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Abstract: This report aims to give an overall idea of 3D audio technologies in a
physics point of view. Some of the most representative methods are revised and dis-
cussed. Ambisonics technique is specially analised due to its powerful and complete
approach. In order to ”see” for ourselves its strengths and drawbacks we implemented
and tested a basic Ambisonics encoding/decoding tool.

I. INTRODUCTION

3D audio technologies include all audio record-
ing/reproduction methods and technologies designed for
the recreation of a complete sound field around the lis-
tener. As these technologies have been developed, the
notion of space has been gradually established as a new
musical parameter.

There are some examples of the use of space in musical
compositions. Antiphonal music, consisting in two sep-
arate choirs singing alternate verses during liturgies was
a common practice by Middle Eastern Jews in biblical
times and Roman Catholic Church in the fourth century.
As described by Schmele [1], classical music composers
such as Beethoven, Mahler or Ives had used some space
notions in their pieces. These include the use of sep-
arate orchestras in the same stage, the distribution of
different instruments behind the audience, the evolution
of melodic phrases through different instruments and so
on.

The development of loudspeaker, capable of emulat-
ing any timbre and also of duplicating it using as many
loudspeakers as desired, changed the musical paradigm
in the early 20th century. The reproduction of the same
sound using two or more loudspeakers is the basic condi-
tion to create virtual sound sources in the space between
them as explained below. Music composers have progres-
sively embraced space as a new musical parameter such
as pitch, rhythm or dynamics. Nevertheless, there is still
a long way to go before it can be understood not solely
as a complementary effect but as an independent and
meaningful musical variable.

Section II reviews some of the recently developed meth-
ods concerning 3D audio technologies.

A. Binaural
B. Amplitude Panning

C. Ambisonics

There are two basic approaches to three-dimensional
audio reproduction. The first one considers the physio-
logical mechanisms that allow us to hear sounds in space
(e.g. Binaural) while the second focuses in the synthesis

of the sound field around the listener (e.g. VBAP, Wave
Field Synthesis).

An Ambisonics implementation using Eurecat’s audio
system is explained and discussed in Section III.

II. STATE OF THE ART

A. Binaural

As stated by Rayleigh in [2], our brain compares the
signals reaching both ears in order to know the direction
of arrival of sound. The human head and torso act as ob-
stacles so the intensity difference between ears becomes
a good indicator of directionality. This is called Interau-
ral Level Difference (ILD) and is only noticeable for high
frequencies (>1.5 kHz) unless the source is located very
close to one ear [3]. For frequencies below 700 Hz (when
wavelength doubles the distance between ears), the phase
difference has the leading role in the localisation of sound
sources. This phase difference is called Interaural Time
Delay (ITD).

Further research showed how other mechanisms influ-
enced this localisation. The mere use of ILD and ITD
cues would lead us to the so-called cones of confusion
(Fig. 1). Two sound sources placed in the surface of the
cone will have the same cues. The first mechanism to
avoid this situation are the small rotations of the head
which break the symmetries and make the cone of confu-
sion vanish. The other one involves our own body char-
acteristics, especially those from pinna and ear canal, but
also from our nose, head and torso. Interaction of sound
with these obstacles acts as a filter that sends localization
information to the brain [4].

The basic idea of binaural techniques is to reproduce
the same pressure signals recorded in the ear positions
directly to the ears of a listener. These sound signals
can be measured using a mannequin head with two pres-
sure microphones each placed into one ear canal to record
the desired sound field. This mannequin provides the re-
quired head-shadow and the outer and inner ear filtering
mentioned before.

The most common playback technique for binaural
recordings is the headphone reproduction. It delivers
each signal directly to the corresponding ear and acts
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FIG. 1: Schematic illustration of the cone of confusion.
Adapted from 3D audio technologies: applications to sound
capture, post-production and listener perception by G. Cen-
garle, 2012, PhD Thesis, Universitat Pompeu Fabra, p. 11.
Copyright 2012 by Giulio Cengarle.

as an acoustic barrier between the listener and unwanted
external sounds. There are other approaches to binaural
playback using loudspeakers and the required cross-talk
cancellation techniques (to cancel the signals going to the
wrong ear) such as Ambiphonic reproduction [5].

Mathematically, the signal arriving to the ear drums
from a sound source is the convolution product between
the original signal and the Head Related Transfer Func-
tion (HRTF). This function holds the information of the
source and ear positions, the shape of the pinna and the
ear canals and other contributions due to the torso, nose,
etc. (i.e. the personal filtering).

B. Amplitude Panning

When we play the same audio signal using two loud-
speakers, our perception places this object in a certain
point between them depending on the respective gain val-
ues.

The sine law describes this situation in the case where
the listener is not following the sound and stays with the
head pointing directly forward. Eq. 1 shows this ap-
proach in the case where two loudspeakers are involved.

sinfg

g1 — g2
= 1
sinflp g1+ g2 S

where 65 is the virtual source panning angle (in the
arc between the two loudspeakers), 6 is the loudspeakers
angular position (supposing a symmetric distribution in
respect to the head pointing direction) and g; are the
gain factors.

Sine law is valid only for frequencies below 500 Hz, and
also with the assumption that the loudspeakers are in the
same vertical plane as the listener. Improvements of sine
law are explained by Pulkki in [6].

An extra expression for the gain factors is needed in or-
der to solve Eq. 1. The most common one is the constant
loudness condition
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where N is the total number of loudspeakers and p is an
adjustment factor for different listening room acoustics.
For example, p = 1 maintains constant amplitude for the
virtual source and fits the anechoic chamber conditions.
And p = 2 is the constant energy case, which works fine
for chambers with some reverberation.

Amplitude Panning can be extended easily to 3D loud-
speaker setups, where not all the loudspeakers are in the
same plane as the listener. Here, a maximum of three
loudspeakers are used to locate the object inside the tri-
angle they delimit. In 1997, Pulkki [7] developed the
most employed method, named Vector Based Amplitude
Panning (VBAP). In this approach, the sound source po-
sition is described by a vector p which is the sum of the
three vectors pointing at the loudspeakers in the chosen
triangle with magnitudes proportional to their gains (Fig.
2).

2 loudspeaker k

virtual

source - loudspeaker n

P
Iy
loudspeaker m

FIG. 2: VBAP virtual sound source location schematic.
Loudspeakers in a triangle can change the virtual sound
source location by adapting their gains. Adapted from Spatial
sound generation and perception by amplitude panning tech-
niques by V. Pulkki, 2001, PhD Thesis, Helsinki University
of Technology, p. 17. Copyright 2001 by Helsinki University
of Technology.

Mathematically, taking the condition of equidistance
between each loudspeaker and the listener, we can define
the position of the ny, loudspeaker as the unit Cartesian
vector l;; and the sound source position p,

—

ln = ( lnlvln27ln3 ) ) (3)

Pr = (PnsPm Dk ) - (4)

So we can write p as a combination of the l_; in the
triangle

—
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from which we can get the gain factors

lnl ln2 ln3
lml lm2 lm3 ) (6)
ler le2 ks

-1

It works in the case where L;ﬁlk does exist. That is,
when the vector basis describes a 3D space. We are sim-
ply changing bases to represent p in the sources triangle
vector basis.

Well need an extra condition for the gain factors so Eq.
2 is taken as in the 2D case.

C. Ambisonics

Ambisonics appeared in the 70s with the work by
Michael Gerzon. The basic idea of his proposal was the
recreation of the pressure field in the listening point by
reproducing the pressure values in a certain sphere sur-
rounding the listener. In order to reproduce all directions
perfectly, one would need an infinite number of minute
speakers. An alternative realistic approach is introduced
by Gerzon: the directional information can be stored as
a series of spherical harmonics. If we take a monochro-
matic sound field and write down the wave equation in
spherical coordinates, the pressure at point 7 can be ex-
pressed as:

e N
p(Fw) =Y i jm(kr) Y AT (@)Yi.(0,0) (7)
m=0

0<|n|<m

where Y,? (0, ¢) are the spherical harmonics, jn,(kr)
are the Bessel functions of the first kind, A?, (w) are the
coefficients of the expansion, which describe the spatial
properties of the field, and k = w/c is the wave number.

Ambisonics is introduced as a complete model, taking
into account both the encoding and the decoding pro-
cesses. Its main contribution is the possibility of coding
the recorded information in a certain number of channels,
only depending on the order of the expansion needed.
So if we truncate the series in order L, the number of
Ambisonics channels stored is equal to the number of
harmonics, that is, (L +1)2. And the most important as-
pect: the number of encoded channels and their informa-
tion are independent from the final loudspeaker layout.
In the decoding step, the model takes this information
and the layout configuration to calculate the gain of each
loudspeaker in order to reproduce the recorded sound
field. Notice that the exact reconstruction would need
the infinite series solution.

The original article [8] introduces B-format, consisting
of the four components of the first order Fourier-Bessel
expansion. One can notice that these first order compo-
nents have the same shape as the directional character-
istics of omnidirectional and bidirectional microphones
(top four diagrams in Fig. 3).
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FIG. 3: 3rd order Ambisonics encoding of a punctual sound
source (green) located around 85 azimuth. Positive values
are in blue, and negative in red. Adapted from Real-Time
3D Audio Spatialization Tools for Interactive Performance by
Andrés Pérez-Lépez, 2014, Master Thesis, Universitat Pom-
peu Fabra, p. 11.

Omnidirectional component W takes the pressure at a
certain point (zeroth order) while bidirectional ones (X,
Y and Z) store the three orthogonal directions for the
pressure gradient or velocity (first order). We can note
that the B-format embraces the four physical quantities
that define an acoustic field, made explicit in Euler’s fluid
dynamics equations.

Increasing the order of the Ambisonics expansion pro-
vides more information about the sound field near the
listening point. Fig. 3 shows each harmonic contribu-
tion up to 3rd order for a punctual sound source located
around 85 azimuth. Higher orders extend the listening
area where the sound field remains fully reconstructed so
a better listening experience is achieved.

III. AMBISONICS IMPLEMENTATION

Ambisonics techniques turned to be the more general
and complete for the reproduction of any recorded or
virtual sound field. In order to immerse oneself in this
approach, the author has implemented a Higher-Order
Ambisonics encoding/decoding system (to 3"¢ order).

The implemented process is described next for a first
order expansion:

A. Encoding

If we take a sound source S from the direction u, the
information is encoded in A = ( W, X,Y, Z ) as:

W =25

X = u-ZS=cosfcosd S

Y = 4-yS=sinfcosd S

Z ©-ZS =sind S (8)

Barcelona, January 2016
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where @ is described by the angles (6,d) in spherical
coordinates. The spherical harmonic expressions used in
this report are those described by Daniel [9]. For follow-
ing discussion we introduce

B,=(lLa-&,u-g,i-z), (9)

as the characteristic vector for position .

B. Decoding

The decoding process assigns a linear combination of
the encoded information channels to each loudspeaker,
taking an encoded signal S from direction @(0, ) and N
loudspeakers placed in directions u;(6;, d;) equidistant to
the centre of the listening area. So, ideally,

E:fo E:(Ll,L277LN)7 (10)

where L; is each loudspeaker signal and D is the de-
coding matrix.

Just as in the sound source encoding step, here each
loudspeaker position has an associated characteristic vec-
tor. That is, spherical harmonics are used to assign a cer-
tain weight to each loudspeaker playback contribution.
With this we are returning to the cartesian coordinates
space.

—

Bu = (Lii-di i 5), (1)

The so called reencoding matriz, due to the recurrent
spherical harmonic weighting, is then defined:

B{ui} = (éul,éw,... B ), (12)

sy Pupn

If we want the final sound field (right) to match the
original encoded one (left), we find the expression

B,-S=DBp, L (13)

Defining gain vector G = ( G1,Go,...,GN ), which
stores each loudspeaker final gain,

B,-S=By,,; G-S (14)

Now we see that the decoding matrix D is actually the

inverse form of the reencoding matriz By,,y, for stability
issues, the pseudoinverse form is normally used, so

G =Bl By = Bl (BuyBluy) -Bu  (15)

Treball de Fi de Grau

In our implementation, we supposed a regular loud-
speaker layout, which ensures that <B{ui}B$ui}) =N-1I

(where I is the identity matrix), so

Lo

Dpinv = 7 Bu,y (16)

Finally,

—

G = Dyiny - Ba (17)

C. Decoding criteria

Gerzon defines two quantities related with the gain
components in order to establish a criterion on the de-
coding matrix: velocity vector and energy vector.

V=== “‘:Tvﬁv (18)

FE = Lui=l i =TgpUug, (19)

where 7y, g and iy, g are the modulus and the direction
of each quantity respectively.

There are two main approaches to Ambisonics decod-
ing: the physical approach aims to recreate the exact
recorded sound field in technical terms. So the criteria
will be to maximize ry in order to preserve the original
velocity vector. The psychoacoustic approach is based in
Rayleighs theories so V will be important at frequencies
below 700 Hz and E over 700 Hz (maximizing ry and rg
respectively). The two criteria show linear solutions in
regular loudspeaker arrays.

D. Implemented code outline

The main goal of the code is to take a mono audio file
and generate an Ambisonics weighted copy of it for each
loudspeaker in the layout. As initial variables we have
loudspeakers angular positions and the desired angular
location of the virtual sound source.

The chosen programming language is Python (v.2.7).
Specific functions from SciPy and PyLab open-source li-
braries are required, specially for the signal processing
steps.

A basic information flow of the implemented code is
introduced.

Encoding
1. Reads mono WAV file

Barcelona, January 2016
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2. User defines desired azimuth and elevation angles

3. Fills encoding vector with spherical harmonics ex-
pressions for the introduced angles

Decoding

4. Fills the pseudoinverse D matrix using the angular
position of the loudspeakers and spherical harmon-
ics expressions

5. Computes the gain vector from the encoding vector
and D

6. Multiplies the gain vector and the initial audio file
to get each loudspeaker signal

7. Writes as many WAV files as loudspeakers in the
final layout

IV. CONCLUSIONS

The implemented code was tested in Eurecat’s 3D au-
dio system described in the Appendix. The generated
audio files were played simultaneously in the correspond-
ing loudspeaker position in order to recreate the global
sound field in the central point of the studio.

Listening test suggested a good directionality perfor-
mance. Some amplitude changes were noticed for dif-
ferent virtual source positions. In Eq.16 we supposed a
regular layout situation. The loudspeaker distribution
in the studio follows some simetries but it’s not a reg-
ular layout. The later explains why different directions
perform different playback amplitudes.

It’s also important taking in account the chosen decod-
ing criterion. The reconstruction of the final sound field

by reproducing the exact original field (Eq.14) means
that the velocity vector V' is recreated. With this, our
implementation will work better for low frequency sig-
nals.

In order to evaluate how directionality changes by
adding successive orders we performed listening tests for
a certain virtual source position at different series trunca-
tion. The results of this experience show an improvement
in directionality and presence. That is, the same sound
is better defined in space, showing less spreading effects.

Ambisonics is a very interesting approach, specially
by experiencing it in the studio. Differently from other
techniques such as Amplitude Panning, in an Ambisonics
playback all loudspeakers (or nearly all of them) are con-
tributing to the global field. If the listener moves closer to
a certain loudspeaker, its solo contribution can be heard
and the original sound directionality vanishes.

That explains why combined techniques are normally
used in professional 3D audio productions. Amplitude
Panning perform very good directionality while Ambison-
ics guarantees a complete soundfield recreation and is
used in ambient effects.
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V. APPENDIX WAV audio file

Ambisonics implementation described in section III
was tested in Eurecat’s 3D audio system in Barcelona.
This studio has a 25.3 loudspeaker distribution in a
three-quarters-of-a-sphere layout. The information flow
is shown in Fig. 4.

Ambisonics implementation

A. Software processing

The implementation code takes a WAV mono audio Max patch

file and creates 25 output WAV files. Each file contains
the original audio information weighted depending on the
requested angular position. - J
A Maz specific patch is used to distribute these files
to their respective loudspeaker channel. Maz is a pro-
graming language and a real-time processing audio soft- (
ware with a modular visual interface. It is able to handle
multi-channel outputs.
The information flow is tailored by JACK Audio Con-
nection Kit and a proper connection distribution. Before RME MADIface
leaving the computer, signals are treated by a jconvolver
set configuration. This configuration applies certain gain
and delay values for each channel in order to virtually set
an equidistant loudspeaker layout.

jconvolver )

Ferrofish D/Aj Ferrofish D/A

B. Hardware processing

A RME MADIface sound card collect computer’s out-
put and sends it via optical cable to two 25-channel

Ferrofish AD/DA converters (working as Digital-Analog 2 é \é_ @
converters in this case). Finally, analog signals are sent Y 24 \\Q
to each loudspeaker. Z
a) ®
[
N o
(2
N
SE°

FIG. 4: Eurecat’s 3D audio system schematic.
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