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ON THE ZEROS OF FUNCTIONS IN DIRICHLET-TYPE SPACES

JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

Abstract. We study the sequences of zeros for functions in the Dirichlet
spaces Ds. Using Carleson-Newman sequences we prove that there are great
similarities for this problem in the case 0 < s < 1 with that for the classical
Dirichlet space.

1. Introduction and main results

The problem of describing the zero sets for the Dirichlet-type spaces Ds is an
old one, and to the best of our knowledge, is still an open problem whose best
results are the ones given by Carleson in [8], [10], and by Shapiro and Shields in
[39]. The purpose of this paper is to give some light on this difficult problem. Since
the Dirichlet-type spaces are subclasses of the Hardy space H2, any zero sequence
{zn} satisfies the Blaschke condition

∑
(1− |zn|2) < ∞ ([18, p. 18]). However, this

condition is far from being sufficient. Many examples of Blaschke sequences that
are not Ds- zero sets can be found in the literature (see [12], [29] and [39]). When
0 < s < 1, Carleson proved in [8] that the condition

∑
(1− |zn|2)s < ∞

implies that the Blaschke product B with zeros {zn} belongs to the space Ds, and
therefore, it is a sufficient condition for the sequence {zn} to be a Ds-zero set.
Concerning the Dirichlet space D (the case s = 0), since it does not contain infinite
Blaschke products, one must go in a different way. In [10], by constructing a function

g ∈ D with gB ∈ D, Carleson found the sufficient condition
∑(

log 1
1−|zn|2

)−1+ε

<

∞, for a sequence {zn} to be a zero set for the Dirichlet space. Using Hilbert space
techniques, this was improved in [39] by Shapiro and Shields, who proved that the
condition

∑

n

(
log

1

1− |zn|2
)−1

< ∞

is sufficient for {zn} to be a Dirichlet zero set.
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1982 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

Note that the spaces Ds are Hilbert function spaces with the norm of the cor-
responding reproducing kernels kz comparable to (log 1

1−|z| )
1/2 if s = 0, and to

(1 − |z|2)−s/2 if s > 0. So, the corresponding sufficient conditions stated before
can be restated as

∑
‖kzn‖−2

Ds
< ∞. On the other hand, if {rn} ⊂ (0, 1) and

∑
‖krn‖−2

Ds
= ∞, with 0 ≤ s < 1, in [29], Nagel, Rudin, and Shapiro constructed a

sequence of angles {θn} such that {rneiθn} is not the zero set of any function in Ds.
Together with the previous sufficient condition, this implies that given {rn} ⊂ (0, 1),
then {rneiθn} is a zero set for Ds for any choice of angles {θn} if and only if

(1.1)
∑

n

‖krn‖−2
Ds

< ∞.

We also note that, in [7], Bogdan described the regions Ω ⊂ D for which any
Blaschke sequence of points in Ω must be a Dirichlet zero set. For example, it
follows that any Blaschke sequence that lies in a region with finite order of contact
with the unit circle must be a Dirichlet zero set.

What about conditions on the angles? Here we touch the notion of a Carleson
set. Given a sequence of points {eiθn}, the sequence {rneiθn} is a zero sequence of
D for any choice of radius {rn}, 0 < rn < 1 with

∑
(1 − rn) < ∞ if and only if

the closure of {eiθn} is a Carleson set. Indeed, if the closure of {eiθn} in the unit
circle is a Carleson set, Caughran proved in [13] that there is a function f with all
derivatives bounded in the unit disk vanishing at the points {rneiθn}. Conversely,

if {eiθn} is not a Carleson set, by modifying the construction in [12, Theorem 1],
he obtained in [13] a sequence {rn} for which {rneiθn} is not contained in the zero
set of any function with finite Dirichlet integral. We will see that the same holds
for the spaces Ds when 0 < s < 1.

In [26, Corollary 13], Marshall and Sundberg proved that the zero sets of the
Dirichlet-type spaces Ds, 0 ≤ s ≤ 1, coincide with the zero sets of its multiplier
algebra (see also [2, Corollary 9.39]). From this follows the remarkable result that
the union of two zero sets is also a zero set for Ds. Note that the corresponding
result for the weighted Bergman spaces (the case s > 1) is not true; the first
example was given by Horowitz in [22]. A complete description of the zeros of
functions in Bergman spaces is still open, but the gap between the necessary and
sufficient known conditions is small. We refer to [19, Chapter 4], [21, Chapter 4],
[23], [25], [37] and [38] for more information on this interesting problem.

1.1. Main results. Let D denote the open unit disk of the complex plane, let T

denote the unit circle and let H(D) be the class of all analytic functions on D. For
s ≥ 0, the weighted Dirichlet-type space Ds consists of those functions f ∈ H(D)
for which

‖f‖2Ds

def
= |f(0)|2 +

∫

D

|f ′(z)|2 (1− |z|2)s dA(z) < ∞,

where dA(z) = 1
πdx dy is the normalized area measure on D. As usual, D0 will be

simply denoted by D.
Given a space X of analytic functions in D, a sequence Z = {zn} ⊂ D is said to

be an X-zero set if there exists a function in X that vanishes on Z and nowhere
else.

A sequence {zn} ⊂ D is said to be separated if infj �=k �(zj , zk) > 0, where

�(z, w) =
∣
∣
∣ z−w
1−zw

∣
∣
∣ denotes the pseudohyperbolic metric in D. This condition is
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ZERO SETS OF DIRICHLET SPACES 1983

equivalent to the fact that there is a positive constant δ < 1 such that the pseudo-
hyperbolic discs Δ(zj , δ) = {z : �(z, zj) < δ} are pairwise disjoint.

We denote by Hp (0 < p ≤ ∞) the classical Hardy spaces of analytic functions
on D (see [18]). We remind the reader that {zk} ⊂ D is an interpolating sequence
if for each bounded sequence {wk} of complex numbers there exists f ∈ H∞ such
that f(zk) = wk for all k. It is a classical result of Carleson (see e.g. [18]) that
{zk} ⊂ D is an interpolating sequence if and only if

(1.2) inf
k

∏

j �=k

�(zj , zk) > 0.

Clearly a sequence satisfying (1.2) is separated. A finite union of interpolating
sequences is usually called a Carleson-Newman sequence.

In this research on Ds-zero sets, 0 < s < 1, the additional hypothesis of being
a Carleson-Newman sequence enables us to obtain better results. The key is the
following one which moves the problem to a new situation on the boundary.

Theorem 1. Suppose that 0 < s < 1 and {zk} is a Carleson-Newman sequence.
Then the following conditions are equivalent:

(i) {zk} is a Ds-zero set.
(ii) There exists an outer function g ∈ Ds such that

(1.3)

∞∑

k=1

|g(zk)|2(1− |zk|2)s < ∞.

(iii) There exists an outer function g ∈ Ds such that

∞∑

k=1

(1− |zk|2)1+s

∫

T

|g(eit)|2 dt

|eit − zk|2
< ∞.

We recall that a function g ∈ H(D) is called an outer function if log |g| belongs
to L1(T) and

g(z) = exp

(
1

2π

∫

T

log |g(eit)| e
it + z

eit − z
dt

)

.

Although obviously there are Ds-zero sets that are not Carleson-Newman se-
quences, this additional assumption is not an obstacle in order to construct relevant
examples, and to get analogous results for Ds to those known for D. Combining
ideas from [10], [12] and Theorem 1, the next result follows.

Corollary 1. Suppose that 0 < s < 1 and {zk} is a Carleson-Newman sequence.
If {zk} is a Ds-zero set, then

(1.4)

∫

T

log

( ∞∑

k=1

(1− |zk|2)1+s

|eit − zk|2

)

dt < ∞.

We note that this result remains true for s = 0 without assuming that the
sequence is Carleson-Newman (see [12]); that is, if {zk} is a D-zero set, then

(1.5)

∫

T

log

( ∞∑

k=1

1− |zk|2
|eit − zk|2

)

dt < ∞.

Corollary 1 allows us to extend Theorem 1 of [12] to the case 0 < s < 1.
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1984 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

Theorem 2. Let 0 < s < 1. Then there exists a Blaschke sequence {zn} which is
not a Ds-zero set and with 1 as a unique accumulation point.

Denote by |E| the normalized Lebesgue measure of a subset E of the unit circle T.
A Carleson set is a closed subset E ⊂ T of Lebesgue measure zero for which, if the
intervals {Ik} complementary to E have lengths |Ik|, then

∑
k |Ik| log |Ik| > −∞.

This notion was introduced in [5], and in [9] Carleson used it to describe the sets
of uniqueness of some function spaces. Corollary 1 is also useful to obtain results
on the angular distribution of the Ds-zero sets.

Theorem 3. Let 0 < s < 1, and {eiθn} ⊂ T. The following are equivalent:

(i) the sequence {rneiθn} is a Ds-zero set for any choice of {rn} ⊂ (0, 1) with∑
(1− rn) < ∞;

(ii) the closure of {eiθn} in the unit circle is a Carleson set.

As noted before, if 0 ≤ s < 1 and {rn} ⊂ (0, 1) is a Blaschke sequence that does
not satisfy (1.1), then there is a sequence of angles {θn} such that Z = {rneiθn} is
not a Ds-zero set. The sequences doing that which have been constructed in [29]
(and also the examples in [39]) satisfy that every ξ ∈ T is an accumulation point
of Z. Ross, Richter and Sundberg proved in [36] that this can be done in D with a
sequence Z which accumulates to a single point in T. We shall extend this result
to the range 0 < s < 1, which improves our Theorem 2 but whose proof is much
more technical.

Theorem 4. Let 0 < s < 1. Suppose that {rn} ⊂ (0, 1) satisfies

∞∑

n=0

(1− rn)
s = ∞.

Then there exists a sequence {θn} such that {rneiθn}∩T = {1} and
{
rne

iθn
}
is not

a Ds-zero set.

Let X be a space of analytic functions in D contained in the Nevanlinna class (see
[18]), so every function f ∈ X has nontangential limits a.e. on T. Denote also by f
the function of boundary values of f (taken as a nontangential limit). A closed set
E ⊂ T is called a set of uniqueness for X if it has the property that f ≡ 0 if f ∈ X
vanishes at all points ξ ∈ E. It is well known that E ⊂ T is a set of uniqueness for
a Lipschitz class Λα if and only if E is not a Carleson set. We remind the reader
that f ∈ H(D) belongs to Λα, 0 < α ≤ 1, if there is C > 0 such that

|f(z)− f(w)| ≤ C|z − w|α, for all z, w ∈ D.

In [9, Theorem 5], under a very weak additional assumption, the sets of uniqueness
for the classical Dirichlet space are described.

If α > 0, we denote by Cα(E) the α-capacity of a subset of T (see Section 4 for
a definition). The following result is an extension of Theorem 5 in [9].

Theorem 5. Let 0 ≤ s < α < 1 and E ⊂ T with null Lebesgue measure. Suppose
that there exists m > 0 such that for each interval I ⊂ T centered at a point of E,

(1.6) Cα(E ∩ I) ≥ m|I|.

Then E is a set of uniqueness for Ds if and only if E is not a Carleson set.
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The paper is organized as follows. Section 2 is devoted to the study of Carleson-
Newman sequences as Ds-zero sets proving Theorem 1, Corollary 1, Theorem 2 and
Theorem 3. Theorem 4 is proved in Section 3, and Theorem 5 is proved in Section
4. In Section 5, we shall give a new proof of a result of Bogdan [7] on the description
of Blaschke sets for D. Finally, in Section 6, between other results, we prove that
Ds-zero sets and the zero sets of their generated Möbius invariant spaces coincide.

In the sequel, the notation A 
 B will mean that there exist two positive con-
stants C1 and C2 which only depend on some parameters p , α , s, . . . such that
C1A ≤ B ≤ C2A. Also, we remark that throughout the paper we shall be us-
ing the convention that the letter C will denote a positive constant whose value
may depend on some parameters p , α , s . . . , not necessarily the same at different
occurrences.

2. Carleson-Newman Ds-zero sets

We first recall some useful concepts and results. The Carleson square S(I) of an
interval I ⊂ T is defined as

S(I) = {reiθ : eiθ ∈ I, 1− |I| ≤ r < 1} .
Given s > 0 and a positive Borel measure μ on D, we say that μ is an s-Carleson
measure if there exists a positive constant C such that

μ (S(I)) ≤ C|I|s, for every interval I ⊂ T.

If s = 1 we simply say that μ is a Carleson measure. We recall that a sequence
{zn} ⊂ D is Carleson-Newman if and only if the measure dμzn =

∑
(1− |zn|)δzn is

a Carleson measure (see [27] and [28]). Here, as usual, δzn denotes the point mass
at zn. A Blaschke product whose zero sequence is Carleson-Newman is called a
Carleson-Newman Blaschke product (a CN-Blaschke product, for short).

Let Pz(e
it) denote the Poisson kernel at a point z ∈ D, so that

Pz(e
it) =

1− |z|2
|eit − z|2 , eit ∈ T,

and let

Ψ(z, φ) =
1

2π

∫

T

φ(eit)Pz(e
it) dt− exp

(
1

2π

∫

T

log φ(eit)Pz(e
it) dt

)

, z ∈ D,

where φ is a positive function which belongs to L1 (T) . Observe that the arithmetic-
geometric inequality implies that Ψ(z, φ) ≥ 0. If φ ∈ L2 (T) , φ ≥ 0, we set

Φ(z, φ) = Ψ(z, φ2).

We observe that for an outer function g ∈ H2,

(2.1) Φ(z, |g|) = P (|g|2)(z)− |g(z)|2,
where P (|g|2) is the Poisson integral of |g|2.

The following result, Theorem 3.1 of [17] (see [6] for related results), characterizes
the membership in Ds of an outer function in terms of its modulus on the boundary.

Theorem A. Suppose that 0 < s < 1 and f is an outer function. Then the
following are equivalent:

(i) f ∈ Ds.

(ii)
∫
D
Φ(z, |f |) dA(z)

(1−|z|)2−s < ∞.
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In order to prove Theorem 1 we need some lemmas. The following result is im-
plicit in some places (see e.g. [33, Theorem 5] or [15, Theorem 8]). For completeness
we sketch a proof here.

Lemma 1. Suppose that 0 < s < 1, f ∈ Ds and let B be a Carleson-Newman
Blaschke product with zeros {zk} ⊂ D. Then fB ∈ Ds if and only if

∞∑

k=1

|f(zk)|2(1− |zk|2)s < ∞.

Moreover,

||fB||2Ds

 ||f ||2Ds

+
∞∑

k=1

|f(zk)|2(1− |zk|2)s.

Proof. Suppose first that fB ∈ Ds. By Theorem 4 of [16],

(2.2) ‖fB‖2Ds

 ‖f‖2Ds

+

∫

D

|f(z)|2 (1− |B(z)|2) (1− |z|2)s−2 dA(z).

Since B is a CN-Blaschke product, there is a positive constant C such that (see e.g.
[16, p. 15 ])

1− |B(z)|2 ≥ C
∑

n

(1− |zn|2)(1− |z|2)
|1− z̄nz|2

.

Therefore, if Δn = {�(z, zn) < 1/2}, the subharmonicity of |f |2 gives

∑

n

|f(zn)|2 (1− |zn|2)s ≤ C
∑

n

∫

Δn

|f(z)|2 (1− |z|2)s
|1− z̄nz|2

dA(z)

≤ C
∑

n

(1− |zn|2)
∫

Δn

|f(z)|2 (1− |z|2)s−1

|1− z̄nz|2
dA(z)

≤ C
∑

n

(1− |zn|2)
∫

D

|f(z)|2 (1− |z|2)s−1

|1− z̄nz|2
dA(z)

≤ C

∫

D

|f(z)|2 (1− |B(z)|2) (1− |z|2)s−2 dA(z).

For the converse we refer to [4, Proposition 3.2], where an elementary proof is
given. �

Next, if g ∈ H2 we shall see that the function Φ(z, |g|), although it is superhar-
monic, verifies a certain sub-mean-value property.

Lemma 2. Suppose that g is an outer function which belongs to H2. Then there
is a constant M > 1 such that

Φ(z, |g|) ≤ M

A(D(z, r))

∫

D(z,r)

Φ(w, |g|) dA(w), for all r ∈
(

0,
1− |z|

2

)

,

where D(z, r) is the Euclidean disk of center z and radius r.
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Proof. Take z ∈ D and r ∈
(
0, 1−|z|

2

)
. Using the trivial but useful identity

(2.3)

∫ 2π

0

|g(eit)− g(z)|2 Pz(e
it)

dt

2π
= P (|g|2)(z)− |g(z)|2,

the subharmonicity of the function ht(z) = |g(eit) − g(z)|2, Fubini’s theorem and
(2.1), we obtain that

Φ(z, |g|) =
∫ 2π

0

ht(z)Pz(e
it)

dt

2π

≤
∫ 2π

0

(
1

A(D(z, r))

∫

D(z,r)

ht(w) dA(w)

)

Pz(e
it)

dt

2π

=
1

A(D(z, r))

∫

D(z,r)

∫ 2π

0

|g(eit)− g(w)|2 Pz(e
it)

dt

2π
dA(w).

(2.4)

Now, by the Härnack inequality, there is a constant M > 1 (we can take M = 3)
such that

Pz(e
it) ≤ M Pw(e

it) for w ∈ D(z, r),

which, together with (2.3) and (2.4), gives that

Φ(z, |g|) ≤ M

A(D(z, r))

∫

D(z,r)

∫ 2π

0

|g(eit)− g(w)|2 Pw(e
it)

dt

2π
dA(w)

=
M

A(D(z, r))

∫

D(z,r)

(
P (|g|2)(w)− |g(w)|2

)
dA(w)

=
M

A(D(z, r))

∫

D(z,r)

Φ(w, |g|) dA(w),

which finishes the proof. �

Proof of Theorem 1. (i) ⇒ (ii). Let B be a CN-Blaschke product with zeros {zn},
where {zn} is a Ds-zero set. Thus, there is f ∈ Ds whose zero sequence is {zn}.
Since Ds has the property of division by inner functions (see [16]), this implies that
there is an outer function g ∈ Ds such that g ·B ∈ Ds, which together with Lemma
1 gives that ∑

n

|g(zn)|2(1− |zn|2)s < ∞.

(ii) ⇒ (i). Since B is a CN-Blachke product, this follows immediately from
Lemma 1.

(iii) ⇒ (ii) is clear.
(ii) ⇒ (iii). Without loss of generality we may assume that {zk} is separated.

Therefore, there is a positive constant ε < 1 such that the pseudohyperbolic disks
Δ(zk, ε) are pairwise disjoint.

Suppose that there is an outer function g which satisfies (1.3). It is observed
that

∑

k

(1− |zk|2)1+s

∫

T

|g(eit)|2 dt

|eit − zk|2

≤
∑

k

Φ(zk, |g|)(1− |zk|2)s +
∞∑

k=1

|g(zk)|2(1− |zk|2)s.
(2.5)
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Next, bearing in mind Lemma 2, the separation of {zk} and Theorem A, we
deduce that

∑

k

Φ(zk, |g|)(1− |zk|2)s ≤ C
∑

k

(1− |zk|2)s−2

∫

Δ(zk,ε)

Φ(z, |g|) dA(z)

≤ C
∑

k

∫

Δ(zk,ε)

(1− |z|2)s−2Φ(z, |g|) dA(z)

≤ C

∫

D

(1− |z|2)s−2Φ(z, |g|) dA(z) < ∞.

(2.6)

Finally, (iii) follows from (1.3), (2.6) and (2.5). �

Proof of Corollary 1. By Theorem 1 there is an outer function g ∈ Ds such that

∫

T

|g(eit)|2
(
∑

k

(1− |zk|2)1+s

|eit − zk|2

)

dt < ∞,

so bearing in mind that log |g| ∈ L1(T) and the geometric-arithmetic inequality,
the result follows. �

Proof of Theorem 2. The same sequence given in the proof of [12, Theorem 1]
works. Choose a sequence {εn} such that 0 < εn < 1,

∑
n εn ≤ 1 and

∑
n εn log εn =

−∞. Next, take disjoint open arcs of T with |In| = εn converging to 1. Let
rn = 1 − εn and zn = rne

iθn , where θn is the center of In. If I is an arc of T,
then

∑

zn∈S(I)

(1− |zn|) ≤
∑

In⊂2I

|In| ≤ 2|I|,

proving that the measure μ =
∑

(1− |zn|)δzn is a Carleson measure. So, {zn} is a
Carleson-Newman sequence which accumulates only at {1}. Moreover, since

∫

T

log

( ∞∑

k=1

(1− |zk|2)1+s

|eit − zk|2

)

dt ≥
∞∑

j=1

∫

Ij

log

( ∞∑

k=1

(1− |zk|2)1+s

|eit − zk|2

)

dt

≥
∞∑

j=1

∫

Ij

log

(
(1− |zj |2)1+s

|eit − zj |2

)

dt

≥
∞∑

j=1

|Ij | log
(
4|Ij |s−1

)
= ∞,

it follows from Corollary 1 that {zn} is not a Ds-zero set. The proof is complete. �

Proof of Theorem 3. If {eiθn} is a Carleson set and
∑

(1− rn) < ∞, then it follows
from [13, Theorem 2] that there is a function f with all derivatives bounded that
vanishes only at {rneiθn}.

Suppose now that E = {eiθn} is not a Carleson set. Let {In} be the com-
plementary intervals of E, with In = (eiθn , ei(θn+|In|)). Set rn = (1 − |In|)eiθn ,
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ZERO SETS OF DIRICHLET SPACES 1989

which satisfies
∑

(1− rn) < ∞. Clearly, the sequence {zn} = {rneiθn} is Carleson-
Newman, and arguing as in the proof of Theorem 2 we have

∫

T

log

(
∑

n

(1− |zn|2)1+s

|eit − zn|2

)

dt ≥ C
∑

n

|In| log
(
4|In|s−1

)
= ∞.

Hence, by Corollary 1, the sequence {rneiθn} is not a Ds-zero set. �

3. Proof of Theorem 4

Some new concepts and preliminary results will be needed in the proof of Theo-
rem 4. For 0 < s ≤ 1, the s-dimensional Hausdorff capacity of E ⊂ T is determined
by

Λ∞
s (E) = inf

⎧
⎨

⎩

∑

j

|Ij |s : E ⊂
⋃

j

Ij

⎫
⎬

⎭
,

where the infimum is taken over all coverings of E by countable families of open
arcs I ⊂ T.

Although we think that the next result is known, a proof is included here since
we were not able to find any clear reference.

Lemma 3. Let 0 < s ≤ 1. Then there exists a universal constant C such that
Λ∞
s (E) ≥ C|E|s for all E ⊂ T.

Proof. Let E ⊂ T. If |E| = 0, the result is clear. Suppose that |E| > 0 and take

ε ∈
(
0, |E|s

2

)
. Then there exists a covering {Ij}j of E, such that

Λ∞
s (E) ≥

∑

j

|Ij |s − ε ≥

⎛

⎝
∑

j

|Ij |

⎞

⎠

s

− ε ≥ |E|s − |E|s
2

=
|E|s
2

.

This finishes the proof. �

The homogeneous Ds-capacity of a set E ⊂ T is defined by

cap (E,Ds) = inf
{
||f ||2Ds

: f ∈ L2 (T) and f ≥ 1 a.e. on E
}
.

Lemma 4. Let J ⊂ T be an open arc with center eiθ0 . Suppose that F ∈ Ds with

E =
{
eit ∈ J : |F (eit)| ≥ 1

}
.

If |E| ≥ |J|
2 , then there exists a universal constant C such that

∫

S(J)

|F ′(z)|2 (1− |z|2)s dA(z) ≥ C|J |s.

Proof. Let z0 = (1− |J|
2 )eiθ0 . Arguing as in the proof of [36, Lemma 3], we deduce

that there is a universal constant C such that the harmonic measure of E with
respect to Q := S(J) at z0, μ

Q
z0(E), satisfies

μQ
z0(E) ≥ C.

Consider a conformal map ϕ : D → Q with ϕ(0) = z0 and take g = F ◦ ϕ. Then
g ≥ 1 on ϕ−1(E) and |ϕ−1(E)| = μQ

z0(E) ≥ C. Thus, putting together (5.1.3) of [1]
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and Lemma 3, we have

(3.1) ‖g‖2Ds
≥ cap

(
ϕ−1(E),Ds

)
≥ C

(
Λ∞
s′
(
ϕ−1(E)

))γ ≥ CμQ
z0(E)s

′γ ≥ C,

where s′ ∈ (s, 1) and γ ∈ (0, 1).
Next, since ϕ is a conformal map (see [34, Chapter 1]),

(3.2) (1− |z|2)|ϕ′(z)| 
 d (ϕ(z), ∂Q) , z ∈ D.

Moreover, since Q is convex, reasoning as in [20, Proposition 5] and bearing in
mind (3.2) we obtain that

(3.3) |ϕ′(z)| ≥ 1

4
|ϕ′(0)| ≥ C d(z0, ∂Q) ≥ C|J |,

where d(z0, ∂Q) is the Euclidean distance from z0 to ∂Q.
Taking into account (3.1), (3.2) and (3.3) we deduce that

∫

Q

|F ′(z)|2 (1− |z|2)s dA(z) ≥
∫

Q

|F ′(z)|2 d(z, ∂Q)s dA(z)

≥
∫

D

|g′(z)|2 d(ϕ(z), ∂Q)s dA(z)

≥ C

∫

D

|g′(z)|2
(
(1− |z|2)|ϕ′(z)|

)s
dA(z)

≥ C|J |s
∫

D

|g′(z)|2 (1− |z|2)s dA(z)

≥ C|J |s.

This finishes the proof. �

Proof of Theorem 4. Let {rn} ⊂ (0, 1) be an increasing sequence such that
∑

n

(1− rn)
s = ∞.

We can find

1 ≤ n1 < m1 < n2 < m2 < · · · < nk < mk < · · ·

such that

(3.4) (1− rn)
1−s < k−2e−2k2

if n ≥ nk, k = 1, 2, . . .

and

ke2k
2 ≤

mk∑

n=nk

(1− rn)
s < ke2k

2

+ 1, k = 1, 2, . . . .

For each k, lay out arcs Jnk
, Jnk+1, . . . , Jmk

on the unit circle end-to-end starting
at eiθ = 1 and such that

(3.5) |Jn| = (1− rn)
sk−2 e−2k2

, nk ≤ n ≤ mk.

Observe that (3.4) together with (3.5) implies that

(3.6) |Jn| > (1− rn).
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ZERO SETS OF DIRICHLET SPACES 1991

Let eiθn be the center of Jn and set λn = (1 − rn)e
iθn . Suppose that there is

F ∈ Ds with F (λn) = 0 for all nk ≤ n ≤ mk. By [6, Theorem 3.4] we may assume
that ||F ||H∞ ≤ 1. Set

Ak =

{

n : nk ≤ n ≤ mk and |F | ≥ e−k2

on a set En ⊂ Jn with |En| ≥
|Jn|
2

}

,

Bk = {n : nk ≤ n ≤ mk, n /∈ Ak} .

Using Lemma 4 and (3.6) with S(Jn), n ∈ Ak, we deduce that
∫

S(Jn)

|F ′(z)|2 (1− |z|2)s dA(z) ≥ Ce−2k2 |Jn|s ≥ Ce−2k2

(1− rn)
s.

Moreover if n ∈ Bk,
∫

Jn

log
1

|F (ξ)| dξ ≥ 1

2
k2|Jn| =

1

2
(1− rn)

se−2k2

.

So, bearing in mind (3),

∑

n∈Ak

∫

S(Jn)

|F ′(z)|2 (1− |z|2)s dA(z) +
∑

n∈Bk

∫

Jn

log
1

|F (ξ)| dξ

≥ Ce−2k2
mk∑

n=nk

(1− rn)
s ≥ Ck,

which together with the integrability of log |F | on the boundary (see Theorem 2.2
of [18]), implies that F must be the zero function. Finally, arguing as in the proof
of Theorem 2 of [36], the proof can be finished. �

4. Zeros on the boundary. Sets of uniqueness

In order to prove Theorem 5, the notion of α-capacity must be introduced. We
shall recall some definitions (see [41] and [8]). Given E ⊂ [0, 2π), let P(E) be
the set of all probability measures supported on E. If α > 0 and σ ∈ P(E), the
α-potential associated to σ is

Uασ(τ ) =

∫

E

dσ(θ)

|θ − τ |α .

Let

VE,α = inf

∫

E

Uασ(τ ) dσ(τ ),

where the infimum is taken over all σ ∈ P(E). If VE,α < ∞, there is μ ∈ P(E)
where the value VE,α is attained, and that measure μ is called the equilibrium
distribution for the α-potentials of E. It is known that Uαμ(τ ) = VE,α for a.e. (μ).
The α-capacity of E is determined by

Cα(E) = (VE,α)
−1.

Proof of Theorem 5. Suppose that E is a set of uniqueness for Ds. Then E is also
a set of uniqueness for any Lipschitz class Λβ with β > 1−s

2 , due to Λβ ⊂ Ds. So,
by Theorem 1 of [9], E is not a Carleson set.

For the converse, we shall follow the argument in the proof of Theorem 5 in [9].
Let μ be the equilibrium distribution for the α-potentials of E. Then, if {γn} are
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1992 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

the Fourier-Stieltjes coefficients of μ, there is a constant C which only depends on
α such that

(4.1)
∑

n

nα−1|γn|2 ≤ CVE,α.

Suppose that there is a bounded function f ∈ Ds, f �= 0, that vanishes on E.
We shall see that this leads to a contradiction. The function h(θ) = |f(eiθ)| can be
written as

h(θ) =
∑

n

cne
inθ,

where

(4.2)
∑

n

n1−s|cn|2 < ∞.

For each t ∈ (0, π), let us consider ht(θ) =
1
2t

∫ θ+t

θ−t
h(s) ds. Integrating the Fourier

series of h, it follows that the Fourier coefficients of ht are
sin(nt)

nt cn. Then by (4.1)
and Schwarz’s inequality,

∫

E

ht(θ) dμ(θ) =

∣
∣
∣
∣

∫

E

(ht(θ)− h(θ)) dμ(θ)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

n

(

1− sin(nt)

nt

)

cn

∫

E

einθ dμ(θ)

∣
∣
∣
∣
∣

≤ C
∑

n

(

1− sin(nt)

nt

)

|cn||γn|

≤ C

(
∑

n

(

1− sin(nt)

nt

)2

|cn|2n1−α

) 1
2
(
∑

n

nα−1|γn|2
) 1

2

.

(4.3)

We claim that there is C > 0 such that

ns−α

(

1− sin(nt)

nt

)2

≤ Ctα−s, t > 0, n = 1, 2, . . . .(4.4)

If nt ≤ 1, there is a positive constant C which does not depend on n or t, such that

1− sin(nt)
nt ≤ C(nt)2, so

ns−α

(

1− sin(nt)

nt

)2

≤ C2ns−α(nt)4 ≤ C2ns−α(nt)α−s ≤ C2tα−s.(4.5)

On the other hand, if nt ≥ 1, bearing in mind that 1− sin(θ)
θ is a bounded function

of θ, we deduce that

ns−α

(

1− sin(nt)

nt

)2

≤ Cns−α ≤ Ctα−s,

which together with (4.5) gives (4.4).
Therefore, using (4.3), (4.4), (4.1) and (4.2), it follows that

∫

E

ht(θ) dμ(θ) ≤ Ct
α−s
2

(
∑

n

n1−s|cn|2
) 1

2
(
∑

n

nα−1|γn|2
) 1

2

≤ Ct
α−s
2 ||f ||Ds

V
1/2
E,α .

(4.6)
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ZERO SETS OF DIRICHLET SPACES 1993

Now, let kn be the number of complementary intervals of E whose lengths are
in [2−n, 2−n+1). Since E is not a Carleson set,

∑ nkn
2n

= ∞.(4.7)

Let {ωi}kn

i=1 be those intervals, and let {θi}2kn

i=1 be the endpoints of {ωi}kn

i=1. We

consider the open intervals {δi}2kn
i=1 of length 2−n with midpoints {θi}2kn

i=1. Take
γ ∈

(
0, α−s

2

)
and let S be the set of those δi such that

hτ (θi) > 2−γn, τ = 2−n.(4.8)

Observe that (4.8) implies that h2τ (θ) > 2−γn−1 holds for θ ∈ δi whenever δi ∈ S,
which, together with the general relation (4.6), gives that for μ	 the equilibrium
distribution for the α-potentials of E ∩ S,

2−γn−1 ≤
∫

E∩S

hτ (θ) dμ
	(θ) ≤ CV

1/2
E∩S2

−n (α−s)
2 ,

so

Cα(E ∩ S) ≤ C2(2γ−(α−s))n.(4.9)

Let N be the number of intervals δi which belong to S. We shall estimate N
using condition (1.6). Take μi to be the equilibrium distribution for the α-potentials
of E ∩ δi. Let us consider σ = N−1

∑
δi⊂S μi and u the corresponding α-potential.

Suppose that τ ∈ δk, where δk ∈ S, and let δk−1 and δk+1 be the intervals in S
which are on the left and on the right of δk. We shall define F = {k − 1, k, k + 1}.
Then bearing in mind that the intervals {δj} are disjoint, the distance between the
intervals {δj}, and condition (1.6) we deduce that

u(τ ) =

∫

E∩S

dσ(θ)

|θ − τ |α

≤
∑

j∈F

∫

δj∩S

dσ(θ)

|θ − τ |α +

N∑

j=1, j /∈F

∫

δj∩S

dσ(θ)

|θ − τ |α

≤ N−1

⎛

⎝
∑

j∈F

∫

δj∩S

dμj(θ)

|θ − τ |α +

N∑

j=1, j /∈F

∫

δj∩S

dμj(θ)

|θ − τ |α

⎞

⎠

≤ CN−1

⎛

⎝2n +
N∑

j=1

1

(j2−n)α

⎞

⎠

≤ CN−12n,

which together with (4.9) gives

N−12n ≥ Cu ≥ C

Cα(E ∩ S)
≥ C2(−2γ+(α−s))n,

so due to γ < α−s
2 , one obtains

(4.10) N ≤ C2pn, for some p ∈ (0, 1).
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1994 JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

If ων = (θ2ν−1, θ2ν) and (4.8) does not hold for θ2ν−1 and θ2ν , then by the
arithmetic-geometric inequality,

1

|ων |

∫

ων

log h(θ) dθ ≤ log

(
1

|ων |

∫

ων

h(θ) dθ

)

≤ log

[
1

|ων |

(∫ θ2ν−1+2−n

θ2ν−1−2−n

h(θ) dθ +

∫ θ2ν+2−n

θ2ν−2−n

h(θ) dθ

)]

= log

[
2−(n+1)

|ων |
(hτ (θ2ν−1) + hτ (θ2ν))

]

≤ −γn+ C.

By (4.10), the number of indices n for which the above inequality is true is
greater than kn − 2N ≥ kn − C2pn. Hence

kn∑

ν=1

∫

ων

log h(θ) dθ ≤ −γn2−n(kn − C2pn) + C

kn∑

ν=1

|ων |,

which, joined to the fact that p < 1, gives
∫ 2π

0

log h(θ) dθ ≤ −γ
∑

n

n2−nkn + C.

Consequently, bearing in mind that γ > 0 and (4.7), this implies a contradiction.
�

5. Blaschke sets

A subset A of the unit disc D is called a Blaschke set for D if any Blaschke
sequence with elements in A is a zero set of D. These sets were characterized by
Bogdan in [7]. Here we shall give a new proof of that result.

Theorem 6. A ⊂ D is a Blaschke set for D if and only if

(5.1)

∫

T

log dist(eit, A) dt > −∞.

Some definitions and results will be introduced. A tent is an open subset T of D
bounded by an arc I ⊂ T with |I| < 1

4 and two straight lines through the endpoints

of I forming with I an angle of π
4 . The closed arc I will be called the base of the

tent T = TI . A tent T is said to support A if T ∩ A = ∅ but T ∩ A �= ∅. A
finite or countable collection of tents {Tn} is an A-belt if {Tn} are pairwise disjoint,
A-supporting and T \A ⊂

⋃
n Tn. The following result can be found in [24, Lemma

1].

Lemma B. Let A ⊂ D such that T \ A �= ∅. Let {TIn} be an A-belt. Then (5.1)
holds if and only if A ∩ T has zero Lebesgue measure, and

∑

n

|In| log
(

e

|In|

)

< ∞.

Lemma 5. Let {zn} be a D-zero set. If {λn} ⊂ D satisfies that �(zn, λn) < δ < 1
for each n, then {λn} is a D-zero set.
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Proof. Since Z = {zn} is a D-zero set, there is a function g in D such that gBZ ∈ D,
where BZ is the Blaschke product with zeros {zn}. By Carleson’s formula for the
Dirichlet integral (see [11] and also [35]), we have

‖gBΛ‖2D = ‖g‖2D +

∫

T

∑

n

Pλn
(eit) |g(eit)|2 dt

≤ ‖g‖2D + C

∫

T

∑

n

Pzn(e
it) |g(eit)|2 dt

≤ C ‖gBZ‖2D < ∞.

Hence, {αn} is a D-zero set, and the proof is complete. �

Remark 1. Note that this result implies that, if A is a Blaschke set for D and {wk}
is a sequence such that �({wk}, A) ≤ C < 1, then A∪ {wk} is also a a Blaschke set
for D.

Proof of Theorem 6. Suppose that (5.1) holds, and let Z be a Blaschke sequence
of points in A. Then

∫

T

log dist(eit, Z) dt > −∞,

and by a result of Taylor and Williams in [40], Z is a Λα-zero set for any α. Since
Λα ⊂ D for α > 1

2 , it follows that A is a Blaschke set for D.
Suppose that A is a Blaschke set for D. We shall use Lemma B to see that (5.1)

holds. Suppose that |A ∩ T| > 0. Then we can choose a sequence {εn} of positive
numbers satisfying

∑

n

εn ≤ |A ∩ T|,
∑

n

εn log
1

εn
= ∞,

and a collection of disjoint arcs {In} in T such that

|In| = εn, In ∩ A �= ∅, n ≥ 1.

In order to construct this sequence of subsets {In}, take I1 with |I1| = ε1 and I1 ∩
A �= ∅, and once In has been taken, choose In+1 such that In+1∩

(
A \

⋃n
j=1 Ij

)
�= ∅

with |In+1| = εn+1.
Next, take a sequence {wn} ⊂ A such that dist(wn, In ∩ A) ≤ εn and let pn be

the integer part of εn/(1−|wn|). Let Z be the sequence of points in A that consists
of pn repetitions of each point wn. Observe that Z is a Blaschke sequence,

∑

z∈Z

(1− |z|) =
∑

n

pn(1− |wn|) ≤
∑

n

εn < ∞,
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so that Z must be a sequence of zeros of D. We also have

∫

T

log

(
∑

z∈Z

1− |z|2
|eit − z|2

)

dt =

∫

T

log

(
∑

n

pn
1− |wn|2
|eit − wn|2

)

dt

≥
∑

k

∫

Ik

log

(

pk
1− |wk|2
|eit − wk|2

)

dt

≥
∑

k

|Ik| log
(

pk
1− |wk|2

4ε2k

)

≥
∑

k

εk log

(
1

8εk

)

= ∞,

which gives a contradiction with condition (1.5). Therefore, A∩T has zero Lebesgue
measure.

Next, let {Tn} be an A-belt. Then for each n there is wn ∈ A ∩ ∂Tn. We may
assume that wn belongs to A. Indeed, if wn is an endpoint of the arc In, there
is a point αn ∈ A which is in the Stolz angle with vertex wn and aperture π

2 .
Consequently, if α̃n is the closest point in ∂Tn with the same modulus as αn, then
�(αn, α̃n) ≤ C < 1, where C is independent of n, and now we can use the remark
after Lemma 5.

Let vn be the vertex of the tent Tn. Since {In} is a sequence of disjoint arcs, {vn}
is a Blaschke sequence. We denote by qn the integer part of (1 − |vn|)/(1 − |wn|)
and we consider Z to be the sequence of points in A that consists of qn repetitions
of each point wn. Arguing as before, it follows that Z is a Blaschke sequence, and
moreover there is C > 0 such that

(5.2) |wn − eit|2 ≤ C|vn − eit|2, for each n and eit ∈ T.

So, bearing in mind that A is a Blaschke set for D, (1.5) and (5.2), we have that

∞ >

∫

T

log

(
∑

z∈Z

1− |z|2
|eit − z|2

)

dt =

∫

T

log

(
∑

n

qn
1− |wn|2
|eit − wn|2

)

dt

≥
∫

T

log

(

C
∑

n

qn
1− |wn|2
1− |vn|2

1− |vn|2
|eit − vn|2

)

dt

≥
∫

T

log

(
∑

n

C
1− |vn|2
|eit − vn|2

)

dt

≥
∑

k

∫

Ik

log

(

C
1− |vk|2
|eit − vk|2

)

dt

≥
∑

k

|Ik| log
(

C

|Ik|

)

.

This finishes the proof. �

6. Other results

6.1. Other necessary angular conditions on Ds-zero sets. First we shall
prove the following result of its own interest.
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Lemma 6. Suppose that 0 < s < 1, B is a Blaschke product with ordered sequence
of zeros {zk}∞k=1 and f ∈ Ds. Then

||fB||2Ds

 ||f ||2Ds

+
∞∑

k=1

(1− |zk|2)
∫

D

|f(z)|2|Bk(z)|2
|1− zkz|2

dA(z)

(1− |z|2)1−s
,

where Bk(z) is the Blaschke product of the first k − 1 zeros.

Proof. Bearing in mind (2.2), the result follows from the identity (see [3, p. 191])

1− |B(z)|2
1− |z|2 =

∑

k

|Bk(z)|2
1− |zk|2
|1− zkz|2

, z ∈ D.

�

We also obtain different conditions from (1.4) (which can work for any Blaschke
sequence) on the angular distribution of a Blaschke sequence {zk} to be a Ds-zero
set, 0 < s < 1.

Proposition 1. Suppose that 0 < s < 1 and {zk} ⊂ D. If there exists r0 ∈ (0, 1)
such that

(6.1) M ({zk})
def
= inf

r0≤|z|<1

∑

k

(1− |zk|2)(1− |z|2)s
|1− zkz|2

> 0,

then {zk} is not a Ds-zero set.

Proof. Suppose that {zk} is a Ds-zero set and satisfies (6.1). Then, there exists
F ∈ Ds which vanishes uniquely on {zk}, so F = f ·B, where f ∈ Ds and B is the
Blaschke product with zeros {zk}. Thus, Lemma 6 and (6.1) imply that

∞ >
∑

k

(1− |zk|2)
∫

D

|f(z)|2|Bk(z)|2
|1− zkz|2

dA(z)

(1− |z|2)1−s

≥
∫

D

|f(z)|2|B(z)|2
(
∑

k

(1− |zk|2)(1− |z|2)s
|1− zkz|2

)
dA(z)

(1− |z|2)

≥ M ({zk})
∫

D

|F (z)|2 dA(z)

(1− |z|2) ;

consequently F ≡ 0. This finishes the proof. �

This result allows us to make constructions of Blaschke sequences which are not
Ds-zero sets.

Corollary 2. For 0 < s < 1, set

z
(s)
k,j

def
=

(
1− 2−

2
1+sk

)
exp

(
2πj

2k
i

)

, k = 0, 1, 2, . . . ,

j = 0, 1, . . . , 2k − 1.

The sequence {z(s)k,j} is not a Ds-zero set.

Proof. There is β = β(s) > 0 such that for each z ∈ D we can find a pair (k(z), j(z))
with 1− |z| 
 1− |zk(z),j(z)|, and

|1− zk(z),j(z)z|2 ≤ β(1− |z|2)1+s.
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Therefore

∞∑

k=0

2k−1∑

j=0

(1− |zk,j |2)(1− |z|2)s
|1− zk,jz|2

≥
(1− |zk(z),j(z)|2)(1− |z|2)s

|1− zk,jz|2
≥ Cβ−1,

so, by Proposition 2, {z(s)k,j} is not a Ds-zero set. �

6.2. Möbius invariant spaces generated by Ds. The space Qs, 0 ≤ s < ∞, is
the Möbius invariant space generated by Ds, that is, f ∈ Qs if

sup
a∈D

‖f ◦ ϕa − f(a)‖2Ds
< ∞.

It is known that Q1 coincides with BMOA. However, if 0 < s < 1, Qs is a
proper subspace of BMOA and has many interesting properties (see the detailed
monograph [42]).

As usual, for a space of analytic functions X, we shall writeM(X) for the algebra
of (pointwise) multipliers of X, that is,

M(X)
def
= {g ∈ H(D) : gf ∈ X for all f ∈ X}.

Theorem 7. Suppose that 0 < s ≤ 1. Then Ds, Qs, Qs ∩ H∞ and M(Ds) have
the same zero sets.

Proof. If s = 1, the result is well known because D1 = H2, M(H2) = H∞ and
Q1 = BMOA. If 0 < s < 1, by [26, Corollary 13] the zeros sets of Ds and M(Ds)
coincide, so the result follows from the chain of embeddings (see [4, Lemma 5.1])

M(Ds) ⊂ Qs ∩H∞ ⊂ Qs ⊂ Ds.

This finishes the proof. �
Since from different values of s ∈ (0, 1), the Ds-zero sets are not the same, we

obtain directly the following result.

Corollary 3. Suppose that 0 ≤ s < p < 1. Then there exists Z ⊂ D, which is a
Qp-zero set but not a Qs-zero set.

A stronger result, in the following sense, can be proved. A sequence {zn} is
interpolating for Qp ∩ H∞, 0 < p < 1, if for each bounded sequence {wk} of
complex numbers, there exists f ∈ Qp ∩ H∞ such that f(zk) = wk for all k. A
characterization of these sequences in terms of p-Carleson measures is given in [30].
It is clear that each interpolating sequence for Qp ∩H∞ is a Dp-zero set.

Theorem 8. Suppose that 0 < s < p < 1. Then, there exists Z = {zn}∞n=0 ⊂ D

which is an interpolating sequence for Qp ∩H∞ and such that it is not a Ds-zero
set.

Proof. Set

zn =

(

1− 1

n1/s

)

eiθn , n = 2, 3, . . . ,

where

θn =
n−1∑

k=1

1

k
+

1

2n
, n = 2, 3, . . . .

The proof of [29, Theorem 5.10 ] gives that {zn} is not a Ds-zero set. Moreover,
borrowing the argument of the proof of [32, Theorem 2], we have that {zn} is
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separated and μzn,p =
∑

n(1− |zn|)pδzn is a p-Carleson measure. So [30, Theorem
1.3] gives that {zn} is an interpolating sequence for Qp ∩ H∞. This finishes the
proof. �

Finally, we note that in a recent paper [31], the algebra of (pointwise) multipliers
of Qs, 0 < s < 1, has been characterized in terms of α-logarithmic s-Carleson
measures. Using Corollary 3 as a main tool we shall prove the following result.

Corollary 4. Suppose that 0 < s < p < 1. Then

M(Qp, Qs)
def
= {g ∈ H(D) : gf ∈ Qs for all f ∈ Qp} = {0} .

Proof. Suppose that M(Qp, Qs) �= {0} . Let g ∈ M(Qp, Qs), g �= 0 and denote by
W its zero set. By Corollary 3 there exists f ∈ Qp, f �= 0, whose sequence of
zeros Z is not a Qs-zero set. It is clear that Z ∪ W is the zero set of fg ∈ Qs,
and since g ∈ Qs, W satisfies the Blaschke condition. Now, taking B to be the
Blaschke product with zeros W and bearing in mind that Qs has the f -property
(see Corollary 1 of [14] or Corollary 5.4.1 of [42]), we obtain that fg

B ∈ Qs, whose
zero set is Z. This finishes the proof. �

7. Further remarks

We would like to emphasize that conditions (ii) and (iii) of Theorem 1 are
equivalent when {zn} is a finite union of separated Blaschke sequences. So, it seems
natural to ask whether or not for finite unions of separated Blaschke sequences,
condition (ii) implies that {zn} is a Ds-zero set. Although we are not able to
answer this question, if the function g has some additional regularity properties,
one can prove that condition (ii) implies that {zn} is a Ds-zero set, as the following
result shows.

Proposition 2. Let {zn} ⊂ D be a Blaschke sequence, 0 < s < 1 and α > 1−s
2 . If

there exists a function g ∈ Λα such that
∑

n

|g(zn)|2 (1− |zn|2)s < ∞,

then {zn} is a Ds-zero set.

Proof. Let B be the Blaschke product with zeros {zn}. We shall prove that gB ∈
Ds. Using the fact that g ∈ Λα, and [43, Lemma 4.2.2], one has

∑

n

(1− |zn|2)
∫

D

|g(z)− g(zn)|2
(1− |z|2)s−1

|1− z̄nz|2
dA(z)

≤ C
∑

n

(1− |zn|2)
∫

D

(1− |z|2)s−1

|1− z̄nz|2−2α
dA(z)

≤ C
∑

n

(1− |zn|2) < ∞.

(7.1)

Also, by our assumption and [43, Lemma 4.2.2],

∑

n

(1− |zn|2)|g(zn)|2
∫

D

(1− |z|2)s−1

|1− z̄nz|2
dA(z)

≤ C
∑

n

|g(zn)|2 (1− |zn|2)s < ∞.
(7.2)
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Now, since Λα ⊂ Ds for α > 1−s
2 , it follows easily from (7.1) and (7.2) that

‖gB‖2Ds
≤ C‖g‖2Ds

+ C

∫

D

|(gB′)(z)|2 (1− |z|2)s dA(z) < ∞.

�
In view of all this, we state the following related problem.

Problem. For 0 < s < 1, describe those separated Blaschke sequences {zn} ⊂ D

such that there is g ∈ Ds, g �= 0, with
∑

n

|g(zn)|2 (1− |zn|2)s < ∞.

Another interesting problem is to find sufficient conditions in order for a sequence
{zn} to be a zero set for the analytic Besov space Bp, 1 < p < ∞ (see [43, Chapter
5]). Since the point evaluations are bounded linear functionals in Bp, there are
reproducing kernels kz ∈ Bp′ , where p′ is the conjugate exponent of p. Also, it is
well known that

‖kz‖−p
Bp′



(

log
1

1− |z|

)−(p−1)

.

So, bearing in mind (1.1), it seems natural to ask the following.

Question. Let 1 < p < ∞, and let {zn} ⊂ D such that

∑

n

(

log
1

1− |zn|2

)−(p−1)

< ∞.

Is the sequence {zn} a Bp-zero set?
In order to answer that question, it seems that a more constructive proof of the

case p = 2 ( the Shapiro-Shields result [39]) must be given, not relying so heavily
on Hilbert space techniques.
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[6] B. Böe, A norm on the holomorphic Besov spaces, Proc. Amer. Math. Soc. 131 (2002),

235–241. MR1929043 (2003g:46024)
[7] K. Bogdan,On the zeros of functions with finite Dirichlet integral, Kodai Math. J. 19 (1996),

7–16. MR1374458 (96k:30005)
[8] L. Carleson, On a class of meromorphic functions and its associated exceptional sets, Upp-

sala, (1950). MR0033354 (11:427c)
[9] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952),

325–345. MR0050011 (14:261a)
[10] L. Carleson, On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952),

289–295. MR0051298 (14:458e)
[11] L. Carleson, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190–196.

MR0112958 (22:3803)

Licensed to University de Barcelona. Prepared on Wed Feb  6 05:31:17 EST 2013 for download from IP 161.116.100.92.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1411441
http://www.ams.org/mathscinet-getitem?mr=1411441
http://www.ams.org/mathscinet-getitem?mr=1882259
http://www.ams.org/mathscinet-getitem?mr=1882259
http://www.ams.org/mathscinet-getitem?mr=0264385
http://www.ams.org/mathscinet-getitem?mr=0264385
http://www.ams.org/mathscinet-getitem?mr=2541368
http://www.ams.org/mathscinet-getitem?mr=2541368
http://www.ams.org/mathscinet-getitem?mr=0001370
http://www.ams.org/mathscinet-getitem?mr=0001370
http://www.ams.org/mathscinet-getitem?mr=1929043
http://www.ams.org/mathscinet-getitem?mr=1929043
http://www.ams.org/mathscinet-getitem?mr=1374458
http://www.ams.org/mathscinet-getitem?mr=1374458
http://www.ams.org/mathscinet-getitem?mr=0033354
http://www.ams.org/mathscinet-getitem?mr=0033354
http://www.ams.org/mathscinet-getitem?mr=0050011
http://www.ams.org/mathscinet-getitem?mr=0050011
http://www.ams.org/mathscinet-getitem?mr=0051298
http://www.ams.org/mathscinet-getitem?mr=0051298
http://www.ams.org/mathscinet-getitem?mr=0112958
http://www.ams.org/mathscinet-getitem?mr=0112958


ZERO SETS OF DIRICHLET SPACES 2001

[12] J.G. Caughran, Two results concerning the zeros of functions with finite Dirichlet integral,
Canad. J. Math. 21 (1969), 312–316. MR0236396 (38:4692)

[13] J.G. Caughran, Zeros of analytic functions with infinitely differentiable boundary values,
Proc. Amer. Math. Soc. 24 (1970), 700–704. MR0252649 (40:5868)

[14] K.M. Dyakonov and D. Girela, On Qp spaces and pseudoanalytic extension, Ann. Acad. Sci.
Fenn. Ser. A Math. 25 (2000), 477-486. MR1762431 (2001e:30056)

[15] K.M. Dyakonov, Smooth functions in the range of a Hankel operator, Indiana Univ. Math.

J. 43 (1994), 805-838. MR1305948 (96f:47047)
[16] K.M. Dyakonov, Factorization of smooth analytic functions via Hilbert-Schmidt operators,

St. Petersburg Math. 8 (1997), No. 4, 543-569. MR1418253 (97m:46038)
[17] K.M. Dyakonov, Besov spaces and outer functions, Michigan Math. J. 45 (1998), 143-157.

MR1617421 (99e:46033)
[18] P.L. Duren, Theory of Hp Spaces, Academic Press: New York-London, 1970. Reprint: Dover,

Mineola, New York, 2000. MR0268655 (42:3552)
[19] P.L. Duren and A.P. Schuster, Bergman Spaces. Math. Surveys and Monographs, Vol. 100,

American Mathematical Society: Providence, Rhode Island, 2004. MR2033762 (2005c:30053)
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[31] J. Pau and J.A. Peláez, Multipliers of Möbius invariant Qs spaces, Math. Z., 261 n. 3 (2009),
545–555. MR2471087
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