdthe lateral
inhibition intensity parameter, D, given value. §hork contains a linear stability analysis to gpet critical value
D, for the patterns to be formed, and a computatipnagram has been built to check those results@niualize

the patterns.

[ INTRODUCTION.

The spatial pattern formation is an interesting -phe
nomenon occurring when certain systems are driveaya

from equilibrium. These patterns can be found ifiedent
situations and in many types of systems. Exampiehide

Ginzburg-Landau model to explain the pattern foromaand
to visualize some of them.

. THE GINZBURG-LANDAU M ODEL.

The Ginzburg-Landau theory (GL) makes an assumption

that changes the manner of solving problems orisstat

patterns in hydrodynamic systems such as the Ryguylei physics. Instead of getting the system’s thermodyos by

Bénard convection, Taylor-Couette flow, as welreactive-
diffusive chemical systems, solidification frontsiplogical
tissues and other cases.

determining its microscopic Hamiltonian and compgtihe
corresponding partition function, it takes into @aet that the
correlation length is much greater than the miwpsc

The theoretical starting point for dealing with sthi separation. This observation suggests that themsystpro-

phenomenon is usually a set of deterministic equoatiof
“motion”, typically in the form of nonlinear
differential equations. An aim of theory is to dése
solutions of the deterministic equations that dkely to be
reached starting from typical initial conditionsdato persist
at long times.
equations are either not known or too complicatedrtalyze
conveniently. It is thus useful to introduce pheeowiogical
order-parameter models, which
approximation near the point where the homogenetate
symmetry brakes and which may be solved analyyicail
numerically [1][2].

The present work, focus its attention in biologipattern
appearance, in cellular tissue development, whenctils
undergo a lateral inhibition interaction betweernth This
kind of interaction favors different values of @nt
substance concentration in neighboring cells. Tikishe
opposite situation when diffusive interaction taldesce and
tends to homogenize the concentration in the cells.

This study considered a cellular tissue as an latiased

perties are insensitive to the microscopic detaild the point

partia is to avoid dealing with the underlying microscoptoucture

[4]. For this reason, the GL theory presents a phen
menological approach that only uses macroscopitesys
variables. But, it has to be said that, insteadezling with

For many systems, appropriate Btartithe microscopic details, this approach is only d/ialiose to

those states where the order parameter is small.
The theory makes the hypothesis that the free greag

lead to good behavibe expanded in powers of the order parameter,exifspfor

each system. This order parameter indicates whesyktem
is in a disordered phase or in an ordered one.

For those uniform systems with null external fieltlse
expansion of the Helmholtz free energy, in powefrghe
order parameter, can be performed and then orgyvadrms
are needed to understand the macroscopic propadasthe
transition [5].

In the case of an LxL system, the concentratignof a
certain substance is the order parameter and eelthisc
considered as a uniform subsystem. Then, one géteea
energy expansion for each cell in the form:

cell lattice where each cell contains an homogeseou

concentrationg;;, of certain substance. The Ginzburg-Lan-

dau theory has been chosen to establish a simgigefvork
to understand the phenomena and to state a sdferkdtial
motion equations for the cell concentration timelation
[3]. This theory was initially thought to explainhgse
transitions and critical phenomena but it has ha®wved to
be very successfully to understand the patternappee in
different physical systems.

A program has been built to solve the set of déffeial
equations obtained for the cell-lattice with latardnibition
in the Ginzburg-Landau theory. It finds numericalus

tions,c;;(t), using the Runge-Kutta 4 method when the

system is perturbed from his homogeneous steady. $tar

this perturbation it uses random and different,dvose to the

steady state, initial conditions in each cell. Tgwal of the
program was to validate the theoretical analysis thé
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F(Cij) =f0 + ECLZJ + _Cl'4]" (1)
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wheref,, a andb are constants and b is positive.

In terms of the Ginzburg-Landau description, theady
states are those for which the free energy beconieisnal.
To minimize the free energy for the whole systene th
minimization of the free energy in each cell has#also
minimal so the steady states are determined bgdhdition:

dF(CU)

dc;;
ij C{j

=0 - ac;j+bc?=0

)

It is clear to see that the homogeneous stgtes 0 in



each cell, is always a steady state independehtlyeoa and _ 1
b given values. G(t) = Z Cij»
If the system is driven away from the homogeneous <ij>

steady state, for example applying a field, theddton (2)
will be true no longer and the system will evoleefind a
new steady state. During the transient, the ordearpeter is
also depending on timeg; = ¢;;(t), and it has to be
determined from posing and solving the motion eiquat
corresponding to the dynamical situation considdoedthe
studied system.
The starting point for this work is the differentgguation P

. . . . Cij oF
obeying a relaxational dynamics to the steady steith Y-
diffusive effect occurring for continuous and namfarm ot dcy;
systems. The order parameter, in this general chegmends
on the position and on time,= C(?, t), and the considered where T is still called the kinetic CoeffiCienK is the lateral

(6)

is the n first neighbors concentration averagéehefif-cell. In
this case,k, is the lateral activation coefficient and it is
positive defined.

With this readaptation of the continuous proposexieh
into a LxL discrete, non-uniform, and diffusive sm, the
equivalent dynamic equation (3) for each ij-cell is

—k(cij — ¢j) +E@Fb) (7

equation is: activation coefficientk > 0, andé (#,t) is a noise term as it
dc oF was explained before.
— = —T—+ kV2c + £(#t) )
ot dc B. Diffusion vsLateral Inhibition.
where the concentration time variation rate is tehree In section Il.A the dynamic equation (3) has beaised
causes reflected in these three terms on the siget of the considering the existence of diffusive phenomenorthe
equation (3). system. In consequence, a positive signed laplatzam

The first term contains the free energy partiahwispect appears in the equation to realize that a diffusieghanism
to ¢, and the kinetic coefficienE, The minus sign appearsis favored from high concentration points towaro lones.
because a relaxational dynamics is considered amel ol he diffusion mechanism is the cause of the systeotution
expects that perturbing the system, from a stetatg,svould to stable states tending to be homogeneous. Al tel to
return it to the same state. equate their substance concentration with theghimrs.

The second term takes into account the substance In the other hand, there exists another mechanéhadc
diffusion in each point of the system. The exiseenta non- lateral inhibition mechanism. Under this situatitite system
null concentration gradient is responsible for thdbstance evolution is ruled in a different way and the celig to
flows appearances that contribute to the concémtraime differentiate, as much as possible, from their hedys. It can
variation rate too. The k constant is called th&udion be understood like a “negative diffusion”, in a semhat, this
coefficient andv? is the laplacian operator. phenomena can be mathematically modeled assuming a

Finally, the equation could be supplemented byhstetic  diffusive opposite effect and then a negative dfik is
terms [1][4] representing thermal noisé(7,t), i.e.the proposedk<O0.
fluctuations, but this term is not considered iis thork. The dynamic equations set for an LxL system witark

inhibition mechanism is:
A. Dynamic equationsfor a cell lattice.

Once the dynamical equation for a continuous sys$tasm aC_U =T oF
been established, the next step consists in abispsituation ot dcy;
to a discrete LxL cell lattice system.

Firstly, the order parameter has also to be spdisakete where, unlike equation (7), hei2 is the lateral inhibition
defined. Its position dependence is no longer poimitensity parameter and is positive defined) .
dependence in a continuous media, and now it depemdhe For this study, in the dynamic equations set (83, free
cell position inside the system: energy derivative has been computed taking the resipa

. (1) with the constant values=b =T = 1, and no noise term
c=c@t) = c;(®), ) has been considered. This is the simplest case tsolved
where i, j are the cell position index in the lketiandc;; (t) and to show all its phenomenological content in glagern

can represent the concentration of certain substaneach formation.
cell or the ferromagnet magnetization, etc. acy; s B 9
The diffusive term in (3) has also to be redefinedhe ot —cij — ¢ij + D(¢ij — &), D>0 9)
discrete situation because the laplacian is a woatis field
operator. If we take into account that the diffusio . ) _ .
phenomenon appears because two neighbor points h3(&re ¢ is the first neighbor concentration average ef th
different concentrations, one can make a guespeopbse a considered ij-cell as it was defined in the equa().
term of the form:

+ D(ci; — ¢j) +§(F,0), (8)

. 2-d PATTERN FORMATION.

kVZc(7,t) » —k(c;;(t) — ¢;; (1)), 5 _ . .
€, t) = —k(e; (8) = & (®) ®) Trying to solve the LxL, nonlinear, coupled, setpaitial
where differential equations to verify if the system slizls in a
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spatial pattern configuration could not be goodaidk is

It could be observed that a critidd} value exists for the

possible to proceed in an alternative way and obtapattern formation§ > D,). It could be recognized because

interesting results. This way is to assume thatdiqular
pattern is a steady solution of the problem anctkliethis
solution is stable from de equations (9) [3].

A. Chesshoard Pattern (4 neighbors 2-d).

the system has three real solutions, one of thenthés
homogenous solutio), = ¢, = 0, and the other twa, +#
¢y, are the pattern solutions as the hypothesis wadem
Under this critical valuell < D), there exists only one real
solution which corresponds to the homogenous soiutind

This type of pattern can be obtained through ardte therefore there is no pattern formation in the lztice.

inhibition mechanism where each cell interacts wght first
neighbors.

Going further, it is possible to assume that, githa
equation symmetry observed on (11), then= —c, is the

We are considering the chessboard pattern formati(gﬁrresponding pattern concentration solution. Suibistg it

when a lateral inhibition mechanism is imposed wfid four
close neighbors. There exist the chessboard pattsimg
lateral inhibition with the eight closest neighbdmst it has
not been seen in this work and then, the analogoaltical
result, are not exposed here.

There has been assumed that the chessboard patirn
steady solutiondc;;/dt = 0, for the set of equations (9),

where each cell has taken one of the two possialees:

Cij = Cq OF ¢;j = ¢p. In this case, the 4 neighbor concentra-

tion average in each ceti; , is:

(10)

Substituting this result in the set of differentiuations,
one finally finds a system of two nonlinear equasidor c,
andc, which depends on tH2 parameter.

—Cq— 3+ D(cg—cp) =0,

—cp,—cp+D(c, —cg) =0, (12)

A qualitative solution can be found by using a dniap
representation method and obtain relevant infolmnagéibout
the pattern appearance in the cell lattice. From finst
equations (11) one getg(c,) and from the secong(c).
When these curves are plotted irc,ass ¢, space, see
Fig. (1), the points where the curves cut eachrathe said to
be the system solutions.
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Fig. 1: ¢, vs g diagram showing system (11) solutions for the

two possible situations. The system only presentsreal solution

(homogeneous) whdb < 0,5 and shows 3 real solutions in the other

case
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in the system, one gets:

ca=+V2D—1 , (12)

Cp = —Cq4

The system has real solutions, different from tbmbge-
neous one, when the criticality condition is fuéfd.

20—1>0—>D>§, (13)

Therefore, the chesshoard pattern consideringalates
hibition with the four close neighbors appears wheiq .

The corresponding linear stability analysis [6] fibre
homogeneous fixed point; = ¢, = 0, shows that it is no
longer a stable point and the chessboard pattgreasgrom
a particulaD value, when considering lateral inhibitions with
the four closest neighbors. In this case, the timegansion
for the displacements close to the fixed pdijt c;) = (0,0)
has a jacobian matrix in the form:

A= (D_—Dl

-D
bo1) (14)
where its eigenvalues are obtained solvirg(A — AI) =0
and are found to b&, = 2D — 1 y 1, = —1. The fixed point
is meant to be stable whilg < 0 y 1, < 0 is satisfied. This
implies that the homogeneous state is a steady $tat

D < % The same analysis, now taking the pattern saiutio

(12) as a fixed point, gets that the pattern iblstéor D > %
This result means that a little displacement frohe t
homogeneous state whén> % ends in a chessbhoard pattern

when the lateral inhibition interaction with theufoneighbors
is considered.

B. StripesPatterns (8 neighbors 2-d).

This is the other type of pattern considered. Tinipes
pattern appears when the lateral inhibition medraris the
interaction in each cell with its 4 or 8 closesigh&ors. As it
happened in section A with the chessboard patierthis
work no stripes pattern has been seen considering a
neighbor lateral inhibition interaction, then thealtical
results for this case are not exposed here. Theeptravork
only accounts for the stripes pattern formatiorhvtite eight
close neighbors lateral inhibition interaction.

There has been assumed that the stripes patterstéady
solution,dc;;/dt = 0, in (9) and each cell has one of the two

possible concentration valueg = c, or¢;; = c;,. Unlike the
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chessboard pattern case, the neighbor’'s concemtratierage solved. The concentration evolution in each cetidmputed
(6) considering the eight close ones is in thigcas for a set of discrete instants of time,f which have been
chosen to be equidistant with a time interval stdph,

t, =ty + kh. The program computes until the concentration
in each cell ends in a stationary regime.

Cj = %(6Ca+20b) . Ssiocp =0 (14) The program has been run to test the analyticalltegs
starting from low,D, inhibition parameter values and then
increasing them progressively expecting the patferma-
tion occurs from the predicted critical valug,

— 1 .
Gij = §(2Ca+6cb), Si ¢ =¢q

Substituting it in the differential equation se) (Bere is
going to be find another system of two equationscfoand

¢y, depending on the parameter. The Patterns are shown in Fig. (2), Fig. (3) ard #):

3

—Ccq— 3+ sD(ca —cy) =0, Chessboard pattern
3 Lateral inhibition in cells with the four close neighbours
—cp —Cp + “D(cy =) =0, (15) __ 08
10
) 9 06 _
and analogously to the chessboard pattern castinglohe o
corresponding, (c,) and c,(cp) curves, shows that there is 8 U
also a criticality condition for the stripes pattediormation. 7 02 =
Given the symmetry of the equations (15), a satutb the 6 ' g
typec, = —c, is a system solution. Substituting again in the o 5
equations set,: ° o
4 02 §
Q
/ 3 3 04 =
=% [;D-1, ¢ =-¢ (16) 2 3
-0.6
. , ) 1
SO a stripes pattern appear, when eight neighboes a .08

1 2 3 4 5 6 7 8 9 10

Fig. 2. Chessbhoard pattern found setting lateral inhibitioth
the four close neighbors amil= 0.8, when the homogeneous state
was perturbed with random initial conditions, -00%;(0) < 0.01,
and choosing a time steplof 0.01 for the RK4 method.

. . 2
considered, iD > 3

The linear stability analysis for the homogenecigsdy
state gives, in this case, a jacobian matrix:

13p-4 -3D
A= Z( -3D 3D - 4)’ (7 Stripes pattern
Lateral inhibition in cells with the eight close neighbours
with the eigenvalued; = 6D — 4 y 1, = —4. The stability 0 = 025
condition that is required for the fixed point te lstable, 02

imposes, in this case, that the homogeneous statable for

0.15
D < § It is, also, verified that the stripes solutiaxefl point

0.1

is stable forD > % Therefore, a little displacement respect to
the homogeneous state would drive away the system t
stripe pattern iD > % parameter value is considered.

0.05

-0.05

-0.1

[=)
cell concentration C

V. NUMERICAL RESULTS. 015

The analytical results found in section Il haveebe 02
verified by numerical simulations.

It solves, numerically, the LxL set of differential
equations given in (9), with the four or the eiglgtighbor . _ . o
concentration average considered term. The aimtwasst ~ Fig. 3: Stripes pattern found setting lateral inhibitioithathe
the starting hypothesis made assuming the Ginzbangtau €ight close neighbors aral= 0.7, when the homogeneous state was
model as a phenomenological approach to the patt rturbed with random initial conditions using 8@me values as in
formation phenomena and to verify the conclusiotisaeted 9. ().
from the analytical results. : : .

. Another interesting result, we were not searchiog f

In the program, the desirdd value can be chosen as a . . .

. came out from simulating results. Sometimes thélattice
parameter, and a Runge-Kutta 4 method [7] saly€s,) in bei bed f he h th

h cell, when the cell lattice system is pertdrinay from system, being perturbed from the homogeneous amiae
each cefl, y pert y ro same manner as explained before, ended in a differe
his steady homogeneous state. To take into accthsit

bati h q i stationary state. For the givénvalue, it was expected to end
perturbation, the program generates random smafllatie- i 5 known pattern but, instead of that, it finadlyolved to a
ments in each cell concentration, and they arereshtas

o - . . . different stationary state, not too ordered, whbee pattern
initial conditions to the set of differential eqiosts to be

N w O O N o w0

-y

- -0.25

1 2 3 4 5 6 7 8 9 10
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started to form. Those stationary states lookee Iiot
ordered patterns, maybe disordered ones, but nat
completely disordered random configurations Fig. (¥hen
it happened, the first sensation was that the progwasn’t
well designed. After revisiting it many times, madi
computing tests and fixing different initial condits, it
seemed to run correctly and was assumed that theaggnce
of this kind of patterns was another type of solusi for the
set differential equations (9).

Defects on pattern

Lateral inhibition in cells with the eight close neighbours
— 1
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Fig. 4: Stationary pattern found setting lateral inhibitiwith

the eight close neighbors abd= 1.1, when the homogeneous stat
was perturbed with random initial conditions usthg same values

as in Fig. (2)..

V. CONCLUSIONS.

homogeneous state is a stable state and the sistmays
lireturning back when perturbed from it. But, for values
greater than the criticél,, the homogeneous state becomes
unstable and the system evolves to form a pattern.

All these results have been checked with numerical
simulations, developed for this aim, and the pa#ichave
been visualized. But this simulations also showadtlzer
types of stationary states, which looked like semdered
ones.

The chosen way to proceed analytically for solving
nonlinear equations as (9) is to assume a partigiEady
solution and verify if that solution fulfill thesequations.
That is what has been done here with the chesslzoardhe
stripes solution. But nowhere is said that theytheeunique
solutions. It makes me think that the encountereféals are
steady solutions of the equations we couldn’t mrteldécause
of the difficulty to solve all the cases for a noehr set of the
differential equations.

For future studies, I'd like to encourage the redeaf
these defects as possible stationary solutions tfar
Ginzburg-Landau model with lateral inhibition coungl.
Interesting answer can be searched for questides &re
they really stationary patterns? Can a very singgfect be
designed and assumed as a steady solution of theti@as
(9) and probe, effectively, that they are statignswlutions?
Are they stable or unstable, what happen if on¢hef is
perturbed? Which is the cause that, instead ofettpected
‘pattern, one gets a defect for a given D? Takipgttern and
perturbing it, would it be possible to obtain défeas the
same way as the homogeneous state is perturbedfstieer
these questions numerical simulations could beca gool to
study the phenomenology as the program for thiortep

The Ginzburg-Landau theory offers a simple modat th helped me a lot in understanding the phenomena.

allows stating a set of dynamical equations foisaréte cell
system with lateral inhibition, to explain the pbemenology
of the chessboard and stripes pattern formationnwihe
homogeneous state in these systems is perturbed.

The set of the differential equations obtained it GL
model are also analytically treatable and it isside to
obtain some relevant information about the pattermation.

The first result exposed is that the chessboard thad
stripe patterns are effectively stationary stafedb® system.

Another interesting result comes out from the dine

stability analysis. It reveals that for the inhibit intensity
parameter valueg), smaller than a critical value, s&y , the
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