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Abstract: The possibility of a slow cosmic evolution of fundamental “constants” of Nature
has been discussed for a long time without being consolidated; recently, however, more and more
experiments are arising whose results seem to support this idea. Apart from that, in an expanding
universe the vacuum energy density ρΛ is expected to be a time-evolving parameter rather than the
rigid one proposed in the standard ΛCDM model; in fact, quantum field theory in curved space time
suggests a slow evolution determined by the expansion rate of the universe H. In this work, we
will try to obtain and develop some cosmological models with such a a dynamical vacuum energy
density, and at the same time we will check whether they can provide an explanation for the alleged
slow time variation of the fundamental constants.

I. INTRODUCTION

Nowadays the time and space evolution of fundamen-
tal constants of Nature is a very active field of theoretical
and experimental research that could provide interesting
results in the near future. The idea of a cosmic time
evolution of these fundamental constants of physics be-
gan with Dirac in the thirties, when he proposed a time-
evolving gravitational constant G [1]; since then, the pos-
sibility of different dynamical ”constants” has been con-
tinuously discussed and investigated, but many techno-
logical improvements have been needed to finally notice
possible evidences of these variations; see the review [2].
However, it is important to note that we still deal with
low significance levels due to technical limitations on the
current measurements.

For instance, there are many tests indicating the pos-
sibility that the value of the fine structure constant αem

has changed over the cosmic evolution. Constraints on
α̇em/αem ≡ (1/αem)dαem/dt can be deduced from limits
on the position of nuclear resonances in natural fission
reactors that have been working for the last few billions
years; one renowned example is the natural reactor lo-
cated at the Oklo uranium mine (Gabon). Moreover,
direct astrophysical observations are becoming very rel-
evant in this course. Note that if αem does not remain
constant, we could also expect a time evolution of the
masses of all nucleons due to the fact that the interac-
tion responsible for the variation of αem should couple
radiatively to nucleons.

Likewise, it is also considered the proton-electron mass
ratio µpe ≡ mp/me, which is known with high accu-
racy, testing a possible cosmic time evolution of its value.
Such a time-evolving µpe, thus, could be interpreted as a
change of the fundamental QCD scale parameter ΛQCD

of the strong interaction, in the sense that a dynami-
cal ΛQCD would originate a variation of the proton mass
whereas it would not affect the electron one; we refer to
[5] or [6] to see how mp and ΛQCD can be related. Some
of these experiments consist on astrophysical tests, com-
paring interstellar and laboratory spectrums, but there

are also laboratory experiments where a time variation
of the nucleon mass is tried to be observed by monitoring
molecular frequencies using atomic clocks.

What if an alternative cosmological model, instead of
the standard ΛCDM one, can give us an explanation
about the possible time variations of the particle physics
constants mentioned above? From the cosmological point
of view, the idea that both the cosmological term Λ and
the gravitational coupling G could also be dynamical pa-
rameters is, intuitively, a reasonable assumption in an
expanding universe. Thus, we will look for new cosmolog-
ical models compatible with a time-evolving pair (ρΛ, G),
then trying to explain the feasible evolution of particle
masses and couplings through them.

II. COSMOLOGICAL MODELS WITH
TIME-EVOLVING PARAMETERS

As we have stated in the Introduction, we propose the
idea that cosmic time variations of constants of particle
physics may be related with time-evolving parameters of
cosmology. In order to develop this theory, the aim of
this section is to obtain a set of cosmological equations
compatible with time variations of the Newton (G) and
the cosmological (Λ) constants. From this set of equa-
tions, we will finally raise some cosmological models.

We start from the General Relativity field equations
Gµν − gµνΛ = 8πGTµν in the presence of the cosmologi-
cal term, where Gµν is the Einstein tensor, and Tµν the
energy-momentum one of the isotropic matter and radi-
ation of the universe. Assuming the expanding universe
as a perfect fluid, with matter-radiation density ρm and
vacuum energy density ρΛ := Λ/(8πG), we can rewrite
them as

Gµν = 8πGT̃µν , (1)

where now T̃µν := Tmµν +ρΛgµν is a diagonal tensor called
the full energy-momentum tensor of the cosmic fluid.

We will focus on solving (1) in the FLRW metric, ds2 =
dt2 − a(t)dx2, being a(t) the time-evolving scale factor.
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The reason why we restrict our study to the spatially flat
case is that it seems to be the most realistic one for both
theoretical and observational points. In this context, it is
important to note that a time evolution of the parameters
G and Λ is allowed without violating the Cosmological
Principle; this is just the framework we will contemplate
from now on.

Regarding the equation of state for the matter-
radiation component, it reads pm = ωmρm with ωm
equals to 0 or 1/3 for non-relativistic matter or relativis-
tic matter and radiation, respectively. In our analysis,
since we will be only interested in the relevant epoch of
the cosmic evolution where the non-relativistic matter
dominates, we will take ωm = 0 (so pm = 0), neglecting
thus the radiation component; this is a very good approx-
imation for the relatively present universe. We also intro-
duce the corresponding EoS for the vacuum, pΛ = ωΛρΛ;
in this case, because of the assumption of ρΛ that states
that it is a true dynamical vacuum term whose time evo-
lution in exclusively associated to the quantum effects on
Λ, it can be seen that ωΛ = −1.

Therefore, on the one hand, by solving Einstein’s equa-
tions under all of these assumptions, as well as including
the possibility of G = G(t) and/or Λ = Λ(t) (and then
ρΛ = ρΛ(t)), we obtain the following two independent
gravitational field equations, which are known as Fried-
mann’s equations. The first one,

H2 =
8πG

3
(ρm + ρΛ), (2)

is derived from the time component of (1), and the second
one,

2Ḣ + 3H2 = 8πGρΛ, (3)

from the space components; here the overdot denotes
derivative with respect to cosmic time t, and H = ȧ/a
the Hubble’s expansion rate. Substituting (2) into (3),
we can derive a expression for the rate of change of the
Hubble function

Ḣ = −4πGρm. (4)

On the other hand, the general Bianchi identity
∇µGµν = 0, together with (1), leads to ∇µ(GT̃µν) = 0,
which induces a “mixed” local conservation law that,
trading the cosmic time t for the scale factor a through
d/dt = aHd/da, can be expressed as

a
d

da
[G(ρm + ρΛ)] + 3Gρm = 0. (5)

We recall that G and/or ρΛ may be dynamical parame-
ters. Although this conservation law is not independent
of the Friedmann’s equations, it is very useful in order to
understand the possible transfer of energy between vac-
uum and matter.

Thus, it only remains to present the different cosmolog-
ical models with time-evolving parameters that we will
develop in further sections. We distinguish the following
possibilities:

• Model 1: G =constant, ρ̇Λ 6= 0 and it is not satis-
fied the local covariant conservation law of matter

aρ′m + 3ρm = 0, (6)

where the prime denotes a derivative with respect
to the scale factor a.

• Model 2: Ġ 6= 0, ρ̇Λ 6= 0, but it is satisfied (6).

• Model 3: G = G0a
q, |q| � 1, and ρ̇Λ 6= 0; in this

case, we will see that may or may not be satisfied
the conservation law of matter (6).

If we take ρΛ and G constants, note that we recover
the well-known standard case of the ΛCDM cosmolog-
ical model, in which (5) transforms into (6); in this case,
ρΛ = ρ0

Λ, G = G0 and it can be shown by solving (6) that
ρm = ρ0

ma
−3, noting that we use the convention that the

0 in the sub- or superscript of a magnitude denotes its
current value. It will be convenient to have these sim-
ple results in mind in order to evaluate the behavior of
the models in the limits where both ρΛ and G become
constants.

III. RUNNING VACUUM

Intuitively, we expect that the vacuum energy density
varies with the expansion of the universe, so it is rea-
sonable to conceive theoretical proposals supporting this
option; in this regard, notice that all models we are go-
ing to deal with have a common point: the cosmic time
evolution of ρΛ. It is usually assumed in this area of
study that its evolution is inherited indirectly from an-
other dynamical variable µ = µ(t) on which ρΛ is tied of,
associating then this fact with the renormalization group
(RG) running of the effective charges in gauge theories;
see e. g. [4]. In the cosmological context, µ is a character-
istic infrared cutoff scale, and hence typically associated
to the Hubble function since H(t) is of the order of the
energy scale associated to the non-trivial structure of the
FLRW background. Generally, µ2 is in correspondence
with H2 and also with Ḣ.

From the theoretical point of view of the renormaliza-
tion group for the vacuum energy density of the expand-
ing universe, it is proposed that the rate of change of
the quantum effects on the cosmological constant as a
function of the scale µ follows the form

dρΛ(µ)

d lnµ
=

1

(4π)2

[∑
i

BiM
2
i µ

2 +
∑
i

Ciµ
4 + · · ·

]
, (7)

where Mi are the masses of the particles contributing
in the loops, and Bi, Ci,... dimensionless parameters.
We recall that, because of the general covariance of the
effective action, in the expression of ρΛ we only expect
terms with an even number of derivatives of the scale fac-
tor; due to the correspondences of µ2 stated above, it is
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straightforward to see that the RG equation (7) satisfies
this requirement.

For the current universe, we may consider only the
quadratic terms ∼ M2

i µ
2 of (7); we refer to [7] for fur-

ther explanations. Hence, integrating the resultant RG
equation, and then expressing µ2 as a linear combination
of H2 and Ḣ, we can finally obtain

ρΛ(H, Ḣ) =
3

8πG0
(c0 + cḢḢ + cHH

2), (8)

where cḢ and cH ara two small dimensionless parame-
ters, |cḢ |, |cH | � 1, that control the dynamical charac-
ter of ρΛ; this is the running vacuum energy density we
are going to consider in the three proposed models. In
particular, introducing equations (2) and (4) in (8), then
isolating ρΛ in the resulting expression, and finally defin-
ing new parameters ν = cH , α = 3cḢ/2 (so |ν|, |α| � 1,
too), C0 = 3c0/(8πG0), we arrive at the equivalent and
more useful formulation

ρΛ =
1

1− ν G
G0

[
C0 + (ν − α)

G

G0
ρm

]
; (9)

by normalizing it for the current values of all magnitudes
involved, we find that C0 can be expressed as

C0 = (1− ν)ρ0
Λ − (ν − α)ρ0

m. (10)

IV. MODEL 1

This can be interpreted as the “classical” cosmologi-
cal model with time-evolving parameters: it is assumed
a gravitational coupling G = G0 constant, and a running
vacuum energy density of the form of (9) which, conse-
quently, simplifies to

ρΛ =
1

1− ν
[C0 + (ν − α)ρm] . (11)

Our aim is, first of all, to find the law of the matter den-
sity in terms of the scale factor, ρm = ρm(a), and then to
state ρΛ = ρΛ(a). In this paper, whenever possible, we
will provide the results in terms of a because, in this way,
we can easily relate them with the cosmological redshift,
z = (1− a)/a, something very helpful for the interpreta-
tion.

In this case, the “mixed” local conservation law in the
form of (5) transforms into a(ρ′m+ρ′Λ) + 3ρm = 0, where
ρ′Λ can be easily computed from (11) and replaced, thus
obtaining

ρ′m +
3ξ

a
ρm = 0

with ξ := (1−ν)/(1−α). The corresponding normalized
solution for this differential equation, i.e., the law ρm(a),
is

ρm(a) = ρ0
ma
−3ξ. (12)

Thereupon, replacing (10) and (12) in (11) we can also
derive the law ρΛ(a):

ρΛ(a) = ρ0
Λ + ρ0

m(ξ−1 − 1)(a−3ξ − 1) (13)

Note that taking α = 0 and ν = 0, and then ξ = 1, we
recover the expressions of the standard ΛCDM model.

We can see that the parameter ξ defined above deter-
mines the evolution of both densities ρm and ρΛ. Since
|ν|, |α| � 1, it is commonly used the approximation
ξ = 1 − νeff, where νeff = ν − α; thus, remarkably, we
notice that if in this model we consider a running vac-
uum energy density of the form of (8) with cḢ = 0, i.e.,
α = 0, the final results (12) and (13) will be formally the
same simply exchanging ξ = 1− νeff by a new parameter
ζ := 1− ν.

V. MODEL 2

Let ρΛ be of the form of (9), Ġ 6= 0, and suppose
that the standard local conservation law of matter (6)
is verified. Our objective now is to find the expression
G = G(a).

The conservation law of matter implies that matter
density follows the normal law of the ΛCDM model

ρm(a) = ρ0
ma
−3; (14)

it can be proved by solving (6) in terms of the scale factor.
Thus, the vacuum energy density yields

ρΛ =
1

1− ν G
G0

[
C0 + (ν − α)

G

G0
ρ0
ma
−3

]
, (15)

where we don’t forget that G = G(a). Nevertheless,
due to the fact that |ν| and |α| are very small, and
that we are focusing in the the relatively present uni-
verse, where the possible values of G must be closed to
G0 (otherwise it should have been appreciated the evolu-
tion of G by the observational data), we can approximate
1/(1− νG/G0) ≈ 1 + νG/G0 by Taylor series, in such a
way (15) may be estimated as

ρΛ =

(
1 + ν

G

G0

)
C0 + (ν − α)

G

G0
ρ0
ma
−3, (16)

where we have also neglected terms with two or more
products between the parameters ν and α.

Therefore, taking into account (6), the conservation
law (5) simplifies to

G′(ρm + ρΛ) +Gρ′Λ = 0. (17)

It remains to compute ρ′Λ from (16). To this end, we
consider the reasonable assumption that the normalized
variation of the gravitational coupling is very small, i.e.,
|G′/G0| � 1. Hence, removing terms with two or more
products between ν, α and G′/G0, we get

ρ′Λ = −3(ν − α)ρ0
m

G

G0
a−4.
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Putting all together in (17) and then making some sim-
plifications, we finally obtain the following Bernoulli dif-
ferential equation for G = G(a)

G′ +

[
−3

ρ0
m

G0
νeff

a−4

C0 + ρ0
ma
−3

]
G2 = 0.

After doing the change of variable u := G−1 and mul-
tiplying the equation by −G−2, it reduces to a linear
differential equation for u = u(a) that, in particular, can
be solved by direct integration. If we undo the change
of variable, we isolate G and we normalize the resulting
expression imposing G(a = 1) = G0, then we obtain

G(a) =
G0

1− (ν − α) ln
(

C0+ρ0m
C0+ρ0ma

−3

) , (18)

with C0 given in (10), just what we were looking for.

VI. MODEL 3

Whereas Models 1 and 2 had been proposed previously
in the literature (see for instance [5]), this one is pre-
sented here for the first time. As in the other models, we
assume ρΛ of the form of (9), but now we state that the
gravitational coupling G follows the law

G(a) = G0a
q (19)

with |q| � 1. Thus, we look for the corresponding law
ρm = ρm(a).

Replacing (19) in (9), we get in this case

ρΛ =
1

1− νaq
[C0 + (ν − α)aqρm] . (20)

Since |ν|, |q| � 1 and we consider the relatively present
universe, when the scale factor is comparable to the unity,
the approximations 1/(1− νaq) ≈ 1 + νaq and aq ≈ 1 +
q ln (a) at first order of Taylor series are good enough. In
the same line, from now on we will neglect the terms that
contain two or more products between ν, α and q because
of the smallness of all three parameters. Therefore, the
vacuum energy density and its derivative respect to the
scale factor can be written as:

ρΛ = (1 + ν)C0 + (ν − α)ρm

ρ′Λ = (ν − α)ρ′m

On the other hand, it is easy to compute G′(a) from (19)

G′(a) = qG0a
q−1.

So we have all the ingredients in order to obtain a
differential equation for ρm = ρm(a) from the local con-
servation law (5); once we replace all the expressions col-
lected, expanding some resulting formulations in Taylor
series as well as removing the terms we have specified

above, eventually it yields the non-homogeneous linear
differential equation

ρ′m +
1

a
[3(1− (ν − α)) + q] ρm = −qC0

1

a
,

which can be solved by the variation of constants method.
Thus, after some calculations, we get at last the following
properly normalized expression for the matter density

ρm(a) =

(
ρ0
m +

qC0

γ

)
a−γ − qC0

γ
, (21)

where γ = 3(1− (ν − α)) + q. Taking into account (10),
and neglecting again terms with two or more products
between the parameters ν, α and q, (21) may be rewritten
as

ρm(a) =

(
ρ0
m +

qρ0
Λ

γ

)
a−γ − qρ0

Λ

γ
. (22)

Note that, in the general case, the conservation law of
matter (6) is not satisfied in this model. Nevertheless, if
we focus on the particular case with q ≈ 3(ν−α); then we
have γ ≈ 3, so ρm(a) can be approximated with the law
∼ ρ0

ma
−3 + (ν − α)ρ0

Λ(a−3 − 1); this may be interpreted,
at first approximation in our relatively present universe,
as the usual law ∼ ρ0

ma
−3, i.e., it may be followed the

matter conservation law (6). Finally, it is straightforward
to check out that for q → 0, i.e., G→ G0, we get (13), the
result of Model 1, and also that when all three parameters
ν, α and q tends to zero together, i.e., G → G0 and
ρΛ → ρ0

Λ, we recover the normal law ρm = ρ0
ma
−3 of

the standard ΛCDM model. In addition, see that for a
vacuum energy density constant, i.e. ν = α = 0, the final
expression of ρm would be formally the same changing γ
by γ′ := 3 + q.

VII. VACUUM DYNAMICS AND MATTER
NON-CONSERVATION: THE MICRO AND

MACRO CONNECTION

Once we have developed the three proposed models
in the previous sections, it is time to analyze the use-
fulness of each of them for our purpose: to explain the
possible time variation of fundamental constants of par-
ticle physics. We are going to see that there is a condi-
tion which a cosmological model has to verify in order
to be appropriate for this micro and macro connection:
the usual local conservation law of matter (6) should no
longer be satisfied.

Let ρB be the (baryonic) matter density in the uni-
verse; since it is essentially the mass density of protons,
we can write it as ρB = npmp, where np is the number
density of protons and m0

p will denote the current proton
mass. Since the non conservation of ρB in the usual sense
implies that it does not follow the law ρB = ρ0

Ba
−3 any-

more, we have that, either np does not follow the strictly
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FIG. 1: Left: Evolution of the matter density ρm obtained in Model 1, in terms of the redshift, for different values of the
parameter νeff. Right: The corresponding evolution of the vacuum energy density ρΛ.

normal dilution law np ∼ a−3 but an anomalous one,
and/or the proton mass mp suffers a dynamical evolu-
tion and has no longer a constant value; in all cases it is
assumed that the vacuum absorbs the difference. In fact,
we are particularly interested in the second possibility,
which would imply a dynamical proton mass, inasmuch
as it may provide us a direct explanation of the possible
variations of the fundamental constants mentioned in the
Introduction.

However, let us consider a cosmological model which
admits time-evolving parameters but at the same time
satisfies the local conservation law of matter (6); in this
case, ρB follows its normal law ρB = ρ0

Ba
−3, and we can-

not repeat the same argument as in the previous para-
graph in order to relate the cosmological model with the
possible variations of fundamental constants of nature.
Thus, such a model would explain the possible dynam-
ical character of the cosmological parameters ρΛ and G
in a way which is independent from the microphysical
phenomena in particle and nuclear physics.

We can conclude, then, that the exchange of energy
between matter and vacuum presents in Models 1 and
3 may be straightly linked to the time-evolving masses
in the Standard Model of particle physics, while Model
2 can’t be used to explain this problem due to its local
conservation law of matter. The next step would be to
estimate the bounds of the parameters involved in both
Models 1 and 3 confronting each of them with the obser-
vational data we referred in the Introduction; a thorough
review of this procedure in the case of Model 1 can be
found in [7]. For instance, using the results of the men-
tioned paper, which give us that νeff ∼ 10−3, we present
in Figure 1 a representation of the results of Model 1 with
different values of the parameter νeff; note that we have
approximated ξ = 1 − νeff and represented the densities
in terms of the redshift by using a = (z + 1)−1.

VIII. CONCLUSIONS

In this work we have attempted to explain the pos-
sible cosmic time evolution of fundamental constants of
particle and nuclear physics through the context of cos-
mology, by letting alternative cosmological models com-
patible with a time-evolving pair (ρΛ, G); this is what we
called “the micro and macro connection” as in [6]. We
first have obtained a set of cosmological equations that
allow time variations of both ρΛ and G, realizing that
now the Bianchi identity provides us a “mixed” local con-
servation law which generalizes the usual local covariant
conservation law of matter so it could be a transfer of
energy between vacuum and matter. From this new set
of equations, we have proposed and developed three dif-
ferent models, based on the ones presented in [5][6][7][8],
with only one feature in common: a running vacuum en-
ergy density whose evolution is motivated by the quan-
tum fiel theory in curved space time. In this develop-
ment, they deserve special mention the analytical results
of Model 3 since it has been suggested here for the first
time. The search for the relation between these models
and the change of the basic quantities of the Standard
Model of particle physics has finally led us to see that
this micro and macro connection can only be achieved if,
besides a mild dynamical behavior of ρΛ and/or G, the
considered cosmological model does not satisfy the usual
conservation law of matter. Thus, whereas Models 1 and
3 could be considered by our purpose, Model 2 could not.
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