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Abstract: In this project the planar, restricted and elliptic three body problem has been analit-
ically studied in order to program an orbit simulator. Then, the simulator has been used to see the
accuracy and utility of the problem and its simulator in some well known physical systems.

I. INTRODUCTION

The aim of this project is to use an orbit simulator for
the restricted three body problem in order to study some
physical systems which can be approximated by it.

The restricted three body problem (R3BP) consists in
studying the motion of a body with very low mass under
the influence of two other bodies with very big masses rel-
ative to the first one. In such a frame of work, the motion
of the two massive bodies (known as the primaries, or the
primary and the secondary) is Keplerian. When the or-
bits of the primaries are circular (CR3BP) there exists a
first integral called the Jacobi constant, but as soon as we
add a positive eccentricity and the orbits become elliptic
(ER3BP), we do not have it anymore. Nevertheless, the
simulator used in this project computes the orbit of the
third body assuming the primaries move in elliptic orbits
with an eccentricity e, which can also be 0 (CR3BP).

That being said, we can find several examples of pri-
maries of the ER3BP in our Solar System (SS). The most
common one is the Sun-Jupiter system, which can be
thought as an approximation of the whole SS because
they are the two most massive bodies. In this system
we usually take as the third body a comet or a mete-
orite whose orbit needs to be determined. Two other
interesting systems for us due to proximity are the Sun-
Earth and the Earth-Moon systems. In these ones we
take spaceships, spacecrafts, satellites or even space de-
bris as possible third bodies. A particular example is the
Sun-Earth-Moon system, where the Sun and the Earth
stand for the primaries and the Moon is the third body.
Other examples of primaries out of the SS could be bi-
nary star systems among others, although in this project
we are going to focus on the three former examples.

II. EQUATIONS OF THE ER3BP

A. Sidereal reference frame

Let P1 and P2 be the primaries, which have masses
m1 and m2 and move around their common mass centre
describing elliptic orbits. Before writing the equations of
the motion of the third body, we normalize the units in
order to make G(m1 + m2) = 1 and a = 1, where G is

the gravitational constant and a is the semi-major axis of
the ellipse described by the orbit of one primary orbiting
around the other, with this second one at the focus of
such ellipse. Thus, the distance between the primaries is

r =
1− e2

1 + e cos f
=

h2

1 + e cos f
,

being f the true anomaly1 and h the angular momentum.
With these dimensionless units, we define the mass pa-

rameter

µ =
m2

m1 +m2

and the dimensionless masses of the primaries

µ1 = Gm1 = 1− µ, µ2 = Gm2 = µ

We can assume, without loss of generality that the pri-
maries satisfy m1 ≥ m2, so we have 0 < µ ≤ 0.5.

Let us consider now an inertial reference frame (RF)
(O, X, Y, Z), where O is the mass centre of the primaries,
(X,Y ) is their orbital plane, and Z is the axis perpen-
dicular to this plane. We call this RF sidereal and the
equations of the motion of the third body are

Ẍ = −µ1(X −X1)

r31
− µ2(X −X2)

r32
,

Ÿ = −µ1(Y − Y1)

r31
− µ2(Y − Y2)

r32
,

Z̈ = −µ1(Z − Z1)

r31
− µ2(Z − Z2)

r32
,

where

r2i = (X −Xi)
2 + (Y − Yi)2 + (Z − Zi)2

and

(X1, Y1, Z1) = (µ2r cos f, µ2r sin f, 0),

(X2, Y2, Z2) = (−µ1r cos f,−µ1r sin f, 0)

1 The true anomaly is the angle sweeped counting from the angle
of pericenter.
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are the coordinates of the primaries. We assume that the
motion of the third body also takes place in the orbital
plane (Z = 0), so the third equation, and actually the
third component is no longer needed.

B. Synodical reference frame

We move now to the synodical RF (O, x, y), which is
obtained by computing the following coordinate changes.

1. First we fix the primaries to the same axis by mak-
ing a rotation of angle f at each time.

2. Then we fix the distance between the primaries by
dividing the coordinates by r. Thus, the primaries
get fixed in the positions

(x1, y1) = (µ, 0),

(x2, yy) = (µ− 1, 0).

3. Finally, we no longer consider the time as the in-
dependent variable, but the true anomaly, by using
the change of variables

dt =
r2

h
df.

In this RF, the equations of the motion are given by

x′′ − 2y′ =

x− (1− µ)(x− x1)

R3
1

− µ(x− x2)

R3
2

1 + e cos f
,

y′′ + 2x′ =

y − (1− µ)y

R3
1

− µy

R3
2

1 + e cos f
,

where the symbol ′ means derivative with respect to f
and Ri = rri. These equations correspond to the follow-
ing hamiltonian

H(x, y, px, py) =
1

2
((px + y)2 + (py − x)2)

− 1

1 + e cos f

(
1

2
(x2 + y2) +

1− µ
R1

+
µ

R2

)

III. THE SIMULATOR

The simulator has been programmed with the pro-
gramming language C and using OpenGL and FLTK li-
braries. It consists of a window where the orbits are
displayed in the central part.

In the right side of the window we can find several
buttons that let us set the mass parameter µ, the eccen-
tricity e, as well as the initial conditions of the problem,

which are the initial true anomaly and angle of pericen-
tre of the primaries, as well as the initial position and
velocity of the third body. We can also find the buttons
S-J, S-E and E-M, which automatically set the eccentric-
ity and mass parameter of the Sun-Jupiter, Sun-Earth
and Earth-Moon systems, respectively.

Finally, in the left side of the window we can find a
set of controls of several physical magnitudes, that are
refreshed as the motion takes place.

The computation of the orbit is made in the synodi-
cal RF, although it is displayed in the sidereal one. This
means that the simulator integrates the motion equations
in the synodical RF, with the regularized hamiltonian
(see VI A) if the third body gets close to one of the pri-
maries. Then it undoes the coordinate changes in order
to display the orbit in the sidereal RF, which is physically
easier to understand.

IV. SIMULATION RESULTS

In this section we are going to show some results ob-
tained with the simulator, and possible utilities of them.
Let us first introduce the three physical systems we have
used: the Earth-Moon, Sun-Jupiter and Sun-Earth sys-
tems. The physical parameters of these systems are sum-
marized in the TABLE IV

System m1 m2 e T

P1-P2 (×1024kg) (×1022kg) (adim)

E-M 5, 9742 7, 3477 0, 0549 27, 32158d

S-J 1.9891 × 106 1, 8987 × 105 0, 04839266 11, 862615y

S-E 1.9891 × 106 597, 42 0, 01671022 1y

TABLE I: Physical parametres of the Earth-Moon, Sun-
Jupiter and Sun-Earth systems.

From the period T we can compute the semi-major
axis a, using Kepler’s third law, which states

T 2 =
4π2

G(m1 +m2)
a3.

Thus, we have

aE−M = 3, 847× 105km , aS−J = 7, 779× 108km,

aS−E = 1, 495× 108km.

As we mentioned former, we are using a system of units
with dimensionless times and longitudes, in which we
have taken a = 1 and G(m1 + m2) = 1. This implies
T = 2π, so, in order to get back the physical units, we
have to multiply the longitudes by a, and the times by
T

2π
.

That being said, we can start now with some simula-
tions.
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A. Simulations in the E-M system

One possible utility of the simulator, when considering
the Earth and the Moon as the primaries, is to compute
the orbits of the spatial debris that lies between them,
and see how the gravitational field caused by the Moon
can affect these orbits.

With this in mind, we make a scattering of initial po-
sitions within the orbit of the Moon, and set an initial
velocity such that the orbit is as circular as possible when
considering the Moon has mass 0, and then we recompute
the orbit setting the correct value of the mass, to see the
deviation of the orbit.

In the figures FIG. 1 and FIG. 2 we can see an example
of the orbit with and without a neglect of the Moon mass.

FIG. 1: Orbit of the third body neglecting the effect of the
Moon.

FIG. 2: Orbit of the third body considering the effect of the
Moon.

Acting as explained, we obtain that for initial positions
such that the distance with the mass center is smaller
than 0.685 the orbit goes from being a circumference with
radius R to being confined in a circular crown of radius
R±δR; and for bigger initial distances the orbit becomes
very perturbed, spinning around the Moon occasionally,
and sometimes even being expulsed from the system.

In physical units, this means that low mass particles
orbiting around the Earth, between the Earth and the

Moon, at distances greater than 2.635×105 km, can have
unpredictable orbits due to the gravitational action of
the Moon. Those particles orbiting at smaller distances
will keep on orbiting with a precession caused by the
gravitational action of the Moon.

B. Simulations in the S-J system

The main application of the ER3BP taking the Sun
and Jupiter as the primaries could be to make a first ap-
proximation of the SS itself, and computing, for example,
the orbit of a comet that goes through it.

The aim of this kind of simulations is to predict
whether the comet is going to remain in the SS or not.

Although Jupiter and the Sun are the two heavier bod-
ies in the SS, this approximation is obviously not a very
accurate one, as the SS is composed by many more bod-
ies, and this simulation does not even take in account the
possible collisions with other planets, satellites or even
asteroids.

In order to do these simulations, we set the initial con-
ditions relatively far from the primaries. Then, we see
in which cases the orbit looks like an hyperbola or a
parabola, and in which cases it has some kind of pertur-
bation in the region of the primaries, or is even captured
by one of them. Acting as we made with the E-M simu-
lations, we use initial velocities such that when the mass
of Jupiter is neglected the orbit is indeed a parabola or
an hyperbola.

Doing these computations, we oserve that the orbits
are significantly perturbed only if they get very close to
Jupiter.

For initial positions at a distance from the mass center
greater than aS−J , the chances of getting close to Jupiter
are very small. However, for initial positions with dis-
tances than aS−J , the chances are very high.

C. Simulations in the S-E system

The mass of the Earth is so small compared with the
mass of the Sun that it is almost negligible, so the orbits
computed in the Sun-Earth system are almost Keplerian
orbits, unless the third body is very close to the Earth.

Thus, a possible application of the simulator for the
Sun-Earth system is to calculate the radius of the sphere
of influence of the Earth.

For that, we compute the orbit of the third body with
initial positions closer and closer to the Earth until the
resulting orbit at least has a visible precession.

We have obtained that the gravitational effect of the
Earth can only precessionate a little bit the orbits of the
third body when it is at a distance aS−E from the Sun.
This means it is almost impossible to compute an orbit
like the one of the Moon with this simulator.
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D. Simulations in binary star systems

Although the project is supposed to make simulations
in the SS, we found it interesting to show that the simu-
lator is not restricted to that.

When taking values of the mass parameter near 0.5,
the simulator suits very well in computing the orbits of
planets belonging to a binary star system. With these
values of µ we can find very interesting orbits.

FIG. 3, FIG. 4 and FIG. 5 are some examples of orbits
obtained with µ = 0.5

FIG. 3: In this picture the third body started orbiting around
one primary, then the other one captured it and after that it
started circling both of them. A few revolutions later it was
expelled of the system.

FIG. 4: In this picture we can observe a quite random orbit.

V. CONCLUSIONS

Let us start saying that the study of the ER3BP via
the simulator has been a qualitative study. In order to
improve the obtained results, a numerical study could be
done. One way to make an exhaustive numerical study
is to modify the simulator so that it automatically com-
putes several magnitudes, such as the mean distance with
the mass center and its standard deviation.

FIG. 5: In this picture the third body was getting captured
by a different primary every few revolutions until it finally got
expelled of the system.

We could also modify the simulator to directly intro-
duce the parameters in the physical units. That means
introducing the masses of the primaries in kg and the
value of the semi-major axis in m or km. Thus, the sim-
ulator could also compute the physical magnitudes in the
right units.

Referring to the simulations we have made, we can con-
clude that the ER3BP is not a very good approximation
for the Sun-Earth system, as the gravitational field due
to the Earth is almost neglected even for very small dis-
tances with it. However, it is very well known that there
are several bodies orbiting around the Earth, such as the
Moon, artificial satellites and spatial debris.

We could try to make a better approximation for the
SS, by improving the Sun-Jupiter system. We are inter-
ested in finding a way to consider the gravitational effect
of all the planets and still be working with the R3BP.
These could be done considering the Sun as the primary
and Jupiter as the secondary, unless the third body got
close to another planet. In that case we would then con-
sider the mentioned planet as the secondary.

An orbits simulator that computed this way could be
done modifying our simulator, although a lot of improve-
ments and global controls should be done. For example,
the dimensionless units and the orbital plane would vary
every time we changed the secondary, among other pa-
rameters.

It would be interesting to improve the simulator this
way, although we have already seen that the ER3BP does
not approximate well for the Sun-Earth system, so we
would probably have the same problem with the Sun-
Mercury, Sun-Venus and Sun-Mars systems.

VI. APPENDIX

A. Levi-Civita regularization

In order to avoid the singularities of the hamiltonian,
due to collisions with the primaries, and the hugeness

Treball de Fi de Grau 4 Barcelona, January 2016



Restricted three body problems in the Solar System: simulations Sandra Redó Riveiro

in the errors it provokes in the computation, we use the
Levi-Civita regularization.

The Levi-Civita regularization deals with the collision
with each primary separately. Let Hk(xk, yk, pxk

, pyk) be
the synodical hamiltonian with a translation that brings
the origin to the primary Pk.

To regularize Hk, we must first make a change of co-
ordinates such that

xk + iyk = (ξk + iηk)2.

Then, we also change the time (which in this case has
already been changed to the true anomaly) to a regular-
izing time τ as follows

df

dτ
= 4(ξ2k + η2k).

The regularizing time makes the motion happen
slowlier. After that, for each level Hk of the hamilto-
nian, we define an extended hamiltonian Hk in this way

Hk =
df

dτ
(Hk −Hk).

In this extended hamiltonian, f is treated as the con-
jugated momentum of the variable Hk.From the regular-
ized hamiltonians, we obtain the regularized equations of
motion.

For the collisions with the primary, these equations are

ξ∗1 = pξ1 + 2(ξ21 + η21 − µ)η1,

η∗1 = pη1 − 2(ξ21 + η21 + µ)ξ1,

p∗ξ1 = 4ξ1
(
2H1 + ξ1pη1 − η1pξ1

)
+ 2(ξ21 + η21 + µ)pη1

+
µ

1 + e cos f

8ξ1(1 + ξ21 − 3η21)

((ξ21 + η21)2 + 2(ξ21 − η21) + 1)
3
2

− 4ξ1e cos f

1 + e cos f
(3(ξ21 + η21)2 + µ2 + 4µξ21),

p∗η1 = 4η1
(
2H1 + ξ1pη1 − η1pξ1

)
− 2(ξ21 + η21 − µ)pξ1

+
µ

1 + e cos f

8η1(1− η21 + 3ξ21)

((ξ21 + η21)2 + 2(ξ21 − η21) + 1)
3
2

− 4η1e cos f

1 + e cos f
(3(ξ21 + η21)2 + µ2 − 4µη21)

f∗ = 4(ξ21 + η21),

(1 + e cos f)2

2e sin f
H1
∗

= −ξ21 + η21)3 − µ2(ξ21 + η21)

− 2µ(ξ41 − η41)− 2(1− µ)

− µ 2(ξ21 + η21)√
(ξ21 + η21)2 − 2(ξ21 − η21) + 1

;

and for the secondary,

ξ∗2 = pξ2 + 2(ξ22 + η22 + (1− µ))η2,

η∗2 = pη2 − 2(ξ22 + η22 − (1− µ))ξ2,

p∗ξ2 = 4ξ2
(
2H2 + ξ2pη2 − η2pξ2

)
+ 2(ξ22 + η22 + 1− µ)pη2

+
1− µ

1 + e cos f

8ξ2(1 + ξ22 + 3η22)

((ξ22 + η22)2 − 2(ξ22 − η22) + 1)
3
2

− 4ξ2e cos f

1 + e cos f
(3(ξ22 + η22)2 + (1− µ)2 − 4(1− µ)ξ22),

p∗η2 = 4η2
(
2H2 + ξ2pη2 − η2pξ2

)
− 2(ξ22 + η22 − (1− µ))pξ2

+
1− µ

1 + e cos f

8η2(1 + η22 − 3ξ22)

((ξ22 + η22)2 − 2(ξ22 − η22) + 1)
3
2

− 4η2e cos f

1 + e cos f
(3(ξ22 + η22)2 + (1− µ)2 + 4(1− µ)η22),

f∗ = 4(ξ22 + η22),

(1 + e cos f)2

2e sin f
H2
∗

= −(ξ22 + η22)3 − (1− µ)2(ξ22 + η22)

+ 2(1− µ)(ξ42 − η42)− 2µ

− (1− µ)
2(ξ22 + η22)√

(ξ22 + η22)2 − 2(ξ22 − η22) + 1
.

In the former equations, the symbol ∗ means derivative
with respect to τ .
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