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Abstract: Much time and effort is being put to shed some light into the mysteries of the brain,
and yet so much of it still remains unknown. This is why understanding the human brain and

mind is considered one of the grand challenges of the XXI Century [1].

By implementing the

recently developed information measure called Transfer Entropy, the strength and directionality of
connections among neurons can be quantified. By the means of this mathematical tool, applied to
trains of neuronal activity data measured in cultured neuronal networks, the structure of a neuronal
network of 1,412 neurons has been analyzed and quantified.

I. INTRODUCTION
A. Prior Discussion

The inherent vastness of the brain is what makes it the
most powerful computer in existence, and therefore com-
prehending it in its totality is an extensive challenge. If
all neurons and their corresponding connections were to
be taken into account in order to study possible relation-
ships at a neuronal level, the amount of information con-
tained would be undoubtedly too large to handle. Hence,
rather than using a direct and exhaustive approach to
understand the subtleties of connections among neurons,
more feasible alternatives have been explored.

As stated above, a study of the brain structure would
practically be too complex to be carried out. But the
structure—function relationship of the brain cannot be
forgotten [2]. It would be possible to learn about neu-
ronal connectivity by analyzing the dynamic function of
the brain and extrapolating the results to its structural
behavior. Using neuronal cultures, and hence dealing
with a simplified system with a highly reduced num-
ber of neurons, a simpler model could be constructed by
the means of numerical simulations. The analysis of the
topological properties of the mapped network would yield
further insight into the dynamic functional properties of
the brain.

A similar approach was used by a research group from
Stanford University. By studying the spontaneous ac-
tivity of the blood oxygen level-dependent (BOLD) sig-
nal, a network of functional connectivity was then recon-
structed [3]. This network was then used to predict the
structural connectivity of several brain regions. Being
able to determine a general relationship between func-
tional and structural network at a brain level, the next
step would be to learn whether this same result could be
extrapolated at a more precise neuron—to—neuron level.

B. Inference of Spiking Events — Peeling Algorithm

Alongside the Stanford University study, in this paper
the spontaneous activity of 1,412 neurons within a neu-

ronal culture will be quantified from cellular fluorescence
signals retrieved from fluorescence imaging experiments
at Dr. Soriano’s lab. The train of neuronal firings will
then be inferred using the so called peeling algorithm de-
veloped by the Brain Research Institute at the University
of Zurich [4], which will then also construct a representa-
tion of the electrical signal of the neuron. This analysis
pipeline is shown in Figure 1.
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FIG. 1: From calcium to spike trains. Black trace: spon-
taneous activity recorded in a neuron using fluorescence imag-
ing. Blue trace: reconstructed signal using the Peeling Algo-

rithm with A; = 1.5. Red marks: reconstructed firing events
(spikes). %DFF indicates relative change in fluorescence.

The peeling algorithm seeks for a firing pattern (spike)
in the signal characterized by a sharp rise in fluorescence
(of amplitude at least A;) followed by a small decay. Un-
fortunately, experimental data is noisy and therefore ad-
justing well the threshold amplitude A; is crucial. The
characteristic amplitude of a spike is not known exper-
imentally, and therefore it has to be guessed. Low A;
values lead to several false spike detections, and large A4
lead to poorly represented firing trains. Hence, A; estab-
lishes the threshold from which any signal with greater
or equal amplitude will be considered to be a spike rather
than simple noise. Biologically, this spike will be under-
stood as the neuron sending an electrical current. It is
important to pay close attention to these spikes, because
the relationship between an occurring spike and the ac-
tivation of new spikes in other neurons due to this initial
one will try to be established. Given the importance of
Aj, this variable will be modified throughout this paper
in order to study the sensitivity of the analysis tools to
the inferred connection among neurons.
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C. Mathematical Framework

In a modest attempt to get one step closer to under-
standing the behavior of neurons by learning how they es-
tablish connections among themselves, some mathemati-
cal tools had to be introduced in order to make the study
of these connections more thorough and extensive. This
is the reason why a new information measure has been
recently coined, Transfer Entropy [7]. Before looking at
its formal definition, let us analyze where it derives from.

Let z; be a state that will occupy the process X; with
the probability distribution p(z;) and the uncertainty
logp(m 3 and let A be a countable set. The Shannon

entropy is then defined as:

H(X;) = Z p(xi)log

;€A

1
— (1)
p(xi)

Let now ¢(x;) be an a priori assumption of the prob-
ability distribution of the process X;. The Kullback en-
tropy, which measures the error in assuming the proba-
bility distribution ¢(x;) over p(z;) is defined as follows:

p(ﬂfi)
q(wi)

Let us now take two processes X; and Y; and as-
sume a priori that they are independent, meaning that
q(zs,y;) = p(x;)p(y;). This particular case of Kullback
entropy is known as Mutual Information.
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Taking X; and Y; to represent the behavior of two
neurons, mutual information would be a very useful tool
in predicting the probability of two neurons to be con-
nected, since it quantifies the error made in assuming
that they are independent. Nonetheless, if mutual infor-
mation were modified to be an assymetric formula, then
not only would the strength but also the directionality of
the connection be quantified. Out of this necessity, an-
other particular case of Kullback entropy was taken into
consideration.

Let us take p(x;11 \xz(

state x;11 of X; depends on the k past states of Xi( ) but
not on the [ past states of Yj(l), the a priori assumption

,yj ) and by supposing that the
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). Thus, Transfer Entropy is formally
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This latter equation will be extremely useful when de-
termining which two neurons are more likely to be con-
nected. Due to the assymetry of Transfer Entropy, the
directionality of the connections can be quantified. This
quality allows to study what neuron is more likely to ex-
cite another one. Furthermore, Transfer Entropy returns
the error in assuming that the behavior of neuron X; does
not depend at all on the behavior of neuron Y;. And this
makes a new and more complete analysis of neuronal cul-
tures possible.

D. Application of Transfer Entropy

In the prior Subsection B an overview was given of
how the peeling algorithm works and how it ultimately
provided, depending on the value of Ay, a train of spikes
structured in time. Using these spikes, the behavior of
each neuron can be translated into a binary signal, where
1 designates the existence of a spike and 0 the lack of it.
Thanks to the numerical translation of these signals and
applying Eq. (4), the likelihood of neuron—to—neuron con-
nectivity was calculated, which in practice is computed
as the Transfer Entropy between all pairs of neurons.

By the means of the values of Transfer Entropy, and
due to the newly added directionality that it provides, a
directed graph can be constructed, which will represent
the functional network of the neurons. From it, and by
studying the topological properties of the mapped net-
work, connections with the most relevant traits are most
likely the structural, i.e. real neuron—to—neuron synaptic
links, hence procuring details about the network circuitry
that is not possible to easily derive by other means [5].
We remark that, in the studied neuronal cultures, one
obtains the fluorescence trace for all neurons as well as
their spatial location in the dish. Our goal is to derive
detailed network functional maps.

II. PROGRAMMING TOOLS

The analysis of the functional network of the culture
will be carried out with numerical algorithms. In the
following section we explain the procedures in program-
ming and how the obtained results were then used to
create graphs representing the neuronal net.

A. Programming with MATLAB ®

All the developed programs necessary for this paper
were written in MATLAB.

The first step was to write a program for the calcula-
tion of Transfer Entropy. Looking at Eq. (4), it is clear to
see that the value of this measure will only be null if the
quocient inside the logarithm is equal to one, but that
will seldom happen. Thus, Transfer Entropy will be zero
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only in isolated cases. As a result, if working with m neu-
rons, saying that there will be around m(m — 1) Transfer
Entropy values, which translate into the number of con-
nections, is a reasonable hypothesis. Just working with
this culture of 1,412 neurons, which cannot even be con-
sidered to be a minute sample of the brain, the number
of connections rockets to 1,992,332. Since it is virtually
impossible to extract any information when working with
so much data, certain techniques had to be applied in or-
der to decrease the number of connections and consider
only the most relevant ones.

It is important to bear in mind that the value of Trans-
fer Entropy on its own does not provide a direct value
of the connection strength between neurons, unless it is
compared to a reference. This is why after having calcu-
lated all the corresponding Transfer Entropy values a null
model was implemented, where the binary signal of a sin-
gle neuron was randomized. In this process, the number
of spikes remained unmodified but their position within
the signal was randomly assigned. With this new signal,
the Transfer Entropy between this one neuron and the
remaining ones was recalculated. This null model was
repeated to consider a total of 100 surrogates, meaning
that this same mechanism was repeated 100 times for
each neuron. In the end, from all the 100 values cal-
culated between the neuron z (whose binary signal was
randomized) and neuron y, the value at the 90 percentile
was chosen as the limit value. Finally, this value would
be compared with the initial transfer entropy values prior
to any randomizations, and those under the limit value
would be set to zero while the rest would remain unal-
tered.

With this first cleansing, the less significant values of
Transfer Entropy are eliminated. In other words, we take
only “winning scores”, i.e. those that are far from ap-
pearing by change. In a second screening stage, only the
90 percentile of this remaining Transfer Entropy values
will be chosen. Only those above this value will survive
this second and last cleaning. Therefore, in the end, only
the upper 10% of the remaining Transfer Entropy values
will be taken as “most likely good connections”.

Having written all the necessary programs that will
not only calculate but also clean the Transfer Entropy
values, the last step was to use a program to translate
these values for a graphing program to read. This final
program was kindly facilitated by Dr. Javier G. Orlandi,
postdoc at Dr. Soriano’s group (Dept. ECM, Fisica).

B. Graphing with Gephi ®

The final useful values are now ready to be applied
in the graphing program Gephi. In the final graphical
display, each node will represent a neuron and each edge
will be weighted with its corresponding Transfer Entropy
value. At first, a graph with all the 1,412 culture neu-
rons was attempted. Even though the number of edges
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had already decreased, it was still visually impossible to
extract any information from the resulting mapped net-
work. That it the reason why it was decided to only
represent 120 random neurons. These randomly chosen
neurons will be the same for all the graphs throughout
this paper. Furthermore, since the neurons’ positions
were originally pinpointed in the culture, their coordi-
nates were added into the program and in the final graph-
ical representation each node (neuron) is placed equiva-
lent to its original location within the culture.

The final graphical representation will have certain fea-
tures worth mentioning. For starters, each neuron will be
represented by a node whose size will be directly propor-
tional to its degree k, understood as the sum of incoming
and outgoing connections. The higher the degree, the
bigger the size of the node. In addition, since graphs are
directed —as a result of the directionality provided by
Transfer Entropy— there will be arrows present in the
graph that will depict in what direction the connection
between two neurons is taking place. Moreover, both the
arrows themselves and the width of the edges will vary in
size, since they both will be weighted with the Transfer
Entropy values. So the higher the value, the stronger the
connection and also the bigger the arrows and the thicker
the edges will be. Furthermore, nodes will be grouped by
modularity classes, each of which will be visually repre-
sented by a particular color. Conceptually, a module is a
group of neurons that connect much more among them-
selves than with any other neuron outside the module.

III. RESULTS AND DISCUSSION

As explained in the prior section, only 120 random neu-
rons will be displayed. Since the position of these within
the culture is known, their relative positions will be dis-
played in the graph in order to study whether the spatial
distribution of the neurons has an impact on their con-
nections. In addition, only the upper 10% of the Transfer
Entropy values will be incorporated in the graph, i.e. the
strongest 10% of the connections.

The spontaneous activity of the neurons within the cul-
ture was measured using a fluorescence imagining tech-
nique. The measures of these signals were taken along
600 seconds at a typical speed of 50 frames/s. This means
that a single trace has about 3 x 10* points, and has to be
down-sampled for practical analysis. To stress the im-
portance of down—sampling, we note that in ambitious
recordings in Dr. Soriano’s Lab, data is acquired along 1
hour at 100 frames/s.

Hence, when expressing the binary signal train of the
neurons, these 600 seconds have to be broken down into
temporal bins of size T'. If in the time interval described
by a single bin one or more spikes take place, the rela-
tive position of this bin in the binary signal will acquire
the value 1. Otherwise, its numerical value will be 0.
On the other hand, the introduced threshold—amplitude
A, establishes the threshold from which any signal with
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greater or equal amplitude will be considered to be a
spike rather than noise.

These two variables play a highly significant role in
the final number of connection among neurons, as can
be appreciated in Table 1. This is why in the next two
subsections a more thorough study of these parameters
will be carried out.

At (% DFF)
15 2 25 3
" 15 1292 1035 759 603
6 151 503 589 433

TABLE I: Number of neuronal connections for the 10% Trans-
fer Entropy scores, for 120 randomly chosen neurons, and for
different values (A1, T).

A. DModifying A;, the threshold-amplitude

In the following, the results portrayed in Figure 2 will
be discussed. This same figure is attached in Appendix I
at a larger scale for better visualization.

FIG. 2: Representative results for varying A;. From
top to bottom: Traces and spikes of a representative neuron;
Raster Plots; and Connectivity Graphs. Left panels: A; =
1.5. Right panels: A; =3. T = 1.5 s in all analyses.

For clarity, the electrical signal of a neuron is included
in Figure 2. Two examples at different A; values are
shown. On them, a blue line can be observed, which
traces the contour of the spikes that have been calcu-
lated by the peeling algorithm working with a preas-
signed value of A;. At the same time, on the top of the
signals, red marks point the extracted electric impulses
or firing events.

Right below this image we show the so-called raster
plots. With the neuron index on the y—axis and the time
on the x—axis, each blue dot on this plot represents the
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firing of a neuron, i.e., a spike. On the bottom part of the
figure, the connectivity graphs are located. Graphed with
the program Gephi, they provide a visual representation
of the structure of the inferred neuronal networks.

Taking a closer look at the two electrical signals, which
are identical since both are from the same neuron, it
is clear that by the mere definition of the threshold-
amplitude, the one for A; = 1.5 has much more spikes,
96, than that for A; = 3, which only has 32. When com-
paring the electrical signal of the neuron with the raster
plot, a further relationship is spotted. The time at which
the strongest peaks in the fluorescence signal take place
coincide with vertical lines on the raster plot. These ver-
tical lines mean that a very considerable amount of neu-
rons within the culture fire coherently, at roughly the
same time. This fact in turn points towards an inherent
firing synchronization among the neurons in the culture.

When working with A; = 3 and analyzing the raster
plot, aside from few particular spikes, most of them are
concentrated in these vertical lines which represent these
predominant synchronous stronger signals. On the other
hand, when looking at the raster plot for A; = 1.5, even
though these very same vertical lines are also present,
they are harder to discern since other firings appear
spread throughout the plot. These results clearly show
how alterations in the threshold—amplitude parameter
will radically change the final appearance of the network.
When working with a high value of A, practically only
the synchronous firings will be reported, which in turn
will mean a massive loss in important information, for
instance interaction between neurons outside of the co-
herent regime. And yet, when choosing a low value of Ay,
maybe too many spikes will be dealt with, adding false
interactions. Indeed, some might be part of the noise of
the measure, bringing with them erroneous informations
about connections between neurons to the final graphical
representation.

Working with different values of A; therefore has an
enormous effect on the final graph. Not only will there
be a higher number of edges, i.e., connections when using
a smaller Ay, but all other characteristics will also be
modified, as can be appreciated in the networks of Figure
2. When analyzing the graph for A; = 3 (right panel in
Figure 2), three nodes in red have a bigger size. These are
clearly the most connected neurons within the culture.
In addition, there are only two main colors in this graph,
indicating that there are two main modularity classes.
When comparing these characteristics to those on the
graph for A; = 1.5, it can easily be seen how the three
neurons that were so important in the other graph are
not notorious in this case. Moreover, there is a greater
range of colors present in the graph, reflecting that the
neurons are broken down into more modularity classes.

Strikingly, these results portray that the modification
of the threshold-amplitude also changes which neurons
have a greater importance within the network, as well as
how they are distributed into modularity classes.
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B. Modifying T, the bin time—interval

In the following we discuss the results portrayed in
Figure 3. A larger Figure 3 is attached in Appendix II
for better visualization.

[ —
[

FIG. 3: Representative results for varying 7. Data
shows the raster plots and connectivity graph for A; = 3
and two different values of T. On the Left for T' = 1.5 s; on
the Right for T'= 6 s.

Working now with the fixed value of A; = 3 and an-
alyzing the raster plot, we see that most of the spikes
are concentrated in these vertical lines which represent
the predominant synchronous stronger signals, as seen
previously. Yet, when assigning to T a value of 6 s, the
spikes are logically even more concentrated around these
main vertical lines. By increasing the value of T', it will
be more likely to concentrate nearby spikes into a single
one. Hence, the behavior of the connections will be even
further contained in the main vertical lines, which will
result in a loss of information richness. So, by choosing
a larger T value and making fewer distinctions between
closely occurring spikes, the final graphical representa-
tion will also be strongly altered.

Both the graphs for T' = 6 s and T" = 1.5 s depict
two main modularity classes, even though they clearly
vary from one another. More importantly, there are two
highly influential neurons within the net for T = 6 s,
located on the right hand side of the graph. Oppositely,

the most important nodes for T = 1.5 s are situated
on the left hand side. Once again, the final graphical
product is also extremely altered when changing the
parameter relative to the bin time—interval.

IV. CONCLUSIONS

The results clearly show that the values of A; and T
have an incredible impact on the distribution of the neu-
ronal firings, and thus on the final functional structure
of the network. When using smaller values of A; and
T, the raster plot exhibited a richer pattern. This rich-
ness is positive for Transfer Entropy since all the dy-
namic repertoire of the neurons is reflected and, in turn,
their topological complexity. At the other extreme, if all
traces were almost identical, the derived networks would
be meaningless. Hence, in order to be sure that the func-
tional networks is a good proxy of the structural one,
first of all the optimal values of A; and T should be
determined. Furthermore, in order to extract more sub-
tleties from the spike trains, the measurements should
last longer than 600 seconds, enabling particular signa-
tures of each neuron to take shape.

This work indicates that unveiling the structure of
the neuronal network is a very delicate issue. Since we
worked with experimental data with unknown underly-
ing circuitry, we cannot know a prior: which parameters
are better. This reflects two main aspects: (i) it is very
important to pour efforts in advancing the research in
reconstruction algorithms, and (ii) one needs to work in
parallel with accurate simulations of neuronal networks
to be able to compare the derived functional topology
with the real one, and test accurately all the parameters.
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FIG. 4: Appendix I: Figure 2 in detail. Top: fluorescence traces and derived spike trains for a representative neuron.
Center: Raster plots. Bottom: connectivity graphs. Left panels show data for A; = 1.5 %DFF, and right panels for A; = 3
%DFF. In all analyses, T'= 1.5 s.
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FIG. 5: Appendix II: Figure 3 in detail. Top: Raster plots. Bottom: connectivity graphs. Left panels show data for
T = 1.5 s, and right panels for T'= 6 s. In all analyses, A; = 3 %DFF.
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