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RUBIO DE FRANCIA’S EXTRAPOLATION THEOREM

FOR Bp WEIGHTS

MARÍA J. CARRO AND MARÍA LORENTE

(Communicated by Nigel J. Kalton)

Abstract. In this paper, we prove some of Rubio de Francia’s extrapolation
results for the class Bp of weights for which the Hardy operator is bounded on
Lp(w) restricted to decreasing functions. Applications to the boundedness of
operators on Lp

dec(w) are given. We also present an extension to the B∞ case
and some connections with classical Ap theory.

1. Introduction

In 1984, J.L. Rubio de Francia [10] proved that if T is a sublinear operator that is
bounded on Lr(w) for every w in the Muckenhoupt class Ar (r > 1) with constant
depending only on

||w||Ar
= sup

Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
I

w−1/(r−1)

)r−1

where the supremum is taken over all cubes Q, then for every 1 < p < ∞, T is
bounded on Lp(w) for every w ∈ Ap with constant depending only on ||w||Ap

. Since
then, many results concerning this topic have been published (see [8], [6], [7]). From
these results, it is now known that, in fact, the operator T plays no role; that is, if
(f, g) are a pair of functions such that for some 1 ≤ p0 < ∞,∫

Rn

fp0(x)w(x)dx ≤ C

∫
Rn

gp0(x)w(x)dx

for every w ∈ Ap0
with C depending on ||w||Ap0

, then for every 1 < p < ∞,∫
Rn

fp(x)w(x)dx ≤ C

∫
Rn

gp(x)w(x)dx

for every w ∈ Ap with C depending on ||w||Ap
. The theory has also been generalized

to the case of A∞ weights and many interesting consequences have been derived
from it.

The purpose of this paper is to develop a completely parallel theory in the
setting of Bp weights. The techniques are different as usually happens with these
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630 MARÍA J. CARRO AND MARÍA LORENTE

two theories and things are, in some sense, clearer and more natural. We think
that the results in this paper should help to clarify what is happening in the Ap

context and we hope to solve that case in a forthcoming paper.
Before presenting the main results of this paper, let us just recall some important

facts concerning Bp weights which will be fundamental for our purposes. First of
all, let us recall that a positive and locally integrable function w on (0,∞) is called
a Bp weight if the following condition holds:

||w||Bp
= inf

{
C > 0;

∫ r

0

w(t)dt+ rp
∫ ∞

r

w(t)

tp
dt ≤ C

∫ r

0

w(t)dt, ∀r > 0

}
< ∞.

It is known ([1]) that w ∈ Bp with p > 0 if and only if, for every decreasing function
f , ∫ ∞

0

(
1

t

∫ t

0

f(s)ds

)p

w(t)dt ≤ C

∫ ∞

0

fp(s)w(s)ds

with C depending on ||w||Bp
. Observe also that ||w||Bp

> 1 if w is not identically
zero.

An important property that these classes of weights satisfy (see [4], Chapter 3,
Section 3.3) is that, for every p > 0 and every w ∈ Bp, there exists ε > 0 such that
w ∈ Bp−ε; moreover,

(1.1) ||w||Bp−ε
≤

C||w||Bp

1− εαp||w||Bp

,

where C and 0 < α < 1 are universal constants and ε is such that 1−εαp||w||Bp
> 0.

Since Bp ⊂ Bq for every 0 < p ≤ q < ∞, we can define (similarly to Ap theory)
the class B∞ as the collection of weights belonging to some Bp; that is,

B∞ =
⋃
p>0

Bp.

Let us also define

||w||B∞ = inf{||w||Bp
;w ∈ Bp}.

We shall denote by C a universal constant depending possibly on p but inde-
pendent of the weight w. Also C might not be the same in all instances. We write
A � B if there exists a universal constant C such that A ≤ CB and A ≈ B if
A � B and B � A.

2. Main results

Our first result is the counterpart in this setting of the new version of Rubio de
Francia’s extrapolation result:

Theorem 2.1. Let ϕ be an increasing function on (0,∞), let (f, g) be a pair of
positive decreasing functions defined on (0,∞) and let 0 < p0 < ∞. Suppose that
for every w ∈ Bp0

, ∫ ∞

0

fp0w ≤ ϕ(||w||Bp0
)

∫ ∞

0

gp0w .

Then, for every p > 0 and w ∈ Bp,∫ ∞

0

fpw ≤ ϕ̃(||w||Bp
)

∫ ∞

0

gpw ,
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R. DE FRANCIA’S EXTRAPOLATION THEOREM FOR Bp WEIGHTS 631

where

ϕ̃(||w||Bp
) = inf

0<ε<
p0

pαp||w||Bp

ϕ

(
p0
ε

)p/p0 C||w||Bp

1− ε p
p0
αp||w||Bp

with C as in (1.1).

Similarly, in the B∞ setting:

Theorem 2.2. Let ϕ be an increasing function on (0,∞), let (f, g) be a pair of
positive decreasing functions defined on (0,∞) and let 0 < p0 < ∞. Suppose that
for every w ∈ B∞, ∫ ∞

0

fp0w ≤ ϕ(||w||B∞)

∫ ∞

0

gp0w.

Then, for every p > 0 and w ∈ B∞,∫ ∞

0

fpw ≤ ϕ(1)p/p0 ||w||B∞

∫ ∞

0

gpw·

In order to prove these two results, we shall use the following lemmas.

Lemma 2.3. Let ϕ be an increasing function on (0,∞), let (f, g) be a pair of
positive decreasing functions defined on (0,∞) and let 0 < p0 < ∞. Suppose that
for every w ∈ Bp0

, ∫ ∞

0

fw ≤ ϕ(||w||Bp0
)

∫ ∞

0

gw .

Then, for every 0 < ε < p0 and every t > 0,∫ t

0

f(s)sp0−1−ε ds ≤ ϕ

(
p0
ε

)∫ t

0

g(s)sp0−1−ε ds·

Proof. Let w(t) = v(t)tp0−1−ε with v a decreasing function and let us assume that
w ∈ L1

loc. Then∫ r

0

w(t) dt+ rp0

∫ ∞

r

w(t)

tp0
dt =

∫ r

0

w(t) dt+ rp0

∫ ∞

r

v(t)

t1+ε
dt

≤
∫ r

0

w(t) dt+
1

ε
v(r)rp0−ε =

∫ r

0

w(t) dt+
p0 − ε

ε
v(r)

∫ r

0

tp0−ε−1 dt

≤ p0
ε

∫ r

0

w(t) dt,

and hence w ∈ Bp0
with constant less than or equal to p0/ε.

In particular, taking v(t) = χ(0,s)(t) and applying the hypothesis, we obtain that

sup
s>0

∫ s

0
f(u)up0−1−ε du∫ s

0
g(u)up0−1−ε du

≤ ϕ

(
p0
ε

)
< ∞

and the result follows. �

Let φ be a positive decreasing locally integrable function defined on (0,∞) and
let Φ(x) =

∫ x

0
φ(t)dt. The generalized Hardy operator associated to φ is defined,

for f decreasing, by

Sφf(x) =
1

Φ(x)

∫ x

0

f(t)φ(t)dt .
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632 MARÍA J. CARRO AND MARÍA LORENTE

Lemma 2.4. Let 0 < p < ∞. Then, Sφ is bounded on Lp
dec(w) with constant A if

and only if

(2.1)

∫ r

0

w(x)dx+Φ(r)p
∫ ∞

r

w(x)

Φ(x)p
dx ≤ Ap

∫ r

0

w(x)dx , for all r > 0.

Proof. This result has been proved in [5] (Theorem 4.1) for the case p > 1. The
proof also works (and is easier) for p = 1.

Let us now prove the case 0 < p < 1. The necessary condition follows as in [5] by

taking f = χ(0,r). Conversely, let f be decreasing. Then, f(s) ≤ 1

Φ(s)

∫ s

0

f(t)φ(t)dt

for every s > 0 and therefore

(∫ s

0

f(t)φ(t)dt

)p−1

≤ f(s)p−1Φ(s)p−1.

Taking this into account,

(2.2)

∫ ∞

0

(Sφf(x))
pw(x)dx =

∫ ∞

0

(
1

Φ(x)

∫ x

0

f(s)φ(s)ds

)p

w(x)dx

= p

∫ ∞

0

∫ x

0

(∫ s

0

f(t)φ(t)dt

)p−1

f(s)φ(s)ds
w(x)

Φ(x)p
dx

≤ p

∫ ∞

0

∫ x

0

f(s)pφ(s)Φ(s)p−1ds
w(x)

Φ(x)p
dx .

Since f is decreasing, Corollary 2.2 in [5] gives that the chain of inequalities in (2.2)
can be continued as follows:

≤ p

∫ ∞

0

∫ ∞

0

∫ λfp (y)

0

χ(0,x)(s)φ(s)Φ(s)
p−1ds dy

w(x)

Φ(x)p
dx

≤ p

∫ ∞

0

∫ ∞

0

∫ min{λfp (y),x}

0

φ(s)Φ(s)p−1ds dy
w(x)

Φ(x)p
dx

=

∫ ∞

0

∫ ∞

0

Φ(min{λfp(y), x})pdy w(x)

Φ(x)p
dx

=

∫ ∞

0

∫ ∞

0

Φ(min{λfp(y), x})p w(x)

Φ(x)p
dx dy

=

∫ ∞

0

(∫ λfp (y)

0

w(x)dx+Φ(λfp(y))p
∫ ∞

λfp (y)

w(x)

Φ(x)p
dx

)
dy

≤ Ap

∫ ∞

0

∫ λfp (y)

0

w(x)dx dy = Ap

∫ ∞

0

f(y)pw(y) dy,

where the last inequality is obtained from the hypothesis. �
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R. DE FRANCIA’S EXTRAPOLATION THEOREM FOR Bp WEIGHTS 633

Proof of Theorem 2.1. Let p > 0, w ∈ Bp and 0 < ε < p0. Using the fact that f is
decreasing and Lemma 2.3, we get

(2.3)

∫ ∞

0

f(t)pw(t)dt ≤
∫ ∞

0

(
p0 − ε

tp0−ε

∫ t

0

f(s)p0sp0−1−εds

)p/p0

w(t) dt

≤ ϕ

(
p0
ε

)p/p0
∫ ∞

0

(
p0 − ε

tp0−ε

∫ t

0

g(s)p0sp0−1−εds

)p/p0

w(t) dt

= ϕ

(
p0
ε

)p/p0
∫ ∞

0

(Sφg
p0(t))

p/p0 w(t) dt,

where φ(t) = tp0−1−ε. The proof will be finished once we compute A such that∫ ∞

0

(Sφg
p0(t))

p/p0 w(t) dt ≤ A

∫ ∞

0

g(t)pw(t)dt,

and by Lemma 2.4, we only have to compute A such that∫ r

0

w(x)dx+ r
(p0−ε)p

p0

∫ ∞

r

w(x)

x
(p0−ε)p

p0

dx ≤ A

∫ r

0

w(x)dx,

which is equivalent to saying that w ∈ B (p0−ε)p
p0

with A = ||w||B (p0−ε)p
p0

.

Now, since w ∈ Bp there exists ε̃ > 0 so that w ∈ Bp−ε̃. Then, it suffices to take

ε small enough so that p − ε̃ = (p0−ε)p
p0

to get the result. Moreover, by (1.1), we

have that

A = ||w||B (p0−ε)p
p0

= ||w||Bp−ε̃
≤

C||w||Bp

1− ε p
p0
αp||w||Bp

.

Consequently, for every 0 < ε < p0

pαp||w||Bp
,

∫ ∞

0

f(t)pw(t)dt ≤ ϕ

(
p0
ε

)p/p0 C||w||Bp

1− ε p
p0
αp||w||Bp

∫ ∞

0

g(t)pw(t)dt,

and the result follows by taking the infimum of such ε’s. �

Proof of Theorem 2.2. By hypothesis we have that∫ ∞

0

fp0w ≤ ϕ(||w||∞)

∫ ∞

0

gp0w ,

for every w ∈ B∞. Then, taking w(t) = χ(0,s)(t)t
β with s > 0 and β > −1, we

have that w ∈ B∞ and ||w||B∞ = 1. Hence

(2.4)

∫ s

0

fp0(t)tβ dt ≤ ϕ(1)

∫ s

0

gp0(t)tβ dt , for all t > 0, β > −1.

Now let p > 0 and let w ∈ B∞ be arbitrary. Then, by definition of B∞, there exists
q > 0 such that w ∈ Bq. Using again that f is decreasing and inequality (2.4), we
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634 MARÍA J. CARRO AND MARÍA LORENTE

obtain that for every β > −1,

(2.5)

∫ ∞

0

f(t)pw(t)dt ≤
∫ ∞

0

(
1 + β

t1+β

∫ t

0

f(s)p0sβds

)p/p0

w(t) dt

≤ ϕ(1)p/p0

∫ ∞

0

(
1 + β

tβ+1

∫ t

0

g(s)p0sβds

)p/p0

w(t) dt

= ϕ(1)p/p0

∫ ∞

0

(Sφg
p0(t))p/p0 w(t) dt ,

where φ(t) = tβ. To finish the proof we only have to check that Sφ is bounded in

L
p/p0

dec (w) and this is equivalent to showing that w ∈ B (1+β)p
p0

. Therefore, it suffices

to choose β > −1 such that (1+β)p
p0

= q, i.e., β = qp0

p − 1, to get that∫ ∞

0

f(t)pw(t)dt ≤ ϕ(1)p/p0 ||w||Bq

∫ ∞

0

g(t)pw(t)dt.

Taking the infimum of such q’s we are done. �

3. Application and examples

In this section, we shall present mainly two applications which have interesting
consequences. Both of them are consequences of the following observation:

Remark 3.1. It has been implicitly proved that, given 0 < p < ∞ fixed and a pair
of decreasing functions (f, g),∫ ∞

0

f(t)w(t)dt ≤ Cw

∫ ∞

0

g(t)w(t)dt

holds for every w ∈ Bp with constant Cw depending only on ||w||Bp
if and only if,

for every s > 0 and every −1 < β < p− 1,∫ s

0

f(t)tβdt � Cβ

∫ s

0

g(t)tβdt,

with Cβ independent of s.

Application I. The above observation is especially useful for characterizing the
boundedness on Lp

dec(w) of certain operators.

Theorem 3.2. Let T be an operator such that
i) for every decreasing function f , Tf is also a decreasing function whenever it

is well defined;
ii) for every decreasing function g, a function T ∗g is well defined by∫ ∞

0

Tf(t)g(t)dt =

∫ ∞

0

f(t)T ∗g(t)dt, ∀f ↓ .

Let 0 < p < ∞ be fixed. Then,

(3.1) T : Lp
dec(w) −→ Lp(w)

is bounded for every w ∈ Bp with constant depending only on ||w||Bp
if and only if,

for every r, s > 0 and every −1 < α < 0,

(3.2)

∫ s

0

Tχ(0,r)(t)t
αdt � Cα min(r, s)α+1,

with Cα independent of r and s.
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R. DE FRANCIA’S EXTRAPOLATION THEOREM FOR Bp WEIGHTS 635

Proof. If T satisfies (3.1), then taking f to be a decreasing function, we can apply
Theorem 2.1 to the pair (Tf, f) to deduce that

T : L1
dec(w) −→ L1(w)

for every w ∈ B1, and by the previous remark this is equivalent to having that, for
every s > 0 and every −1 < α < 0,∫ ∞

0

f(t)T ∗(uαχ(0,s)(u))(t)dt =

∫ s

0

Tf(t)tαdt � Cα

∫ s

0

f(t)tαdt·

Now, it is known (see [5]) that the above inequality holds for every decreasing f if
and only if, for every r > 0,∫ s

0

Tχ(0,r)(t)t
αdt =

∫ r

0

T ∗(uαχ(0,s)(u))(t)dt � Cα

∫ min(s,r)

0

tαdt

≈ Cα min(r, s)α+1

as we wanted to show. �

In particular, we can consider integral operators with positive kernel, which have
been intensively studied in [9].

Corollary 3.3. Let

Tf(x) =

∫ ∞

0

f(t)k(x, t)dt

with k a positive kernel such that, for every decreasing function f , Tf is also a
decreasing function whenever it is well defined. Then,

T : Lp
dec(w) −→ Lp(w)

is bounded for every w ∈ Bp with constant Cw depending only on ||w||Bp
if and

only if, for every r, s > 0 and every −1 < α < 0,

(3.3)

∫ s

0

∫ r

0

k(x, t)xαdt dx � Cα min(r, s)α+1,

with Cα independent of r and s.

Similarly, in the case of two linear operators:

Corollary 3.4. If T1 and T2 are two linear operators satisfying the hypothesis of
Theorem 3.2, we have

a)

(3.4)

∫ ∞

0

(T1f)
p(t)w(t)dt � Cw

∫ ∞

0

(T2f)
p(t)w(t)dt

for every w ∈ Bp and every decreasing function f with Cw depending only on ||w||Bp

if and only if, for every r, s > 0 and every −1 < α < 0,∫ s

0

T1χ(0,r)(t)t
αdt � Cα

∫ s

0

T2χ(0,r)(t)t
αdt,

with Cα independent of r and s.
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636 MARÍA J. CARRO AND MARÍA LORENTE

b) If Tj are integral operators with positive kernels kj satisfying the hypothesis
of Corollary 3.3, then (3.4) holds for every w ∈ Bp if and only if, for every r, s > 0
and every −1 < α < 0,

(3.5)

∫ s

0

∫ r

0

k1(x, t)x
αdt dx � Cα

∫ s

0

∫ r

0

k2(x, t)x
αdt dx,

with Cα independent of r and s.

Examples

Let us now give some examples of well known operators for which boundedness
on Lp

dec(w) is true for every w ∈ Bp and examples in which this condition fails.

Example I. The Calderón operator.
Let λ, β, γ > 0 with λ ≥ βγ and let us consider the operator

Tf(x) = x−λ

∫ xβ

0

tγ−1f(t)dt.

Then, T is an integral operator with kernel

k(x, t) = x−λχ(0,xβ)(t)t
γ−1

and hence using Corollary 3.3 it is immediate to see the following result:

Theorem 3.5. Let T be the Calderón operator defined above. Then, the following
conditions are equivalent:

(i) There exists 0 < p < ∞ such that

T : Lp
dec(w) −→ Lp(w)

is bounded for every w ∈ Bp.
(ii) For every 0 < p < ∞,

T : Lp
dec(w) −→ Lp(w)

is bounded for every w ∈ Bp.
(iii) β = 1 and γ = λ ≥ 1.

Example II. The Riemann-Liouville fractional operator is defined by

Rλf(x) = x−λ

∫ x

0

(x− t)λ−1f(t)dt,

with 0 < λ ≤ 1.

Theorem 3.6. For every 0 < p < ∞, the operator

Rλ : Lp
dec(w) −→ Lp(w)

is bounded for every w ∈ Bp.

Proof. In this case k(x, t) = x−λχ(0,x)(t)(x−t)λ−1. We already know that, in order
to prove the result, it is enough to show that for all −1 < α < 0 and all r, s > 0 we
have

(3.6)

∫ s

0

∫ r

0

k(x, t)xαdt dx � Cα min(r, s)α+1.

To see this, suppose first that s ≤ r. Then, for x ∈ (0, s),∫ r

0

k(x, t)dt =

∫ x

0

x−λ(x− t)λ−1dt =
1

λ
.
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R. DE FRANCIA’S EXTRAPOLATION THEOREM FOR Bp WEIGHTS 637

Therefore,∫ s

0

∫ r

0

k(x, t)xαdt dx =
1

λ

∫ s

0

xαdx = Csα+1 = Cmin(r, s)α+1.

Suppose now that r < s. Then there are two possible cases: s ≤ 2r and 2r < s. In
the case where s ≤ 2r we have∫ s

0

∫ r

0

k(x, t)xαdt dx ≤
∫ 2r

0

∫ 2r

0

k(x, t)xαdt dx ≤ C(2r)α+1 = Cmin(r, s)α+1.

If 2r < s, then∫ s

0

∫ r

0

k(x, t)xαdt dx =

∫ 2r

0

∫ r

0

k(x, t)xαdt dx+

∫ s

2r

∫ r

0

k(x, t)xαdt dx.

For the first summand we proceed as in the previous case:∫ 2r

0

∫ r

0

k(x, t)xαdt dx ≤
∫ 2r

0

∫ 2r

0

k(x, t)xαdt dx ≤ C(2r)α+1 = Cmin(r, s)α+1.

Let us estimate the second one. By the mean value theorem applied to the function
f(u) = (x− u)λ on the interval [0, r], we have that there exists c ∈ (0, r) such that
(x− r)λ − xλ = −λr(x− c)λ−1. Then∫ r

0

k(x, t)dt = x−λ

(
xλ − (x− r)λ

λ

)
= x−λr(x− c)λ−1 ≤ x−λr

xλ

x− r
=

r

x− r
.

Therefore, ∫ s

2r

∫ r

0

k(x, t)xαdt dx ≤
∫ s

2r

xα r

x− r
dx = r

∫ s

2r

xα−1 x

x− r
dx.

Since the function g : [2r, s] → R given by g(x) = x
x−r is decreasing and α < 0, we

have that ∫ s

2r

∫ r

0

k(x, t)xαdt dx ≤ 2r

(
sα − (2r)α

α

)
= 2r

(
(2r)α − sα

−α

)
≤ C(2r)α+1 = Cmin(r, s)α+1,

and (3.6) is proved. �

Remark 3.7. With the same technique, we can also prove that neither the adjoint
Calderón operator defined by

Tf(x) = x−λ

∫ 1

xβ

tγ−1f(t)dt

with λ, β, γ > 0 nor the Laplace operator

Lf(x) =

∫ ∞

0

e−xtf(t)dt

satisfy the condition of boundedness on Lp
dec(w) for every w ∈ Bp.

In the first case the kernel is

k(x, t) = x−λχ(xβ ,1)(t)t
γ−1

and it is enough to show that it is not true that for each −1 < α < 0 and r, s > 0,∫ s

0

∫ r

0

k(x, t)xαdt dx � min(r, s)α+1.
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Let 0 < s < 1 < r. Then∫ r

0

k(x, t)dt =

∫ r

0

x−λχ(xβ ,1)(t)t
γ−1dt = x−λ

∫ 1

xβ

tγ−1dt =
1

γ
x−λ(1− xβγ).

Hence,∫ s

0

∫ r

0

k(x, t)xαdt dx =
1

γ

∫ s

0

xα−λ(1− xβγ)dx ≥ 1

γ

∫ s

0

xα−λ(1− sβγ)dx

=
1− sβγ

γ

∫ s

0

xα−λdx = ∞ ,

for any α such that −1 < α < −1 + λ.
In the second case the kernel is k(x, t) = e−xt. Let us take 0 < s < r and observe

that ∫ r

0

e−xtdt = rHf(xr),

whereH denotes the Hardy operator and f(t) = e−t. Then, making the substitution
xr = u, we get∫ s

0

xα

∫ r

0

k(x, t)dt dx = r

∫ s

0

xαHf(xr)dx =
1

rα

∫ sr

0

uαHf(u)du

=
1

rα

∫ sr

0

uα 1− e−u

u
du.

If we keep sr = 1 and let r tend to infinity, then
∫ sr

0
uα 1−e−u

u du =
∫ 1

0
uα 1−e−u

u du is

a positive constant and, as −1 < α < 0, 1
rα → ∞ while min(r, s)α+1 = sα+1 → 0.

Application II. Let g∗(t) = inf {s > 0 : λg(s) ≤ t} be the decreasing rearrange-
ment of g, where λg(y) = | {x ∈ R

n : |g(x)| > y} | is the distribution function of g

with respect to Lebesgue measure, and let f∗∗(t) = 1
t

∫ t

0
f∗(s)ds.

In [3] the space Sp(w) defined by

||f ||Sp(w) =

(∫ ∞

0

(f∗∗(t)− f∗(t))pw(t)dt

)1/p

< ∞

was studied and it was proved that it coincides with the Lorentz space Γp(w) defined
by

||f ||Γp(w) =

(∫ ∞

0

(f∗∗(t))pw(t)dt

)1/p

< ∞

if w ∈ RBp; that is, for every r > 0,∫ r

0

w(s)ds � rp
∫ ∞

r

w(s)

sp
ds.

To see this, it was proved that if w ∈ RBp, the following inequality holds:∫ ∞

0

(f∗∗(t))pw(t)dt �
∫ ∞

0

(f∗∗(t)− f∗(t))pw(t)dt.

Now, making the change of variable u = 1/t the previous inequality is the same as
(3.7)∫ ∞

0

(∫ 1
u

0

f∗(s)ds

)p

up−2w
( 1

u

)
du �

∫ ∞

0

(
1

u

(
f∗∗

( 1

u

)
−f∗

( 1

u

)))p

up−2w
( 1

u

)
du.
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On the other hand, the following hold:

i) w ∈ RBp if and only if up−2w
(

1
u

)
∈ Bp.

ii) g(u) =
∫ 1

u

0
f∗(s)ds is clearly a decreasing function.

iii) h(u) = 1
u

(
f∗∗( 1u )− f∗( 1u )

)
is also a decreasing function (see [3]).

Therefore, inequality (3.7) can be read as∫ ∞

0

g(u)pv(u)du �
∫ ∞

0

h(u)pv(u)du

for every v ∈ Bp with g and h being decreasing functions, and thus it is equivalent
to proving that for every s > 0,∫ s

0

g(u)uαdu �
∫ s

0

h(u)uαdu

for every −1 < α < 0, which can be seen with an easy computation.

4. Final comments

1) In the context of Ap weights developed in [10], [6], [7] and [3], we have a pair of
positive functions (f, g) not necessarily decreasing such that, for some 1 < p0 < ∞
and every w ∈ Ap0

, there exists a constant C > 0 depending only on ||w||Ap0

satisfying ∫ ∞

0

fp0w ≤ C

∫ ∞

0

gp0w .

Then, it is natural to ask whether it is true that there exists an operator T satisfying

f ≤ Tf, Tf ≤ Tg,

and

T : Lp(w) −→ Lp(w)

for every w ∈ Ap.
Observe that if this were the case, then for every w ∈ Ap,∫ ∞

0

fpw ≤
∫ ∞

0

(Tf)pw ≤
∫ ∞

0

(Tg)pw ≤ C

∫ ∞

0

gpw,

and we get the extrapolation result in the aforementioned papers.
Also observe that this is what happens in the Bp context since upon taking

Tf(t) =

(
1

tp0−ε

∫ t

0

fp0(s)sp0−1−ε ds

)1/p0

we have that T satisfies the three conditions mentioned above for f a decreasing
function.

2) In the context of the interpolation theory of Banach spaces, we also have
a similar result to the ones developed in [2] (Theorems 3.8 and 5.2): Given two
compatible Banach spaces Ā and B̄ and a linear operator T such that, for some
0 < p < ∞,

(4.1) T : Āp,w;K −→ B̄p,w;K

is bounded for every w ∈ Bp with constant depending only on ||w||Bp
, we have that
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for every w ∈ Bq and every 0 < q < ∞,

T : Āq,w;K −→ B̄q,w;K

is bounded with constant depending only on ||w||Bq
.

To see this, observe that by hypothesis,∫ ∞

0

(
K(t, Tf ; B̄)

t

)p

w(t)dt � Cw

∫ ∞

0

(
K(t, f ; Ā)

t

)p

w(t)dt,

and since K(t,Tf ;B̄)
t is a decreasing function, we can apply our results directly.

Moreover, we have that (4.1) holds for some p and every w ∈ Bp (or equivalently,
for every 0 < p < ∞ and every w ∈ Bp) if and only if, for every r > 0 and every
−1 < α < 0, ∫ r

0

K(t, Tf ; B̄)tα−1dt � Cα

∫ r

0

K(t, f ; Ā)tα−1dt,

with Cα independent of r > 0.
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