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Topological phases of lattice bosons with a dynamical gauge field
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Optical lattices with a complex-valued tunneling term have become a standard way of studying gauge-field
physics with cold atoms. If the complex phase of the tunneling is made density dependent, such a system features
even a self-interacting or dynamical magnetic field. In this paper we study the scenario of a few bosons in either
a static or a dynamical gauge field by means of exact diagonalization. The topological structures are identified
computing their Chern number. Upon decreasing the atom-atom contact interaction, the effect of the dynamical
gauge field is enhanced, giving rise to a phase transition between two topologically nontrivial phases.
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I. INTRODUCTION

The external motion of a particle can be coupled to
the dynamics of internal degrees of freedom via a gauge
potential. The simplest example of this mechanism is that
of an electrically charged particle moving in the presence of a
background magnetic field. The gauge field imprints a complex
U(1) phase onto the wave function of the particle. The synthetic
implementation of this mechanism in cold atomic systems has
been envisaged since the early days of quantum gases [1–7],
and has been realized successfully during recent years [8–13].
Current quantum simulations with artificial gauge potentials
are exploring the variety of interesting physics related to
background gauge fields: spin liquid phases [14], topological
phases evidenced by nonzero Chern numbers [15], or quantum
Hall phases with edge currents [16,17]. A long-term goal is the
simulation of quantum electromagnetism or chromodynamics,
that is, of models where matter interacts with dynamical fields,
as described in Refs. [18–22]. An intermediate step might be
the realization of simpler but nevertheless dynamical gauge
fields, engineering an occupation number-dependent tunneling
term [23–30].

In this article, we consider a specific dynamical gauge field
and apply exact diagonalization techniques to shed light on
the involved interplay between the atoms’ external degree of
freedom and the system’s U(1) gauge potential. The atoms
are confined to a two-dimensional optical lattice, where a
gauge field is present due to a density-dependent complex
phase of the tunneling parameter t . Deep in the Mott phase,
where density fluctuations are strongly suppressed, the gauge
potential is static. We follow the system’s evolution upon
decreasing the ratio U/t , where U parametrizes the strength
of the repulsive on-site interactions. For sufficiently weak
interactions, topological transitions, not present in the system
with a static gauge field, are found in the system with a
dynamical gauge potential.

In our study the system is assumed to be close to
filling one, where for large enough atom-atom interaction
the Mott insulating state provides a vacuumlike configuration.
In the strongly interacting regime, an extra particle on top
of the Mott insulator can be viewed as a single particle

in a static gauge potential with a fixed magnetic flux per
plaquette. This configuration therefore reproduces the physics
of the Harper-Hofstadter model [31]. Due to computational
limitations, our study addresses a 3 × 3 lattice with 4π/3 flux
per plaquette. Twisted periodic boundary conditions allow
for reducing finite-size effects. The low-energy subspace
is clearly divided into three gapped bands. Chern number
calculations demonstrate the nontrivial topological nature of
the bands. Since a hole in the Mott insulator does not feel any
gauge potential, the extra-particle configuration also captures
the behavior in a larger Mott insulator with a particle-hole
excitation. Upon decreasing the interaction, we find deviations
from this single-particle picture. For a dynamical gauge
potential we find that the ground state undergoes a topological
phase transition before it becomes topologically trivial in the
limit U → 0.

The article is organized as follows. First, in Sec. II, we
describe our theoretical tools, including the density-dependent
Hamiltonian we are considering. Then in Sec. III we present
results for the different band gaps found, comparing the case
of a dynamical field and the one of a static external field.
The characterization of the topological properties by means
of Chern numbers is presented in Sec. IV. In Sec. V a phase
diagram through a mean field approach is presented in order to
give an intuitive idea of the behavior of the system in the infinite
size case. Finally, in Sec. VI we provide a brief summary
and conclusions. In addition, Appendix includes the procedure
used to compute Chern numbers for the many-body bands to
characterize the topological phases.

II. THEORETICAL MODEL

Cold atoms in optical lattices are well described by a
Hubbard model combining nearest-neighbor hopping pro-
cesses and on-site interactions [32]. The effect of a (synthetic)
magnetic field is taken into account by a Peierls phase in
the hopping parameter. For instance, if b̂k,l (b̂†k,l) denotes the
annihilation (creation) of a particle at site (k,l), the hopping
term in a constant magnetic field with magnetic flux ϕ per
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FIG. 1. Brief rendition of the considered density-dependent
Hamiltonian. As an example we provide the phase acquired for
the single-particle case, ĤLandau, with ϕ = 2π/3. The solid lines
represent the tunneling terms; the dashed ones correspond to the
periodic boundary conditions considered.

plaquette is written in the Landau gauge as

ĤLandau = −t
∑
k,l

(eiϕl b̂
†
k,l b̂k+1,l + b̂

†
k,l b̂k,l+1 + H.c.). (1)

Here, t is a real-valued parameter associated with the kinetic
energy of the particles. We consider a two-dimensional system
of scalar bosons. Important quantities like the energy spectrum
of the Hamiltonian are gauge independent, that is, alternative
hopping Hamiltonians with complex phases along the x

direction or along both the x and y directions would lead
to the same results as long as the flux per plaquette remains
the same. A schematic representation of the hopping structure
is given in Fig. 1.

A possible implementation of Hamiltonians like ĤLandau

goes back to Ref. [2]. In this paper, we are interested in a
situation where the gauge field becomes dynamical, that is,
the complex phase factor should in some form depend on
the positions of the atoms. A simple dynamical gauge field
is obtained by letting the phase depend on the occupation
numbers,

Ĥdyn = − t
∑
k,l

(b̂†k,le
iϕl(n̂k,l+n̂k+1,l )b̂k+1,l + b̂

†
k,l b̂k,l+1 + H.c.).

(2)

The experimental implementation of density-dependent gauge
fields as those of Hamiltonian (2) can be done using similar
techniques as those recently discussed in Refs. [27,28].
Particular details of how to implement it fall beyond the scope
of the present article.

This choice of the density-dependent field is particularly
attractive as it has one specific limit in which the topological
properties of the system can be easily understood. Deep in
the Mott insulating phase, where the number operators n̂k,l

can be replaced by an integer number n, this Hamiltonian
reduces to the form of a ĤLandau. The amount of particle
number fluctuations and thereby the dynamical features of
the gauge potential are controlled by the interaction term,

Ĥint = U
2

∑
k,l n̂k,l(n̂k,l − 1). With this, the full Hamiltonian

reads

Ĥ = Ĥdyn + Ĥint. (3)

We will take an additional constraint on the Hilbert space,
stemming from the implementation scheme described in
Ref. [27], namely, the maximum occupancy per site will be
set to two bosons.

To clarify our discussion we will compare our results to
those obtained with an static field, that is,

Ĥst = ĤLandau + Ĥint. (4)

III. ENERGY GAPS

We have concentrated on the filling case around one by
means of exact diagonalization. We have focused on a 3 × 3
lattice at ϕ = 4π/3, and take the interaction strength U (in
units of t) as the main tuning parameter. As argued above,
this also controls the influence of the dynamical gauge field.
To gain meaningful results despite the small system size,
we apply twisted boundary conditions with twist angles θx

and θy . With this, the energy spectrum εi of the Hamiltonian
becomes a function of the twist angles, εi(θx,θy). Degeneracies
of different levels which would be lifted due to the finite system
size manifest themselves in crossings of bands εi(θx,θy).
Accordingly, we define the gap above a level εi as

�εi = min[εi+1(θx,θy) − εi(θx,θy)]. (5)

If �εi is zero, that is, if band i and band i + 1 have (at least)
one crossing, we consider these levels a degenerate manifold.
To check whether the manifold is separated from higher levels
by a gap, we then have to consider �εi . In general, the gap
above a k-fold manifold including the levels i, . . . ,i + k is
defined as

�i,i+k =
i+k−1∑
j=i

�εj . (6)

A. Case of one excess particle

We start our analysis with the tunneling of a system with
one particle more than the number of sites. That is, in our
3 × 3 lattice we consider N = 10 bosons. On the strongly
interacting side, this is equivalent to having a single particle
on top of a fluctuating vacuum. For large U , fluctuations are
strongly suppressed, and the kinetic Hamiltonian (2) reduces
to the one of a particle in a static magnetic field, Eq. (1),
with flux 2ϕ. Accordingly, the physics of a single particle in a
magnetic field should describe the low-energy behavior of our
system. Indeed, no difference is seen between the shape of the
single-particle spectrum of the Hamiltonian (1) [Fig. 2(a)], and
the low-energy part of the many-body spectrum of Hamiltonian
(3) at large U [Fig. 2(e)]. In both cases, we find the energy
spectrum to be split into three gapped manifolds, each of them
consisting of three states. In the many-body system, a gapless
high-energy manifold lies above the third band.

Deviations from this structure appear when U is decreased;
see Figs. 2(b)–2(e) and Fig. 3. The dynamical mechanism is
the following. As U is decreased, the number of holon-doublon
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FIG. 2. Energy spectrum as a function of the twisted boundary conditions for several systems under Ĥst with a flux per plaquette ϕ = 2π/3
in a 3 × 3 lattice. Degenerated states forming bands have the same color. (a) Single-particle case. (b)–(e) Energies of the 10 lowest eigenstates
of the system with 10 particles for the interaction values: (b) U/t = 0, (c) U/t = 4, (d) U/t = 13, and (e) U/t = 20. ESs means excited states.

excitations increases, and the single-particle picture described
above is no longer valid. First, for U ≈ 15, the gap between
the third band and the high-energy manifold closes, as the first
doublon-holon excitations have the same energy as the third
single-particle state. Subsequently, at U ≈ 10, also the gap to
the second band is closed. These gap closings indicate phase
transitions in excited states. At U � 2.25, also the gap to the
lowest band is closed. Thus, up to U � 2.25 the ground-state
manifold has a topological structure similar to the case of a
single particle subjected to an external magnetic field of 2ϕ.
This value of U is a bit higher than the value at which we
found a gapless phase for the filling one case described below.
Thus, the main picture of a single particle on top of a Mott
insulating background is consistent.
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FIG. 3. Gap above each band [as defined in Eq. (6)] between
consecutive eigenstates of Ĥ as a function of the on-site interaction
parameter U . The system is a 3 × 3 lattice with 10 particles with
the parameter ϕ = 2π/3 and t = 1. We take into account the Hilbert
constraint to a maximum of two bosons per site. The three lowest
bands have degeneracy 3, and the labels correspond to the Chern
number of each band.

Remarkably, further lowering the value of the interaction
another threefold-degenerate gapped manifold appears for
0.67 � U � 2.25. Only for U � 0.67 the system enters in
a gapless phase. We note that for 0.67 � U � 2.25 the gap
is small, of the order of 10% of the involved energy scales.
It is a merit of the twisted boundary conditions that the
three lowest states are clearly identified as an adiabatically
connected manifold, separated from the other levels by a gap.
In fact, if we look at the system for a fixed value of θx and θy ,
or alternatively for open boundary conditions, the gap cannot
be distinguished from the energy splitting between states in the
degenerate manifold. The gap above a manifold as a function
of U is shown in Fig. 3. For U � 0.67 the gap closes at
(θx,θy) � (π,π ). The next closing, for U � 2.25 appears close
to (θx,θy) � (0,π ). This could diminish the prospects for an
experimental detection of this phase in the plane geometry,
but since an experiment would realize a much bigger system,
there is hope that finite-size degeneracy splitting would be
sufficiently small to identify the finite gap.

In Fig. 4, we contrast our findings to the scenario with
static magnetic field. As expected, at large U the differences
between Figs. 3 and 4 are minor. Also for a static magnetic
field, increasing U subsequently closes the gaps above the
third and the second band. However, the gap above the ground
state remains finite up to U � 1 and, for U < 1, it vanishes.
To complement Fig. 3, the evolution of the gap between the
ground-state manifold and the next excited state for all the
values of θx and θy is given in Fig. 5.

B. Mott insulator

At precisely filling one, for nine particles on nine lattice
sites, see the upper panel of Fig. 6; we find a unique gapped
ground state for U � 2.1, which is connected to the Mott
insulator as an exact solution for U → ∞. This phase is trivial
in the sense that it corresponds to a vacuum, where deviations
from integer filling exist only as fluctuations. For U � 2.1,
we find a gapless phase, that is, despite the presence of the
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FIG. 4. Same description as in Fig. 3, but with the dynamical
gauge field replaced by an external magnetic field with a flux per
plaquette ϕ = 4π/3. That is, Ĥ(φ) → Ĥst(2φ).

dynamical gauge field, no topological structure protected by
an energy gap emerges in this scenario.

The first and second excited bands are three- and sixfold
degenerate, respectively. They are topologically nontrivial and
their Chern numbers are +1 and +4. These excited bands
coincide, in degeneracy and topology, with the lowest band
of the noninteracting systems with one and two particles
in the same lattice, as they are explained in Sec. IV A.
These excited bands can be understood as one and two
particle-hole excitations on the top of the Mott insulator, when
the particle feels an effective static magnetic field and the hole
does not.

C. Case of one hole

We also study the tunneling of a single hole. That is, in our
3 × 3 lattice we consider N = 8 bosons. The gap structure
we find is shown in Fig. 6(b). As expected, we find that
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FIG. 6. Energy gap [see Eq. (6)] between consecutive eigenstates
of Ĥ as a function of the on-site interaction parameter U . We take into
account the Hilbert constraint to a maximum of two bosons per site.
The upper and lower panels are for N = 9 and N = 8, respectively.

increasing the interaction up to U � 10t , a gap opens between
the ninefold degenerate manifold, understood as one hole
moving in the Mott-insulating background, and the rest of
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FIG. 5. Energy difference (in units of t) between the third and fourth states in the spectrum of a system under Ĥ with 10 particles in a 3 × 3
lattice, signaling the gap between the ground-state manifold and next excited state. The different panels correspond to different values of U/t .
In all cases, ϕ = 2π/3 and t = 1.
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the states. The ground-state manifold is found to have a trivial
topological order.

IV. TOPOLOGICAL PHASES

In the previous section we have discussed the energy gaps
appearing for the case of one excess particle, the filling one,
and the one hole case. In the case of one excess particle, we
have found nontrivial topological structures. In the following
we present the Chern number obtained compared to the case
of an external field of flux 4π/3.

A. Single-particle and noninteracting cases

First, we calculate the Chern numbers of the single-particle
system described by ĤLandau, that is, of the bands shown in
Fig. 2(a). We obtain the values {1,−2,1}. In this case, the
calculation can either be done via Fourier transformation,
taking the parameters k1 and k2 to be components of the wave
vector [33], or with twisted boundary conditions, taking the
twist angles θx and θy as parameters k1 and k2 [34]. In the
latter case, the discretization of parameter space is arbitrary,
but we observe quick convergence of the Chern numbers to
fixed numbers upon refining the discretization.

The noninteracting case can be related to the single-particle
case although some caution should be exercised. For instance,
direct computation of the Chern number of the ground-state
manifold for N = 2, 3, and 4 particles in the 3 × 3 lattice
we consider gives c = 4,10, and 20, respectively. These can
be obtained by noting that due to the bosonic symmetry, we
have a combinatorial factor stemming from the number of
times the Fock basis covers the threefold degenerate band.
This can be evaluated giving

c
(N)
0 = N

3

(
N + 3 − 1

N

)
c

(1)
0 = c

(1)
0

(
N + 2

3

)
, (7)

where c
(1)
0 is the single-particle Chern number of the GS

manifold, c
(1)
0 = 1.

B. Interacting many-body case

To calculate the Chern numbers of many-body states, we
exclusively resort to the twisted boundary conditions. For the
three gapped manifolds appearing at U � 15 (see Fig. 3),
we obtain the same Chern numbers as for the single-particle
bands: {1,−2,1}. These numbers remain constant for each
manifold until the closing of the corresponding gap. Upon
closing the gap, the second and the third bands simply merge
with the energy continuum, for which no Chern number can
be computed. This is easily understood as for large enough
interactions the many-body ground state is well described as
consisting on a Mott-insulating background plus one particle.
The lower band is given by the energy of the extra particle in
the presence of an external field with flux 4π/3. The closing
of the bands in the higher part of the spectrum comes from the
first particle-hole excitations which eventually degenerate with
excitations of the excess particle. This simple picture provides
a compelling explanation albeit the many-body state changes,
as shown in Fig. 7, the topology of the band does not change
for a broad range of U until the gap closes.
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FIG. 7. Squared coefficients of the ground state of the density-
dependent Ĥ for θx = θy = 0 in the Fock basis in lexicographical
order. A few notable states, one particle on top of a Mott insulator, are
marked. The three panels correspond to three values of the interaction,
U/t = 1,3, and 20. For these values, the Chern number of the ground-
state manifold is −1, +1, and, +1, respectively.

In contrast with the above, the gap closing of the ground
state at U ≈ 2.25 separates two gapped regions (see in partic-
ular the inset of Fig. 3). Interestingly, we find that upon closing
the band gap, the ground-state Chern number changes its sign
from 1 to −1. This demonstrates that a topological phase
transition between two distinct, but topologically nontrivial
phases is taking place. The second gap closing, at U ≈ 0.67,
merges the ground-state manifold with the energy continuum
which, in this sense, is a transition to a topologically trivial
(gapless) phase.

C. Static field case

Finally, we note also that the three gapped manifolds found
for a system with static magnetic field, with φ = 4π/3, are
characterized by the same Chern numbers {1,−2,1}, without
any transitions to distinct gapped phases. As seen in Fig. 4,
the arguments exposed above also apply to this case and
the picture of a single particle on top of a Mott insulator is
perfectly valid. The only relevant difference appears for low
interaction energies. In this case, the Mott insulating phase
seems to survive down to lower values of the interaction
as compared to the density-dependent case. Thus, density
dependence phases favor the existence of superfluid regimes
at larger interactions than in the static case. Also we find no
trace of the first excitation being a topological phase with
c1 = +1 in the region 2.25 � U � 0.67. In this case the limit
U = 0 can be understood from the single-particle calculation:
The ground states for N bosons are just arbitrary distributions
on the M = Ns/q states belonging to the lowest energy band
in a lattice with Ns sites at magnetic flux 2π/q. This leads
to a macroscopic ground-state degeneracy (of 63 states in
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our case with N = 10, Ns = 9, and q = 3), for which no
meaningful Chern number can be defined. Recent “Chern
number” measurements in noninteracting bosonic quantum
gases [15] consider the Hall drift for unique but gapless
many-body states, and define as a “Chern number” the average
over different states.

V. MEAN-FIELD PHASE DIAGRAM

In order to get a picture of the phase diagram, we
have adapted the mean-field calculation of Ref. [25] to the
Hamiltonians of interest. At first, we include a chemical
potential term −μ

∑
i,j n̂i,j . With the convenient substitutions

ĉi,j ≡ eiφjn̂i,j b̂i,j and d̂i,j ≡ e−iφjn̂i,j b̂i,j , the Hamiltonian in
Eq. (3) looks like

Ĥ =
∑
k,l

{
− t(d̂†

k,l ĉk+1,l + b̂
†
k,l b̂k,l+1 + H.c.)

+ n̂k,l

[
(n̂k,l − 1)

U

2
− μ

]}
. (8)

At t = 0, all the sites are independent and the GS can
exactly be represented with a Gutzwiller ansatz,

|�0〉 =
Ns⊗
k,l

|ψ〉k,l, |ψ〉k,l =
∞∑

m=0

f
(m)
k,l |m〉k,l, (9)

where m is the number of particles in a site. Then, the
energy due to each site filled with m particles is εm =
U [ 1

2 (m − 1) − μ

U
]m, and the energy of adding and subtracting

one boson is

εm+1−εm = U

(
m − μ

U

)
, εm−1 − εm = U

(
μ

U
− m + 1

)
,

(10)

respectively.
The MF is obtained by decoupling the hopping terms as

d̂
†
i,j ĉi+1,j ≈ α∗

3,j ĉi+1,j + α2,j d̂
†
i,j − α∗

3,j α2,j and b̂
†
i,j b̂i,j+1 ≈

α∗
1,j b̂i,j+1 + α1,j+1b̂

†
i,j − α∗

1,j α1,j+1, with the order parame-

ters α1,j ≡ 〈b̂i,j 〉, α2,j ≡ 〈ĉi,j 〉, and α3,j ≡ 〈d̂i,j 〉. Then, the
Hamiltonian in Eq. (8) becomes

Ĥ = − Nxt
∑

j

(α∗
3,j α2,j + α∗

1,j α1,j+1 + H.c.) +
∑
k,j

ĥk,j ,

(11)

with the local Hamiltonian,

ĥk,j ≡ n̂k,j [U (n̂k,j − 1)/2 − μ] − t T̂k,j , (12)

where T̂k,j ≡ α∗
3,j ĉk,j + α2,j d̂

†
k,j + α∗

1,j−1b̂k,j + α1,j+1b̂
†
k,j +

H.c. and Nx is the size of the system in the x direction.
The Hamiltonian ĥk,j has a trivial solution when αγ,j = 0,
γ = 1,2,3 since the particle number fluctuations vanish at the
Mott insulating phase.

When the kinetic term is negligible (t 
 U ), the entire
system is described with the basis of states with m particles
per each site (k,j ), |m〉. The GS is determined by μ: It is
the local state |m〉 when m − 1 < μ < m. Since we want to
draw the Mott lobes, we include the single Fock state and
particle-hole excitations in that region of the diagram. Then,
since we search the boundaries close to the trivial solution,
|αγ,j | 
 1, the kinetic term can be treated perturbatively. Up
to first perturbation order, the local wave function |�〉 can be
written as |ψ (0)〉 + |ψ (1)〉, being |ψ (0)〉 = |m〉 and

|ψ (1)〉 = −t
∑
m′

〈m′|T̂k,j |m〉
εm′ − εm

|m′〉

= t

U

√
m[α∗

3,j e
iφj (m−1) + α∗

2,j e
−iφj (m−1) + α∗

1,j−1 + α∗
1,j+1]

μ

U
− (m − 1)

|m − 1〉

+ t

U

√
m + 1[α3,j e

−iφjm + α2,j e
iφjm + α1,j−1 + α1,j+1]

m − μ

U

|m + 1〉. (13)

The first-order perturbation about the solution αγ,j = 0 is
convenient here, since the self-consistency equations define
a linear map αγ,j = �

γ ′,j ′
γ,j αγ ′,j ′ . Then, when the largest

eigenvalue of �, λ0, is larger than 1, the trivial solution is
no longer stable. So, the boundary is found to be at λ0 =
1. The self-consistency relations α1,j = 〈�|b̂k,j |�〉, α2,j =
〈�|ĉk,j |�〉, and α3,j = 〈�|d̂k,j |�〉 give

α1,j = t

U
[A(α1,j−1 + α1,j+1) + fj (φ)α2,j + fj (−φ)α3,j ],

α2,j = t

U
[fj (φ)(α1,j−1 + α1,j+1) + fj (2φ)α2,j + Aα3,j ],

α3,j = t

U
[fj (−φ)(α1,j−1+α1,j+1)+Aα2,j+fj (−2φ)α3,j ],

(14)

with

fj (φ) ≡[A + B(e−iφj − 1)]e−iφjm,

A ≡
μ

U
+ 1[

μ

U
− (m − 1)

][
m − μ

U

] , B ≡ m
μ

U
− (m − 1)

.

For the case of the static magnetic field, the corresponding
function f st

j (φ) reduces to Ae−iφj .
The Fock space populations of the GS of the system

(Fig. 7) have revealed its structure: The Fock states which

033605-6



TOPOLOGICAL PHASES OF LATTICE BOSONS WITH A . . . PHYSICAL REVIEW A 93, 033605 (2016)

-0.5

0

 0.5

1

 1.5

2

 2.5

3

0  0.02  0.04  0.06  0.08  0.1

μ/
U

t/U

Mott (f=0)

Mott (f=1)

Mott (f=2)

Mott (f=3)

SF

Static
Dynamic

Non-magnetic

FIG. 8. Phase boundary between the Mott insulator phase and the
superfluid phase for the external and dynamical magnetic fields and
the nonmagnetic case (α = 0) according to the Gutzwiller ansatz with
the MF approach in the first perturbation order in the hopping t .

have a particle on top of an MI in the same row are
equally populated. Then, we have tried an ansatz which is
translationally invariant along the x direction and have a
three-unit cell in the y direction. So, in Eq. (14), j = 1,2,3,
without periodic boundary conditions. Then, those relations
define a linear system of nine coupled linear equations,
being αγ,j the variables. Once the matrix of the system is
diagonalized as function of t , for a numeric value of U , μ

(and its corresponding integer m), the expression of λ0 is set
to 1, and then the equation is solved for t . Finally, the phase
boundary is obtained as a collection of points (μ,t).

We find the Mott lobes, shaped as usual in the MF approach
(see Fig. 8). The values of the boundary do not correspond to
the ones of the MF for the two-dimensional (2D) lattice, but
they are closer to the ones of the one-dimensional case (see
Ref. [35]). The structure of the GS state has revealed this
to be closely related to the fact that the magnetic fields are
in the Landau gauge. Our analysis also shows that the trial
state is slightly more robust upon decreasing hopping t/U

in the dynamic field case than in the static one. This finding
qualitatively agrees with our results for the gap separation in
the exact diagonalization analysis: As seen in Figs. 3 and 4,
the SF regime corresponds to the gapless phase at small U ,
which extends to U = 0.8 in the dynamic case, and U = 1.2
in the static case. For μ < 0, the boundaries of the dynamic
field case and the 2D nonmagnetic case coincide, as expected.

VI. SUMMARY AND CONCLUSIONS

We have studied topological properties of a bosonic quan-
tum gas with an experimentally feasible, synthetic dynamical
gauge field. The Mott insulating phase provides a trivial
vacuum, above which we study the one-particle excitations,
forming gapped energy bands. Decreasing the interactions, we
first observe transitions in the excited bands, from topologi-
cally nontrivial phases to gapless phases. In this respect, the
system behavior does not differ from the one of a system with
static magnetic field. A particular feature of the dynamic gauge
field is a topological transition in the ground state, in which

the sign of the Chern number is inverted. The fact that in our
proposal the length of the system in one dimension is very
small could be accomplished in a experimental setup using
synthetic dimensions.
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APPENDIX: EVALUATION OF THE CHERN NUMBER

The twisted boundary conditions are particularly useful
to characterize topological phases. They allow one to define
Chern numbers in an interacting many-body system [34]. Quite
generally, the Chern number is defined for the energy levels
n of a Hamiltonian H(k1,k2) = H(k1 + 2π,k2) = H(k1,k2 +
2π ), which periodically depends on two parameters k1 and k2

in the following way,

cn = 1

2π i

∫ 2π

0
dk1

∫ 2π

0
dk2 F

(n)
12 (k1,k2), (A1)

where the Berry connection A(n)
μ (k1,k2) (μ = 1,2) and the

associated strength F
(n)
12 (k1,k2) are given by

A(n)
μ (k1,k2) = 〈n(k1,k2)|∂μ|n(k1,k2)〉, (A2)

F
(n)
12 (k1,k2) = ∂1A(n)

2 (k1,k2) − ∂2A(n)
1 (k1,k2), (A3)

with |n(k1,k2)〉 being the nth normalized eigenvector.
Following the method of Fukui et al. [36], the Chern

numbers can conveniently be calculated by discretizing the
parameter space,

c̃n = 1

2π i

∑
k1

∑
k2

F̃
(n)
12 (k1,k2), (A4)

with the lattice field strength,

F̃
(n)
12 (k1,k2) = ln

[
U

(n)
1 (k1,k2) U

(n)
2 (k1+dk1,k2)

U
(n)
1 (k1,k2+dk2) U

(n)
2 (k1,k2)

]
,

−π < 1
i F̃

(n)
12 (k1,k2) � π (A5)

being dkμ the resolution of each parameter and U (n)
μ the link

variables from the eigenstates of the nth band,

U (n)
μ ≡ 〈n(k1,k2)|n(k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉

|〈n(k1,k2)|n(k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉| . (A6)

A special case which is important for our purposes
concerns the Chern number of degenerate bands. Since the
eigenstates are not unique in the degenerate points, we
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cannot associate Chern numbers to individual states. For M

degenerate or quasidegenerate states, we consider the multiplet
ψ = (|n1〉 · · · |nM〉) to define a non-Abelian Berry connection
A = ψ†dψ , which is an M × M matrix-valued one form
associated with ψ . Then, we consider the overlap matrix,[

u(n)
μ

]
ij

≡ 〈ni(k1,k2)|nj (k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉, (A7)

in order to properly define the link variables,

U (n)
μ ≡ det

[
u(n)

μ

]
∣∣ det

[
u

(n)
μ

]∣∣ . (A8)

Finally, the Chern number c̃ψ and field strength are calculated
using Eqs. (A4) and (A5).
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[10] Y. J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature

(London) 471, 83 (2011).
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