
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 11, November 2009, Pages 3647–3656
S 0002-9939(09)09951-1
Article electronically published on June 12, 2009

TROPICALIZATION AND IRREDUCIBILITY

OF GENERALIZED VANDERMONDE DETERMINANTS

CARLOS D’ANDREA AND LUIS FELIPE TABERA

(Communicated by Martin Lorenz)

Abstract. We find geometric and arithmetic conditions in order to charac-
terize the irreducibility of the determinant of the generic Vandermonde matrix
over the algebraic closure of any field k. We also characterize those determi-
nants whose tropicalization with respect to the variables of a row is irreducible.

1. Introduction

Let n, N be positive integers, let X1, . . . ,XN be n-tuples of indeterminates, i.e.

Xi :=
(
Xi1, . . . , Xin

)
, i = 1, . . . , N,

where each Xij is an indeterminate, and let Γ :=
(
γ1, . . . , γN

)
be an N -tuple of

vectors in N
n, with γj = (γj1, . . . , γjn). Set

V (X,Γ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Xγ11

11 Xγ12

12 · · ·Xγ1n

1n . . . . . . XγN1

11 XγN2

12 · · ·XγNn

1n

Xγ11

21 Xγ12

22 · · ·Xγ1n

2n . . . . . . XγN1

21 XγN2

22 · · ·XγNn

2n

. . . . . . . . .

Xγ11

N1X
γ12

N2 · · ·Xγ1n

Nn . . . . . . XγN1

N1 XγN2

N2 · · ·XγNn

Nn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We call the polynomial V (X,Γ) ∈ Z
[
(Xi,j)1≤i≤N,1≤j≤n

]
the generalized Vander-

monde determinant associated to Γ.

Example 1.1. If n = 1 and Γ = (0, 1, . . . , N − 1), then

V (X,Γ) = ±
∏

1≤i<j≤N

(Xi1 −Xj1),

the classical Vandermonde determinant.
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3648 CARLOS D’ANDREA AND LUIS FELIPE TABERA

Example 1.2. It is a classical result (see for instance [Mac]) that if n = 1, then for
any set Γ ⊂ N of N elements, the determinant V (X,Γ) is a multiple of the classical
Vandermonde determinant

∏
1≤i<j≤N (Xi1 −Xj1).

Example 1.3. Suppose n = 2, N = 3 and Γ := ((2, 0), (0, 2), (2, 2)).
By computing the 3× 3 determinant we have that V (X,Γ) is equal to

X2
11X

2
22X

2
31X

2
32 −X2

11X
2
32X

2
21X

2
22 −X2

12X
2
21X

2
31X

2
32

+X2
12X

2
31X

2
21X

2
22 +X2

11X
2
12X

2
21X

2
32 −X2

11X
2
12X

2
31X

2
22.

Set Γ′ := {(1, 0), (0, 1), (1, 1)}; it is easy to see that

• If char(k) �= 2, V (X,Γ) is absolutely irreducible over k
[
(Xi,j)1≤i≤N,1≤j≤n

]
(i.e. irreducible over k

[
(Xi,j)1≤i≤N,1≤j≤n

]
, k being the algebraic closure of

k).

• If char(k) = 2, then V (X,Γ) = V (X,Γ′)2 in k
[
(Xi,j)1≤i≤N,1≤j≤n

]
.

Example 1.4. As an easy exercise, it can be proved that if Γ ⊂ N
n is contained

in an affine line, then V (X,Γ) factorizes in a similar way as in Example 1.2.

In the univariate case (n = 1), the Vandermonde determinant is associated with
the interpolation problem, and it has been extensively studied (see [GV, Gow, ElM]
and the references therein). The multivariate interpolation problem is naturally as-
sociated with generalized Vandermonde determinants, and there is also an extensive
and current literature on the topic. See for instance [CL, GS, LS, Olv, Zhu].

The purpose of this article is to study the irreducibility of V (X,Γ). As Ex-
ample 1.3 suggests, the answer will depend on the characteristic of k. Also, our
intuition from the univariate case may lead us to believe that generalized Vander-
monde determinants have lots of irreducible factors. Our main result essentially
tells us that in general these polynomials are absolutely irreducible.

There are some trivial factors that can already be read from the set of exponents.
Let γ := (g1 . . . , gn) where each gi is defined as min{γ1i, . . . , γNi}, i = 1, . . . , n. It
is easy to check that the following factorization holds:

V
(
X, (γ1, . . . , γN )

)
=

n∏
i=1

( N∏
j=1

Xij

)gi

V
(
X, (γ1 − γ, . . . , γN − γ)

)
,

where V
(
X, (γ1 − γ, . . . , γN − γ)

)
has no monomial factor. Let dΓ be the largest

integer such that 1
dΓ
{γ1 − γ, . . . , γN − γ} ⊂ N

n, and let LΓ ⊂ R
n be the affine

subspace spanned by Γ.

Theorem 1.5. Let N ≥ 3. The Vandermonde polynomial V (X,Γ) is irreducible
in k

[
(Xij)1≤i,j,≤N

]
if and only if the following three conditions apply:

• dim(LΓ) ≥ 2,
• gcd

(
Xγi

)
1≤i≤N

= 1 or equivalently γ = (0, . . . , 0),

• char(k) does not divide dΓ.

Note that dim(LΓ) ≥ 2 implies N ≥ 3 and n > 1. When n = 2 and N = 3 or 4,
Theorem 1.5 can also be obtained from an application of Ostrowski’s work [Ost] on
the irreducibility of fewnomials (see also [BP]). We will prove the general case by
making use of Bertini’s theorem on the variety defined by V (X,Γ), and applying
some results concerning algebraic independence of maximal Vandermonde minors
obtained in [Tab].
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GENERALIZED VANDERMONDE DETERMINANTS 3649

When dealing with the problem of factorizing multivariate polynomials, several
approaches like those given in [Ost, Gao] focus on the irreducibility of the Newton
polytope of the polynomial with respect to the operation of computing Minkowski
sums, which gives sufficient conditions to show irreducibility. A refinement of this
method can be obtained with the aid of tropical geometry: instead of working
with Newton polytopes, we can study regular subdivisions of them. So, we can
cover more general families of polynomials, but at the cost of losing track of the
characteristic of the ground field k.

In our case, the problem can be dealt with as follows: by expanding the determi-
nant of the generalized Vandermonde determinant with respect to the first row, we

get the following expansion: V (X,Γ) =
∑N

i=1(−1)σi∆iX
γi

1 . For the irreducibility
problem, it is enough to consider a dehomogenized version of V (X,Γ) as follows:

V (X,Γ)aff := XγN

1 +

N−1∑
i=1

AiX
γi

1 ,

where Ai := (−1)σi ∆i

∆N
, i = 1, . . . N − 1.

We can then regard V (X,Γ)aff as a polynomial in K[X1], K being now a field
containing all the Ai’s, i = 1, . . . , N − 1.

Given any rank one valuation v : K → R, we can extend it to Kn componentwise
as follows:

v : Kn → R
n

(z1, . . . , zn) �→ (v(z1), . . . , v(zn)).

The tropicalization of V (X,Γ) is then defined as

Trop(V (X,Γ)) = v({V (X,Γ)aff = 0}) ⊆ R
n,

where the closure on the right hand side is taken with respect to the standard
topology in R

n.
It turns out (see for instance [BG] or [EKL]) that Trop(V (X,Γ)) is a connected

polyhedral complex of codimension 1. If V (X,Γ)aff is reducible over K[X1], then
Trop(V (X,Γ)) is a reducible tropical hypersurface; i.e. it can be expressed as the
union of two proper tropical hypersurfaces. So, if we prove that for a special
valuation v, Trop(V (X,Γ)) is irreducible, then V (X,Γ) will be irreducible over any
field k.

Theorem 1.6. Let N ≥ 3. Given any field K ⊇ k(A1, . . . , AN−1), there exists
a valuation v defined over K such that Trop(V (X,Γ)) is an irreducible tropical
variety if and only if:

• dim(LΓ) ≥ 2,
• gcd

(
Xγi

)
1≤i≤N

= 1 or equivalently γ = (0, . . . , 0),

• dΓ = 1.

This result is optimal in the following sense: it is known that Trop({f = 0})
does not depend on the field but only on the values v(Ai).

Take for instance f =
∑N

i=0 AiY
i over a field of characteristic zero with dΓ > 1,

and let g :=
∑N

i=0 BiY
i be a polynomial with the same support and with coefficients

in a field of characteristic p|dΓ. Give to these polynomials valuations v and v′ such
that v′(Bi) = v(Ai). In these conditions, we will have

Trop({g = 0}) = Trop({f = 0}),
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3650 CARLOS D’ANDREA AND LUIS FELIPE TABERA

but g = (
∑N

i=0 B
1/p
i Yi/p)p factorizes in the algebraic closure of its field of definition;

hence Trop({f = 0}) will always be reducible. So, the tropical criteria will not help
to deduce the irreducibility of f .

The paper is organized as follows: in Section 2, we give explicit conditions for
the irreducibility of the Vandermonde variety. In Section 3 we prove Theorem 1.5.
We conclude by introducing some tools from tropical geometry and by proving
Theorem 1.6 in Section 4.

2. Bertini’s theorem and the irreducibility

of the Vandermonde variety

We begin by studying the geometric irreducibility of the variety defined by

V (X,Γ) in k
Nn

. In order to do this, we will apply one of the several versions
of Bertini’s theorem given in [Jou]. Recall the following ([Jou, Definition 4.1]):

Definition 2.1. A k-scheme V over a field k is said to be geometrically irreducible
if V ⊗k k is an irreducible scheme.

Now we are ready to present the version of Bertini’s theorem that we will use.

Theorem 2.2 ([Jou], Théorème 6.3). Let k be an infinite field, V a geometri-
cally irreducible k-scheme of finite type, Em

k the affine space of dimension m, and
f : V → E

m
k a k-morphism, i.e.

f : V → E
m
k

z �→
(
f1(z), . . . , fm(z)

)

with fi ∈ Γ(V ,OV). If V is geometrically irreducible and dim
(
f(V)

)
≥ 2, then for

almost all ξ ∈ km+1, f−1 ({z ∈ E
m
k : ξ0 + ξ1z1 + . . .+ ξnzn = 0}) is geometrically

irreducible.

Definition 2.3. Let Γ = {γ1, . . . , γN} ⊂ N
n, Y := (Y1, . . . , Yn) be a set of n vari-

ables and Ai, 1 ≤ i ≤ N , be another set of indeterminates. The generic polynomial
supported in Γ is defined as

P (Y,Γ) :=
N∑
i=1

AiY
γi .

Proposition 2.4. If dim(LΓ) ≥ 2 and gcd(Xγi)1≤i≤N = 1, then P (Y,Γ) defines

an irreducible set in k(A1, . . . , AN )
n
.

Proof. Note that dim(LΓ) ≥ 2 implies N ≥ 3 and, moreover, that there are three
components of Γ that are not collinear. We pick a triple of vectors with this property
which we suppose w.l.o.g. are γ1, γ2, γ3.

In order to use Theorem 2.2, let V := Spec
(
k
[
Y ±1
1 , . . . , Y ±1

n

])
be the torus (k∗)n,

and set

f : V → E
N−1
k

z �→ (zγ2−γ1 , zγ3−γ1 , . . . , zγN−γ1) .
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GENERALIZED VANDERMONDE DETERMINANTS 3651

By hypothesis, the rank of the matrix

⎛
⎜⎜⎝

γ2 − γ1
γ3 − γ1
. . .

γN − γ1

⎞
⎟⎟⎠ is at least two. So, the top

two-by-two submatrix of its Smith normal form is

∣∣∣∣d1 0
0 d2

∣∣∣∣ = d1d2 �= 0. Hence it

follows that under a suitable monomial change of coordinates, the map f is of the
form z �→ (zd1

1 , zd2
2 , . . .); this shows that the dimension of the image of f is greater

than one, so we can apply Bertini’s theorem and have that for almost all ξ ∈ k
N
,

the polynomial Q(ξ,Y) :=
∑N

i=1 ξiY
γi defines an irreducible set in (k

∗
)n. The fact

that gcd
(
Yγi

)
1≤i≤N

= 1 implies that Q(ξ,Y) defines an irreducible set also in k
n

for almost all ξ, and hence that the claim holds for P (Y,Γ).
�

Proposition 2.5. Let Γ =
(
γ1, . . . , γN

)
⊂ N

n with N ≥ 3 and suppose that

gcd
(
Yγi

)
1≤i≤N

= 1. Then the following hold:

• If dim(LΓ) = 1, then P (Y,Γ) factorizes in k(A1, . . . , AN )[Y].
• If dim(LΓ) > 1, then

– if char(k) does not divide dΓ, then P (Y,Γ) is absolutely irreducible;
– if char(k) = p | dΓ, then P (Y,Γ) = R(Y)p

r

, with pr | dΓ, pr+1 not

dividing dΓ, and R(Y) ∈ k(A1, . . . , AN )[Y] irreducible of support 1
pr Γ.

Proof. If the vertices are contained in an affine line, then, via a monomial transfor-
mation, we can reduce P (Y,Γ) to a univariate polynomial, which always factorizes
(due to the fact that N > 2) as a product of linear factors with coefficients in

k(A1, . . . , AN ). The variety defined by this polynomial may be reducible or not,
depending on the inseparability of this polynomial.

Suppose now that LΓ has affine dimension at least two. Then we can apply the
previous proposition and conclude that the variety defined by P (Y,Γ) is irreducible

over k(A1, . . . , AN ).

Hence, there exist an irreducible polynomial R(Y) ∈ k(A1, . . . , AN )[Y] and a
D ∈ N such that

P (Y,Γ) = R(Y)D.

It is clear that R(Y) cannot be a monomial. IfD = 1, then we are done. Suppose
then that D > 1 and that p := char(k) is coprime with dΓ. We can suppose w.l.o.g.
that p does not divide the first coordinate of one of the γi’s. But then we have

(1) 0 �= ∂P (Y,Γ)

∂Y1
=

N∑
i=1

γi1Ai Y
γi−e1 = DR(Y)D−1 ∂R(Y)

∂Y1
.

In particular, we get that p does not divide D. As R(Y) is not a monomial, it

turns out that ∂P (Y,Γ)
∂Y1

has at least two nonzero terms. This implies that P (Y,Γ)
has at least two different monomials with positive degree on Y1, so the degree of
R(Y) with respect to the first variable is positive and, due to (1), the same applies

to ∂P (Y,Γ)
∂Y1

.

We can then eliminate Y1 by computing the univariate (or classical) resultant

(see [GKZ]) of the polynomials P (Y,Γ) and ∂P (Y,Γ)
∂Y1

with respect to the first vari-

able. This is a polynomial in k[A1, . . . , An,Y2, . . . ,Yn] which must be identically
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3652 CARLOS D’ANDREA AND LUIS FELIPE TABERA

zero, as R(Y) is a common factor of both P (Y,Γ) and ∂P (Y,Γ)
∂Y1

. This is a contra-
diction to the fact that A1, . . . , An,Y2, . . . ,Yn are algebraically independent.

Suppose now that p := char(k) | dΓ, and let r be the maximum integer such that

pr |D, so that we can write D = pr q with (p, q) = 1. Write R(Y) =
∑M

j=1RjY
γ′
j .

We then have

P (Y,Γ) =
N∑
i=1

Ai Y
γi =

⎛
⎝ M∑

j=1

RjY
γ′
j

⎞
⎠

prq

=

⎛
⎝ M∑

j=1

Rj
pr

Yprγ′
j

⎞
⎠

q

.

From here, we deduce that pr divides dΓ. Moreover, after dividing all the exponents
by pr we get

Pr(Y,Γ) :=
N∑
i=1

Ai Y
γi
pr =

⎛
⎝ M∑

j=1

Rj
pr

Yγ′
j

⎞
⎠

q

.

It turns out that Pr(Y,Γ) = P (Y, 1
pr Γ). An argument like the one above over 1

pr Γ

shows that q cannot be different from one if the Ai are algebraically independent.
This completes the proof. �

As in the introduction, for � = 1, . . . , N we set

∆�(X,Γ) := det (Xi
γj ) 2 ≤ i ≤ N, 1 ≤ j ≤ N

j �= �

;

i.e. ∆� is the minor obtained by deleting the first row and �-th column in the
generalized Vandermonde matrix.

Theorem 2.6. For any index �0, the family {∆�/∆�0 : � = 1, . . . N, � �= �0} is
algebraically independent over any field k.

Proof. Suppose without loss of generality that �0 = N . It is easy to see that ∆N

does not define the zero function on k
(n−1)N

even if char(k) > 0.
Let V be the Zariski image of the rational map

k
n(N−1) −→ k

n(N−1)+(N−1)

(X2, . . . ,XN ) �→
(
X2, . . . ,XN , ∆1

∆N
, . . . , ∆N−1

∆N

)
.

It is clear that this is a birational map between k
n(N−1)

and V . Let I be the ideal of
V in k[X2, . . . ,XN , a1, . . . , aN−1]. I is a prime ideal that contains the polynomials

∆i − ai∆N , i < N , and by Cramer’s rule f(X�) = XγN

� +
∑N−1

i=1 aiX
γi

� , 2 ≤ � ≤ N.
Let a = {a1, . . . , aN−1}. By construction, the field of rational functions of V is
isomorphic to the field of fractions of the integer domain,

L = Frac

(
k[X2, . . . ,XN , a]

I

)
� k(X2, . . . ,XN ).

In particular, (X2, . . . ,XN ) is a transcendence basis of k ⊂ L and the dimension of
L is n(N − 1). For each index 2 ≤ � ≤ N , choose one variable X�,j� appearing in
f(Xl). Denote by X0 = {X2, . . . ,XN}\{X2,j2 , . . . , XN,jN } the remaining variables
Xi,j not chosen. As an element in L, X�,j� is algebraic over k(X0, a), because
f(X�,j�) ∈ I. So L itself is an algebraic extension of k(X0, a). The set {X0, a} is
of cardinality (n− 1)(N − 1) + (N − 1) = n(N − 1). So it is a transcendence basis
of L over k. In particular, this means that the set {a1, . . . aN−1} is algebraically
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GENERALIZED VANDERMONDE DETERMINANTS 3653

independent over L, and hence { ∆1

∆N
, . . . , ∆N−1

∆N
} is algebraically independent over

k. �

3. Proof of Theorem 1.5

With all the preliminaries given in Section 2, we can prove the main theorem.
It is clear that if any of the three conditions in the statement of Theorem 1.5 fail
to hold, then V (X,Γ) factorizes.

Suppose then that these conditions are satisfied. By expanding V (X,Γ) as a
polynomial in the variables indexed by X1, we have

V (X,Γ) =

N∑
i=1

(−1)σi∆iX
γi

1 ,

with σi ∈ {0, 1}. Hence, we can regard V (X,Γ) as the polynomial P (X1,Γ) spe-
cialized under Ai �→ (−1)σi∆i.

As the family ((−1)σi∆i/∆N )1≤i≤N−1 is algebraically independent (due to The-

orem 2.6), the polynomial XγN

1 +
∑N−1

i=1 (−1)σi∆i/∆NXγi

1 is generic among the
polynomials of support Γ that are monic in γ1. This means that for almost every
tij with 2 ≤ i ≤ N and 1 ≤ j ≤ N , the set of zeroes of V (X,Γ) in k

n
after setting

Xij �→ tij is irreducible (by Proposition 2.4).
As a consequence of this, we get that the set of zeroes of V (X,Γ) is irreducible in

k(X2, . . . ,XN ) and hence, as in Proposition 2.5, that V (X,Γ) must be the power
of an irreducible polynomial. By again using Proposition 2.5 and our hypothesis,
we conclude that V (X,Γ) is irreducible in k(X2, . . . ,XN )[X1].

In order to show irreducibility in k[X1,X2, . . . ,XN ], we argue as follows: if
V (X,Γ) does factorize in this ring, then it must have an irreducible factor depending
only on X2, . . . ,XN . It cannot be a monomial by the second hypothesis. So, it is
a proper factor of positive degree in (we can assume w.l.o.g.) X2 and degree zero
in X1. We then have

V (X,Γ) = p(X2, . . . ,XN )q(X1,X2, . . . ,XN ),

with degX2
(p) > 0. By making the change of coordinates X2 ↔ X1, we get

(2) −V (X,Γ) = p(X1,X3, . . . ,XN )q(X2,X1, . . . ,XN ).

If degX2
(q(X1,X2, . . . ,XN )) > 0, then the negative of the right hand side of (2) is

a factorization of V (X,Γ) with two factors of positive degree in X1, a contradiction

to the irreducibility over k(X2, . . . ,XN )[X1]. So, we must actually have

V (X,Γ) = p(X2, . . . ,XN )q(X1,X3, . . . ,XN ).

But now, if we set X1 = X2 in V (X,Γ), we get

0 = p(X1, . . . ,XN )q(X2,X3, . . . ,XN ),

a contradiction to the fact that neither p nor q is zero. Hence, the irreducibility of
V (X,Γ) follows.
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3654 CARLOS D’ANDREA AND LUIS FELIPE TABERA

4. The tropical approach

As explained in the introduction, the expression V (X,Γ) =
∑N

i=1(−1)σi∆iX
γi

1

corresponds to the expansion of the generalized Vandermonde determinant with re-
spect to the first row of its defining matrix. We again dehomogenize this polynomial
as

XγN

1 +

N−1∑
i=1

AiX
γi

1 ,

where the Ai’s are algebraically independent over k by Theorem 2.6.
Given any rank one valuation v :k(A1, . . . , AN−1)→R, we define Trop(V (X,Γ)),

the tropicalization of V (X,Γ), as the closure of {V (X,Γ) = 0} ⊂ k(A1, . . . , AN−1)
n

under this valuation.
Let Λ ⊂ R

n be the convex hull of Γ. The values v(Ai) define a regular subdivision
Subdiv(Λ) that is combinatorially dual to Trop(V (X,Γ)) ([Mik, Proposition 3.11]).
In particular, by the duality, the vertices of Subdiv(Λ) correspond to the connected
components of Rn \Trop(V (X,Γ)), the edges of Subdiv(Λ) correspond to the facets
of Trop(V (X,Γ)) and the two-dimensional polytopes of Subdiv(Λ) correspond to
the ridges of Trop(V (X,Γ)). There are more cells, but we will focus only on these.

Every facet F of Trop(V (X,Γ)) has a multiplicity associated with it as follows:
let e be the corresponding dual edge of F in Subdiv(Λ). The multiplicity of F
is defined to be #(e ∩ Z

n) − 1, the integer length of e. With this definition, the
balancing condition on the ridges of Trop(V (X,Γ)) holds: given any such ridge R,
let F1, . . . , Fr be the facets containing R in their boundary, mi the multiplicity of
Fi and vi the primitive integer normal vector to the affine hyperplane generated by
Fi chosen with a compatible orientation. Then

r∑
i=1

mivi = 0.

We refer to [Mik] or [TS] for more background on this subject. We will use the
balancing condition to show the irreducibility of Trop(V (X,Γ)).

Proof of Theorem 1.6. If one of the hypotheses of Theorem 1.6 is not fulfilled, then
it is easy to find a field k where V (X,Γ) factors, and hence Trop(V (X,Γ)) would
be reducible. Suppose then that the three conditions hold and let k be any field.

Consider XγN

1 +
∑N−1

i=1 AiX
γi

1 , where Ai are rational functions in {X2, . . . ,XN},
algebraically independent over k. Hence, any function v : {A1, . . . , AN−1} → R can
be extended to a valuation

v : k(X2, . . . ,XN ) → R.

For our proof, we need a function that induces a regular triangulation of Γ. We
may take, for instance, any appropriate generic infinitesimal perturbation of the
standard paraboloid lifting function

v(Ai) =

n∑
j=1

((γij + εij)
2 − γ2

Nj).

This function induces a Delaunay triangulation of the set of exponents {γ1, . . . , γN}
(see [GR]).

The tropicalization of V (X,Γ) under this valuation is combinatorially dual to this
triangulation. So, in particular, the ridges of Trop(V (X,Γ)) are always intersections
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of three facets, because the dual cell of each is always a triangle. Moreover, for
any such intersection, the compatible primitive vectors involved in the balancing
condition are pairwise linearly independent.

Suppose that Trop(V (X,Γ)) = H1 ∪ H2. Let F1 be a facet of Trop(V (X,Γ))
and suppose that F1 ⊆ H1. We want to prove that Trop(V (X,Γ)) ⊆ H1 as sets
of points. Let R be any ridge incident to F1, and let F2 and F3 be the other two
facets incident to R. Let mi be the weight of Fi as a facet of H1, so mi = 0 if and
only if Fi is not a facet of H1. Let vi be the compatible primitive vector associated
to Fi and R. Since F1 ∈ H1, its weight must be a positive integer, m1 > 0.

From the balancing condition, we have that m1v1 + m2v2 + m3v3 = 0. Since
m1 > 0 and v1, v2, v3 are pairwise linearly independent vectors, it must happen that
m2 > 0 and m3 > 0; that is, F2 and F3 have positive weights, so they belong to
H1 as sets of points. To sum up, for any facet F of Trop(V (X,Γ)) belonging to H1

it happens that the facets that are ridge-connected to F also belong to H1. Now,
since Γ is not contained in a line, it is known that Trop(V (X,Γ)) is ridge-connected,
that is, every two facets can be connected by a path of facets such that any two of
them that are consecutive have a common ridge.

We can then conclude by induction, upon showing that Trop(V (X,Γ)) = H1 as
subsets of Rn. In particular, Trop(V (X,Γ)) cannot factorize as the union of two
different tropical hypersurfaces, set-theoretically.

However, it could still happen that Trop(V (X,Γ)) = H1 ∪H2 with H1 = H2 as
sets but differing only in the multiplicities of the facets. In that case, let m1

i and m2
i

be the multiplicities of Fi as a facet of H1 and H2 respectively. Then, it is easy to
check that m1

i /m
2
i = p/q is a rational constant that does not depend on the facet.

Thus, there are positive integers m0
i such that m1

i = k1m
0
i and m2

i = k2m
0
i , where

k1, k2 ∈ Z>0 are constants not depending on the facet i. Hence, the multiplicity of
Fi as a facet of H is (k1+k2)m

0
i , and this implies that every facet has a multiplicity

which is a multiple of k1 + k2 ≥ 2. By duality, every edge of Subdiv(Λ) will have
length that is an integer multiple of (k1 + k2). It follows that dΓ is a multiple of
k1 + k2, which contradicts the hypotheses. �
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