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ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION

MANEL SANCHÓN AND JOSÉ MIGUEL URBANO

Abstract. We consider a Dirichlet problem in divergence form with vari-
able growth, modeled on the p(x)-Laplace equation. We obtain existence and
uniqueness of an entropy solution for L1 data, as well as integrability results
for the solution and its gradient. The proofs rely crucially on a priori esti-
mates in Marcinkiewicz spaces with variable exponent, for which we obtain
new inclusion results of independent interest.

1. Introduction

Partial differential equations with nonlinearities involving nonconstant exponents
have attracted an increasing amount of attention in recent years. Perhaps the
impulse for this comes from the sound physical applications in play, or perhaps
it is just the thrill of developing a mathematical theory where PDEs again meet
functional analysis in a truly two-way street.

The development, mainly by Růžička [28], of a theory modeling the behavior of
electrorheological fluids, an important class of non-Newtonian fluids, seems to have
boosted a still far from completed effort to study and understand nonlinear PDEs
involving variable exponents. Other applications relate to image processing (cf. [8]),
elasticity (cf. [31]), the flow in porous media (cf. [4] and [21]), and problems in the
calculus of variations involving variational integrals with nonstandard growth (cf.
[31], [27], and [1]). This, in turn, gave rise to a revival of the interest in Lebesgue and
Sobolev spaces with variable exponent, the origins of which can be traced back to
the work of Orlicz in the 1930s. An account of recent advances, some open problems,
and an extensive list of references can be found in the interesting survey by Diening
et al. [14]. Meanwhile, among several other contributions, the introduction by
Sharapudinov [29] of the Luxemburg norm and the work of Kováčik and Rákosńık
[23], where many of the basic properties of these spaces are established, were crucial
developments.

In this paper, we consider a problem with potential applications to the modeling
of combustion, thermal explosions, nonlinear heat generation, gravitational equi-
librium of polytropic stars, glaciology, non-Newtonian fluids, and the flow through
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6388 M. SANCHÓN AND J. M. URBANO

porous media. Many of these models have already been analyzed for constant ex-
ponents of nonlinearity (cf. [12], [10], [9], [18], [30], and the references therein), but
it seems to be more realistic to assume the exponent to be variable.

Let Ω be a smooth bounded domain in R
N and consider the elliptic problem

(1.1)

{
−div(a(x,∇u)) = f(x) in Ω,

u = 0 on ∂Ω,

where f ∈ L1(Ω) and a : Ω×R
N → R

N is a Carathéodory function (that is, a(·, ξ)
is measurable in Ω, for every ξ ∈ R

N , and a(x, ·) is continuous in R
N , for almost

every x ∈ Ω), such that the following assumptions hold:

(1.2) a(x, ξ) · ξ ≥ b|ξ|p(x),
for almost every x ∈ Ω and for every ξ ∈ R

N , where b is a positive constant;

(1.3) |a(x, ξ)| ≤ β(j(x) + |ξ|p(x)−1),

for almost every x ∈ Ω and for every ξ ∈ R
N , where j is a nonnegative function in

Lp′(·)(Ω) and β > 0;

(1.4) (a(x, ξ)− a(x, ξ′)) · (ξ − ξ′) > 0,

for almost every x ∈ Ω and for every ξ, ξ′ ∈ R
N , with ξ �= ξ′.

Hypotheses (1.2)–(1.4) are the natural extensions of the classical assumptions in
the study of nonlinear monotone operators in divergence form for constant p(·) ≡ p
(cf. [26]).

Concerning the exponent p(·) appearing in (1.2) and (1.3), we assume it is a
measurable function p(·) : Ω → R such that

(1.5)

⎧⎪⎨
⎪⎩

∃C > 0 : |p(x)− p(y)| ≤ C
− ln |x−y| , for |x− y| < 1

2 ;

1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < N.

The first condition says that p(·) belongs to the class of log-Hölder continuous
functions. These assumptions allow us, in particular, to exploit the functional
analytical properties of Lebesgue and Sobolev spaces with variable exponent (see
section 2) arising in the study of problem (1.1).

A weak solution of (1.1) is a function u ∈ W 1,1
0 (Ω) such that a(·,∇u) ∈ L1

loc(Ω)
and

(1.6)

∫
Ω

a(x,∇u) · ∇ϕ dx =

∫
Ω

f(x)ϕ dx, for all ϕ ∈ C∞
0 (Ω).

A weak energy solution is a weak solution such that u ∈ W
1,p(·)
0 (Ω).

The model case for (1.1) is the Dirichlet problem for the p(x)-Laplacian operator
∆p(x)u := div(|∇u|p(x)−2∇u),

(1.7)

{
−∆p(x)u = f(x) in Ω,

u = 0 on ∂Ω.

This and other related problems (where f is replaced by a nonlinear function de-
pending on u) have been studied recently in several papers (cf., for example, [16]
for existence and uniqueness or [17] for Hölder continuity) in the framework of weak
energy solutions. These results require the assumption that the right-hand side f
has enough integrability.
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ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION 6389

Assuming that f is merely in L1(Ω), we need to work with entropy solutions,
which are required to be less regular than weak solutions. The notion of entropy
solution was introduced by Bénilan et al. [5] for problem (1.1) in the framework of
a constant p(·) ≡ p, and existence and uniqueness were established, together with
some estimates for the solution and its weak gradient. Using essentially the same
tools, Alvino et al. [3] proved existence of an entropy solution for elliptic problems
with degenerate coercivity, still in the context of constant exponents.

The main purpose of this paper is to extend the results in [5] to a nonconstant
p(·). Defining the truncation function Tt by

Tt(s) := max {−t,min{t, s}} , s ∈ R,

we start by extending the notion of entropy solution to problem (1.1) as follows:

Definition 1.1. A measurable function u is an entropy solution to problem (1.1)

if, for every t > 0, Tt(u) ∈ W
1,p(·)
0 (Ω) and

(1.8)

∫
Ω

a(x,∇u) · ∇Tt(u− ϕ) dx ≤
∫
Ω

f(x) Tt(u− ϕ) dx,

for all ϕ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω).

A function u such that Tt(u) ∈ W
1,p(·)
0 (Ω), for all t > 0, does not necessarily

belong to W 1,1
0 (Ω). However, it is possible to define its weak gradient (see Propo-

sition 3.1 below), still denoted by ∇u.
Let us introduce the following notation:

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x) ;

given two bounded measurable functions p(·), q(·) : Ω → R, we write

q(·) 
 p(·) if (p− q)− > 0.

Assuming (1.5), the critical Sobolev exponent and the conjugate of p(·) are, respec-
tively,

p∗(·) = Np(·)
N − p(·) and p′(·) = p(·)

p(·)− 1
.

Our main result is

Theorem 1.2. Assume (1.2)–(1.5) and f ∈ L1(Ω). There exists a unique entropy
solution u to problem (1.1). Moreover, |u|q(·) ∈ L1(Ω), for all 0 
 q(·) 
 q0(·),
and |∇u|q(·) ∈ L1(Ω), for all 0 
 q(·) 
 q1(·), where

(1.9) q0(·) :=
p∗(·)
p′+

and q1(·) :=
q0(·)

q0(·) + 1
p(·).

The proof of this result will be decomposed into several steps. First, we obtain a
priori estimates for entropy solutions in Marcinkiewicz spaces with variable expo-
nent. Despite the fact that the theory of functional spaces with variable exponent is
developing quickly, the extension of classical Marcinkiewicz spaces is, to the best of
our knowledge, undertaken here for the first time. From these estimates, we derive
uniform bounds in Lebesgue spaces of variable exponent for an entropy solution
and its weak gradient (see Corollaries 3.5 and 3.7 in section 3). The uniqueness
follows from choosing adequate test functions in the entropy condition (1.8) and
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6390 M. SANCHÓN AND J. M. URBANO

using the a priori estimates. Finally, the existence is obtained by passing to the
limit in a sequence of weak energy solutions of adequate approximated problems.

Our other theorem concerns weak solutions and extends the results obtained by
Boccardo and Gallouët [6, 7] in the context of a constant p(·) ≡ p.

Theorem 1.3. Assume (1.2)–(1.5) and f ∈ L1(Ω). Let q0(·), q1(·) be given by
(1.9), and let u be the entropy solution of (1.1). If 2 − 1/N 
 p(·), then u ∈
Lq(·)(Ω), for all 1 
 q(·) 
 q0(·), and u ∈ W

1,q(·)
0 (Ω), for all 1 
 q(·) 
 q1(·). If,

in addition, p(·)− 1 
 q1(·), then u is a weak solution of (1.1).

We will see later that 1 
 q1(·) if and only if 2 − 1/N 
 p(·), and hence, by

Theorem 1.2, the entropy solution u belongs to W 1,1
0 (Ω) if 2−1/N 
 p(·). We also

remark that, in the constant case, we have

q0 =
N(p− 1)

N − p
and q1 =

N(p− 1)

N − 1
,

which coincide with the exponents in [5]. The additional assumption p(·)−1 
 q1(·)
is needed to show that the entropy solution is indeed a weak solution, i.e., that it
satisfies the equation in the distributional sense. Later, we discuss in detail the
significance of this assumption and conclude, in particular, that it is not stringent
up to dimension N = 10 (see Remark 5.7).

In this paper, we always assume that f ∈ L1(Ω); increasing the integrability of
f , one expects to obtain more regularity but, for variable exponents, most results
in this direction are still missing.

A few comments about known regularity results for the constant exponent case,
in terms of the integrability of the right-hand side f , are in order. Assume p(·) ≡ p
is constant and the right-hand side f ∈ Lm(Ω), for some m ≥ 1. The existence and
uniqueness of an entropy solution u of problem (1.1) is obtained in [5]. Define the
numbers

m̄ :=
N

N(p− 1) + 1
and m̃ := (p∗)′ =

Np

N(p− 1) + p
,

where p∗ = Np/(N − p) is the Sobolev exponent. The following assertions hold:

(A1) If 1 ≤ m ≤ max(1, m̄), then the entropy solution u satisfies |u|q ∈ L1(Ω),
for all 0 < q < q0, and |∇u|q ∈ L1(Ω), for all 0 < q < q1, where

q0 :=
Nm(p− 1)

N −mp
and q1 :=

Nm(p− 1)

N −m

(note that, when m = 1, these numbers coincide with the ones defined in
(1.9), since we are assuming that p(·) ≡ p is constant).

(A2) If max(1, m̄) < m < m̃, then u is a weak solution and u ∈ W 1,q1
0 (Ω) (note

that q1 > 1).

(A3) If m̃ ≤ m ≤ N/p, then u is a weak energy solution and u ∈ W 1,q1
0 (Ω) (note

that q1 ≥ p).
(A4) If m > N/p, then u is a bounded weak energy solution.

The first and last assertions are proved by Alvino et al. [3]. The second one
follows from the results of Boccardo and Gallouët [6, 7], and the third is a conse-
quence of a result by Kinnunen and Zhou [22, Thm. 1.6]. It is also known that if

m > Np′, then u ∈ C1,α
loc (Ω), a result due to DiBenedetto [10].
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ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION 6391

For a variable exponent p(·) much less is known. If f ∈ W−1,p′(·)(Ω) or, in
particular, if f ∈ Lm̃(·)(Ω), where m̃(·) := (p(·)∗)′, the existence and uniqueness of
a weak energy solution to problem (1.1) is a straightforward generalization of the
results obtained by Fan and Zhang [16] for the model problem (1.7).

Recently, Acerbi and Mingione [2] derived Calderón–Zygmund type estimates for
(1.1), extending previous results of DiBenedetto and Manfredi [11] for the model
problem (1.7) and p(·) ≡ p constant. Using their estimates it is easy to prove the
following result.

Proposition 1.4. Assume (1.2)–(1.5) and f ∈ L
m(·)
loc (Ω), where

(1.10) m(·) := Np(·)q
N(p(·)− 1) + p(·)q with q ≥ 1.

The unique weak energy solution u of (1.1) satisfies |∇u|p(·) ∈ Lq
loc(Ω).

We note that the function m(·) defined in (1.10) satisfies

m̃(·) < m(·) < N , for all q > 1.

As an immediate consequence, one obtains u ∈ W
1,r(·)
loc (Ω), for all r(·) ∈ L∞(Ω),

if f ∈ LN
loc(Ω). We note that, in the case of constant exponents, Proposition 1.4

states that for f ∈ Lm
loc(Ω), with m ≥ m̃, we have u ∈ W 1,q1

loc (Ω). Moreover, as a

consequence of Sobolev embedding, it follows that u ∈ C0,α
loc (Ω) if m > N/p. We

thus recover local versions of assertions (A3) and (A4). Therefore, to obtain (A3)
and (A4) using this reasoning, it would be necessary to prove a global version of
Proposition 1.4 for a nonconstant q(·).

Finally, since Theorem 1.2 guarantees the existence and uniqueness of an en-
tropy solution for (1.1), the extension of (A1) and (A2) for variable exponents only
requires a priori estimates for such a solution. We feel that the techniques needed
to obtain such estimates are slight modifications of the ones used in section 3 in
the L1 case but this extension remains open.

The paper is organized as follows. In section 2, we recall the definitions of
Lebesgue and Sobolev spaces with variable exponent and some of their properties.
Then, we introduce Marcinkiewicz spaces with variable exponent and establish their
relation with Lebesgue spaces. In section 3, we obtain a priori estimates for an
entropy solution and its weak gradient. In section 4, we prove uniqueness of entropy
solutions. Finally, in section 5, we consider approximate problems and, using the a
priori estimates, we establish the existence results.

2. Marcinkiewicz spaces with variable exponent

In this section, we define Marcinkiewicz spaces with variable exponent and in-
vestigate their relation with Lebesgue spaces. To the best of our knowledge, this
definition is considered here for the first time and the properties obtained are new.

We start with a brief overview of the state of the art concerning Lebesgue spaces
with variable exponent, and Sobolev spaces modeled upon them. We define the
Lebesgue space with variable exponent Lp(·)(Ω) as the set of all measurable func-
tions u : Ω → R for which the convex modular

�p(·)(u) =

∫
Ω

|u|p(x) dx
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6392 M. SANCHÓN AND J. M. URBANO

is finite. If the exponent is bounded, i.e., if p+ < ∞, then the expression

‖u‖p(·) := inf
{
λ > 0 : �p(·)(u/λ) ≤ 1

}
defines a norm in Lp(·)(Ω), called the Luxemburg norm. One central property of
Lp(·)(Ω) is that the norm and the modular topologies coincide; i.e., �p(·)(un) → 0

if and only if ‖un‖p(·) → 0. The space
(
Lp(·)(Ω), ‖ · ‖p(·)

)
is a separable Banach

space. Moreover, if p− > 1, then Lp(·)(Ω) is uniformly convex, hence reflexive, and

its dual space is isomorphic to Lp′(·)(Ω), where 1/p(x) + 1/p′(x) = 1. Finally, we
have the Hölder inequality:

(2.1)

∣∣∣∣
∫
Ω

uv dx

∣∣∣∣ ≤
(

1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·),

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
Now, let

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

which is a Banach space equipped with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·).

By W
1,p(·)
0 (Ω) we denote the closure of C∞

0 (Ω) in W 1,p(·)(Ω).
The proofs of the following two results can be found in [20] and [13], respectively.

Proposition 2.1 (The p(·)-Poincaré inequality). Let Ω be a bounded open set and
let p(·) : Ω → [1,∞) satisfy (1.5). There exists a constant C, depending only on
p(·) and Ω, such that the inequality

(2.2) ‖u‖p(·) ≤ C‖∇u‖p(·)

holds for every u ∈ W
1,p(·)
0 (Ω).

Proposition 2.2 (Sobolev embedding). Let Ω be a bounded open set, with a Lips-
chitz boundary, and let p(·) : Ω → [1,∞) satisfy (1.5). Then we have the following
continuous embedding:

(2.3) W 1,p(·)(Ω) ↪→ Lp∗(·)(Ω),

where p∗(·) = Np(·)
N−p(·) .

Now, we give a useful result in order to apply the Sobolev inequality (cf. [15]).

Lemma 2.3. Let p(·) and q(·) be measurable functions such that p(·) ∈ L∞(Ω) and
1 ≤ p(x)q(x) ≤ +∞, for a.e. x ∈ Ω. Let f ∈ Lq(·)(Ω), f �≡ 0. Then

‖f‖p+

p(·)q(·) ≤ ‖|f |p(·)‖q(·) ≤ ‖f‖p−
p(·)q(·) if ‖f‖p(·)q(·) ≤ 1,(2.4)

‖f‖p−
p(·)q(·) ≤ ‖|f |p(·)‖q(·) ≤ ‖f‖p+

p(·)q(·) if ‖f‖p(·)q(·) ≥ 1.

In particular, if p(·) ≡ p is constant, then

‖|f |p‖q(·) = ‖f‖ppq(·).

This closes our brief tour of Lebesgue and Sobolev spaces with variable exponent.
Let’s now consider Marcinkiewicz spaces with variable exponent. To the best of
our knowledge, the next definition is new.
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Definition 2.4. Let q(·) be a measurable function such that q− > 0. We say that
a measurable function u belongs to the Marcinkiewicz space Mq(·)(Ω) if there exists
a positive constant M such that

∫
{|u|>t}

tq(x) dx ≤ M, for all t > 0.

We remark that for q(·) ≡ q constant this definition coincides with the classical
definition of the Marcinkiewicz space Mq(Ω) (cf. [25]). Moreover, it is clear that
u ∈ Mq(·)(Ω) if |u|q(·) ∈ L1(Ω). Indeed,

∫
{|u|>t}

tq(x) dx ≤
∫
Ω

|u|q(x) dx, for all t > 0.

In particular, Lq(·)(Ω) ⊂ Mq(·)(Ω), for all q(·) ≥ 1.
For constant exponents it is straightforward to prove some sort of reciproque: if

u ∈ Mr(Ω), then |u|q ∈ L1(Ω), for all 0 < q < r. The following result extends this
assertion to the nonconstant setting; unlike the constant case, the proof presents
some difficulties.

Proposition 2.5. Let r(·) and q(·) be bounded functions such that 0 
 q(·) 
 r(·)
and let ε := (r − q)− > 0. If u ∈ Mr(·)(Ω), then

∫
Ω

|u|q(x) dx ≤ 2|Ω|+ (r+ − ε)
M

ε
,

where M is the constant appearing in the definition of Mr(·)(Ω). In particular,
Mr(·)(Ω) ⊂ Lq(·)(Ω), for all 1 ≤ q(·) 
 r(·).

Proof. Noting that 0 
 q(·) ≤ r(·)− ε, we define the a.e. differentiable function

ϕ(t) :=

∫
{|u|>t}

tr(x)−ε dx, for all t > 0.

Writing its derivative as

ϕ′(t) =

∫
{|u|>t}

(r(x)− ε)tr(x)−ε−1 dx− lim
h↓0

1

h

∫
{t−h<|u|≤t}

tr(x)−ε dx,

we obtain

− d

dt

∫
{|u|>t}

|u|r(x)−ε dx = lim
h↓0

1

h

∫
{t−h<|u|≤t}

|u|r(x)−ε dx

≤ lim
h↓0

1

h

∫
{t−h<|u|≤t}

tr(x)−ε dx

=

∫
{|u|>t}

(r(x)− ε)tr(x)−ε−1 dx− ϕ′(t).
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6394 M. SANCHÓN AND J. M. URBANO

Using the previous inequality and remarking that 0 ≤ ϕ(t) ≤ M/tε, for all t > 0,
since u ∈ Mr(·)(Ω), we derive the estimate∫

Ω

|u|q(x) dx ≤ |Ω|+
∫
{|u|>1}

|u|r(x)−ε dx

= |Ω|+
∫ ∞

1

(
− d

dt

∫
{|u|>t}

|u|r(x)−ε dx

)
dt

≤ |Ω|+
∫ ∞

1

(∫
{|u|>t}

(r(x)− ε)tr(x)−ε−1 dx− ϕ′(t)

)
dt

≤ |Ω|+ (r+ − ε)

∫ ∞

1

1

tε+1

(∫
{|u|>t}

tr(x) dx

)
dt+ ϕ(1)

≤ 2|Ω|+ (r+ − ε)

∫ ∞

1

M

tε+1
dt

= 2|Ω|+ (r+ − ε)
M

ε

and the result follows. �

3. A priori estimates

We start with the existence of the weak gradient for every measurable function

u such that Tt(u) ∈ W
1,p(·)
0 (Ω), for all t > 0.

Proposition 3.1. If u is a measurable function such that Tt(u) ∈ W
1,p(·)
0 (Ω), for

all t > 0, then there exists a unique measurable function v : Ω → R
N such that

vχ{|u|<t} = ∇Tt(u) for a.e. x ∈ Ω, and for all t > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if u
belongs to W 1,1

0 (Ω), then v coincides with the standard distributional gradient of u.

Proof. The result follows from [3, Theorem 1.5], since

Tt(u) ∈ W
1,p(·)
0 (Ω) ⊂ W

1,p−
0 (Ω), for all t > 0. �

The next result provides estimates in Marcinkiewicz spaces (and hence, by
Proposition 2.5, in Lebesgue spaces) for an entropy solution of (1.1).

Proposition 3.2. Assume (1.2)–(1.5) and f ∈ L1(Ω). If u is an entropy solution
of (1.1), then there exists a positive constant M , depending only on p(·), N , and
Ω, such that∫

{|u|>t}
tp

∗(x)/p′
+ dx ≤ M

(
‖f‖1
b

+ 1

)p∗
+/p−

, for all t > 0.

Proof. Taking ϕ = 0 in the entropy inequality (1.8) and using (1.2), we obtain

b

∫
Ω

|∇Tt(u)|p(x) dx ≤
∫
{|u|≤t}

a(x,∇u) · ∇u dx

≤
∫
Ω

f(x) Tt(u) dx ≤ t‖f‖1,
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ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION 6395

for all t > 0. Therefore, defining ψ := Tt(u)/t, we have, for all t > 0,

(3.1)

∫
Ω

tp(x)−1|∇ψ|p(x) dx =
1

t

∫
Ω

|∇Tt(u)|p(x) dx ≤ M1 :=
‖f‖1
b

.

Let γ > 0 be a number to be chosen later. Using the Sobolev inequality (2.3) and
Lemma 2.3, we estimate∫

{|u|>t}
tp

∗(x)/γ dx =

∫
{|ψ|=1}

tp
∗(x)/γ |ψ|p

∗(x) dx

≤
∫
Ω

(
t1/γ |ψ|

)p∗(x)

dx

≤
∥∥∥t1/γψ∥∥∥α1

p∗(·)

≤ Cα1

∥∥∥∇(t1/γψ)
∥∥∥α1

p(·)

≤ Cα1

(∫
Ω

|∇(t1/γψ)|p(x) dx
)α1/β1

= Cα1

(∫
Ω

tp(x)/γ+1−p(x) 1

t
|∇Tt(u)|p(x) dx

)α1/β1

,(3.2)

where

α1 =

⎧⎨
⎩

p∗+ if ‖t1/γψ‖p∗(·) ≥ 1

p∗− if ‖t1/γψ‖p∗(·) ≤ 1
and β1 =

⎧⎨
⎩

p− if ‖∇(t1/γψ)‖p(·) ≥ 1

p+ if ‖∇(t1/γψ)‖p(·) ≤ 1.

Now, choosing γ = p′+ in (3.2), noting that tp(x)/γ+1−p(x) ≤ 1 for all t ≥ 1, and
using (3.1), we obtain∫

{|u|>t}
tp

∗(x)/p′
+ dx ≤ Cα1 (M1 + 1)p

∗
+/p−

for all t ≥ 1. Finally, for 0 < t < 1, we have∫
{|u|>t}

tp
∗(x)/p′

+ dx ≤ |Ω|.

Combining both estimates, the result follows. �

Remark 3.3. Recalling from (1.9) that

q0(·) =
p∗(·)
p′+

,

Proposition 3.2 yields u ∈ Mq0(·)(Ω). We note that for p(·) ≡ p we have that
u ∈ Mq0(Ω), with

q0 =
N(p− 1)

N − p
=

p∗

p′
,

recovering the result obtained in [5]. For the nonconstant case, it remains an open
problem to show that u ∈ Mq(·)(Ω), with q(·) = p∗(·)/p′(·).

Remark 3.4. We stress that the dependence of the constant M on p(·) occurs solely
through the constants p− and p+.
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As a consequence of Proposition 2.5 and Proposition 3.2 we obtain the following
result.

Corollary 3.5. Assume (1.2)–(1.5) and f ∈ L1(Ω). Let

(3.3) q0(·) =
p∗(·)
p′+

.

If u is an entropy solution to problem (1.1), then |u|q(·) ∈ L1(Ω), for all q(·) such
that 0 
 q(·) 
 q0(·). Moreover, there exists a constant M0, depending only on
p(·), q(·), N and Ω, such that

(3.4)

∫
Ω

|u|q(x) dx ≤ 2|Ω|+M0

(
‖f‖1
b

+ 1

)p∗
+/p−

.

Proof. Let 0 
 q(·) 
 q0(·) and define δ := (q0 − q)− > 0. By Proposition 3.2,∫
{|u|>t}

tq0(x) dx ≤ M

(
‖f‖1
b

+ 1

)p∗
+/p−

, for all t > 0,

where M is a positive constant, depending only on p(·), N and Ω. From Proposi-
tion 2.5, we have∫

Ω

|u|q(x) dx ≤ 2|Ω|+ (q0 − δ)+
M

δ

(
‖f‖1
b

+ 1

)p∗
+/p−

;

estimate (3.4) now follows with

M0 = (q0 − δ)+
M

δ
. �

Now, we prove a priori estimates in Marcinkiewicz spaces for the weak gradient
of an entropy solution.

Proposition 3.6. Assume (1.2)–(1.5) and f ∈ L1(Ω). Let u be an entropy solution
of (1.1). If there exists a positive constant M such that

(3.5)

∫
{|u|>t}

tq(x) dx ≤ M, for all t > 0,

then |∇u|α(·) ∈ Mq(·)(Ω), where α(·) = p(·)/(q(·) + 1). Moreover,∫
{|∇u|α(·)>t}

tq(x) dx ≤ ‖f‖1
b

+M, for all t > 0.

Proof. Using (3.5), the definition of α(·), and (3.1), which still holds in this setting,
we have∫

{|∇u|α(x)>t}
tq(x) dx ≤

∫
{|∇u|α(x)>t}∩{|u|≤t}

tq(x) dx+

∫
{|u|>t}

tq(x) dx

≤
∫
{|u|≤t}

tq(x)
(
|∇u|α(x)

t

)p(x)/α(x)

dx+M

=
1

t

∫
{|u|≤t}

|∇Tt(u)|p(x) dx+M

≤ ‖f‖1
b

+M, for all t > 0.

�
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As a consequence of Proposition 2.5, Proposition 3.2, and Proposition 3.6, we
obtain the following result.

Corollary 3.7. Assume (1.2)–(1.5) and f ∈ L1(Ω). Let q0(·) be defined in (3.3)
and let

q1(·) =
q0(·)

q0(·) + 1
p(·).

If u is an entropy solution of problem (1.1), then |∇u|q(·) ∈ L1(Ω), for all q(·) such
that 0 
 q(·) 
 q1(·). Moreover, there exist constants M2 and M3, depending only
on p(·), q(·), N and Ω, such that

(3.6)

∫
Ω

|∇u|q(x) dx ≤ 2|Ω|+M2
‖f‖1
b

+M3

(
‖f‖1
b

+ 1

)p∗
+/p−

.

Proof. By Proposition 3.6 (and using also Proposition 3.2), we have

|∇u|α(·) ∈ Mq0(·)(Ω), with α(·) = p(·)/(q0(·) + 1),

and ∫
{|∇u|α(·)>t}

tq0(x) dx ≤ ‖f‖1
b

+M

(
‖f‖1
b

+ 1

)p∗
+/p−

, for all t > 0,

where M is a positive constant, depending only on p(·), N and Ω.
Let 0 
 q(·) 
 q1(·), note that r(·) := q(·)/α(·) 
 q0(·) and define � :=

(q0 − r)− > 0. From Proposition 2.5 applied to |∇u|α(·), we have∫
Ω

|∇u|q(x) dx =

∫
Ω

|∇u|α(x)r(x) dx

≤ 2|Ω|+ (q0 − �)+
�

[
‖f‖1
b

+M

(
‖f‖1
b

+ 1

)p∗
+/p−

]
,

and the result follows with

M2 =
(q0 − �)+

�
and M3 = MM2. �

4. Uniqueness of entropy solutions

In this section we establish the uniqueness of an entropy solution, extending the
result obtained in [5] for a constant exponent.

Theorem 4.1. Assume (1.2)–(1.5) and f ∈ L1(Ω). If u and v are entropy solutions
of (1.1), then u = v, a.e. in Ω.

Proof. Let h > 0. We write the entropy inequality (1.8) corresponding to the
solution u, with Thv as test function, and to the solution v, with Thu as test
function. Upon addition, we get∫

{|u−Thv|≤t}
a(x,∇u) · ∇(u− Thv) dx+

∫
{|v−Thu|≤t}

a(x,∇v) · ∇(v − Thu) dx

(4.1) ≤
∫
Ω

f(x)
(
Tt(u− Thv) + Tt(v − Thu)

)
dx.
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6398 M. SANCHÓN AND J. M. URBANO

Define

E1 := {|u− v| ≤ t, |v| ≤ h} ,
E2 := E1 ∩ {|u| ≤ h} , and E3 := E1 ∩ {|u| > h} .

We start with the first integral in (4.1). Using assumption (1.2), we obtain∫
{|u−Thv|≤t}

a(x,∇u) · ∇(u− Thv) dx ≥
∫
E1

a(x,∇u) · ∇(u− v) dx

≥
∫
E2

a(x,∇u) · ∇(u− v) dx−
∫
E3

a(x,∇u) · ∇v dx.(4.2)

By assumption (1.3) and the Hölder inequality (2.1), we estimate the last integral
in the above expression as follows:∣∣∣∣

∫
E3

a(x,∇u) · ∇v dx

∣∣∣∣ ≤ β

∫
E3

(
j(x) + |∇u|p(x)−1

)
|∇v| dx

≤ 2β

(
‖j‖p′(·) +

∥∥∥|∇u|p(x)−1
∥∥∥
p′(·),{h<|u|≤h+t}

)
‖∇v‖p(·),{h−t<|v|≤h}.(4.3)

The last expression converges to zero as h tends to infinity, by Proposition 3.2,
inequality (2.4), and the following bound for an entropy solution w:∫

{h<|w|≤h+t}
|∇w|p(x) dx ≤ 1

b

∫
{h<|w|≤h+t}

a(x,∇w) · ∇w dx ≤ t

b
‖f‖1,

which follows from taking ϕ = Th(w) as a test function in the entropy inequality
(1.8). Therefore, from (4.2) and (4.3), we obtain

(4.4)

∫
{|u−Thv|≤t}

a(x,∇u) · ∇(u− Thv) dx ≥ I +

∫
E2

a(x,∇u) · ∇(u− v) dx,

where I converges to zero as h tends to infinity. We may adopt the same procedure
to treat the second integral in (4.1) and obtain

(4.5)

∫
{|v−Thu|≤t}

a(x,∇v) · ∇(v − Thu) dx ≥ II −
∫
E2

a(x,∇v) · ∇(u− v) dx,

where II converges to zero as h tends to infinity.
Next, we consider the right-hand side of inequality (4.1). Noting that

Tt(u− Thv) + Tt(v − Thu) = 0 in {|u| ≤ h, |v| ≤ h} ,
we obtain ∣∣∣∣

∫
Ω

f(x)
(
Tt(u− Thv) + Tt(v − Thu)

)
dx

∣∣∣∣
≤ 2t

(∫
{|u|>h}

|f | dx+

∫
{|v|>h}

|f | dx
)
.

Since both meas {|u| > h} and meas {|v| > h} tend to zero as h goes to infinity (by
Proposition 3.2), the right-hand side of inequality (4.1) tends to zero as h goes to
infinity. From this assertion, (4.1), (4.4), and (4.5) we obtain, letting h → +∞,∫

{|u−v|≤t}
(a(x,∇u)− a(x,∇v)) · ∇(u− v) dx ≤ 0, for all t > 0.

By assumption (1.4), we conclude that ∇u = ∇v, a.e. in Ω.
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ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION 6399

Finally, from the Poincaré inequality (2.2), we have

‖Tt(u− v)‖p(·) ≤ C‖∇(Tt(u− v))‖p(·) = 0, for all t > 0,

and hence u = v, a.e. in Ω. �

5. Existence of entropy and weak solutions

Let (fn)n be a sequence of bounded functions, strongly converging to f ∈ L1(Ω)
and such that

(5.1) ‖fn‖1 ≤ ‖f‖1, for all n.

We consider the problem

(5.2)

{
−div(a(x,∇u)) = fn(x) in Ω,

u = 0 on ∂Ω.

It follows from a standard modification of the arguments in [16, Theorem 4.2]

that problem (5.2) has a unique weak energy solution un ∈ W
1,p(·)
0 (Ω). Our aim

is to prove that these approximate solutions un tend, as n goes to infinity, to a
measurable function u which is an entropy solution of the limit problem (1.1).
We will divide the proof into several steps and use as the main tool the a priori
estimates for un and its gradient obtained in section 3. Much of the reasoning is
based on the ideas developed in [7], [5], and [3]; although some of the arguments are
not new, we have decided to present a self-contained proof for the sake of clarity
and readability.

We start by proving that the sequence (un)n of solutions of problem (5.2) con-
verges in measure to a measurable function u.

Proposition 5.1. Assume (1.2)–(1.5), f ∈ L1(Ω) and (5.1). Let un ∈ W
1,p(·)
0 (Ω)

be the solution of (5.2). The sequence (un)n is Cauchy in measure. In particular,
there exists a measurable function u such that un → u in measure.

Proof. Let s > 0 and define

E1 := {|un| > t} , E2 := {|um| > t} , and E3 := {|Tt(un)− Tt(um)| > s} ,
where t > 0 is to be fixed. We note that

{|un − um| > s} ⊂ E1 ∪ E2 ∪E3,

and hence,

(5.3) meas {|un − um| > s} ≤ meas (E1) + meas (E2) + meas (E3).

Let ε > 0. Using (5.1) and the uniform bound given by Proposition 3.2, we
choose t = t(ε) such that

(5.4) meas (E1) ≤ ε/3 and meas (E2) ≤ ε/3.

On the other hand, taking ϕ = 0 in the entropy condition (1.8) for un yields

(5.5)

∫
Ω

|∇Tt(un)|p(x) dx ≤ ‖f‖1
b

t, for all n ≥ 0,

using (1.2) and (5.1). Therefore, we can assume, by the Sobolev embedding (2.3),
that (Tt(un))n is a Cauchy sequence in Lq(·)(Ω), for all 1 ≤ q(·) 
 p∗(·). Conse-
quently, there exists a measurable function u such that

Tt(un) → Tt(u), in Lq(·)(Ω) and a.e.
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Thus,

meas (E3) ≤
∫
Ω

(
|Tt(un)− Tt(um)|

s

)q(x)

dx ≤ ε

3

for all n,m ≥ n0(s, ε).
Finally, from (5.3), (5.4), and the last estimate, we obtain that

(5.6) meas {|un − um| > s} ≤ ε, for all n,m ≥ n0(s, ε);

i.e., (un)n is a Cauchy sequence in measure. �

In order to prove that the sequence (∇un)n converges in measure to the weak
gradient of u we need the following standard fact in measure theory (cf. [19]).

Lemma 5.2. Let (X,M, µ) be a measure space such that µ(X) < +∞. Consider
a measurable function γ : X → [0,+∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ε > 0, there exists δ > 0 such that

µ(A) < ε, for all A ∈ M with

∫
A

γ dµ < δ.

Proposition 5.3. Assume (1.2)–(1.5), f ∈ L1(Ω) and (5.1). Let un ∈ W
1,p(·)
0 (Ω)

be the solution of (5.2). Then ∇un converges in measure to the weak gradient of u.

Proof. We claim that (∇un)n is Cauchy in measure. Indeed, let s > 0, and consider

E1 := {|∇un| > h} ∪ {|∇um| > h}, E2 := {|un − um| > t},
and

E3 := {|∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ t, |∇un −∇um| > s},
where h and t will be chosen later. We note that

(5.7) {|∇un −∇um| > s} ⊂ E1 ∪ E2 ∪ E3.

Let ε > 0. By Proposition 3.6, we may choose h = h(ε) large enough such
that meas(E1) ≤ ε/3 for all n,m ≥ 0. On the other hand, by Proposition 5.1
(see (5.6)), we have that meas(E2) ≤ ε/3 for all n,m ≥ n0(t, ε). Moreover, by
assumption (1.4), there exists a real-valued function γ : Ω → [0,+∞] such that
meas{x ∈ Ω : γ(x) = 0} = 0 and

(5.8) (a(x, ξ)− a(x, ξ′)) · (ξ − ξ′) ≥ γ(x),

for all ξ, ξ′ ∈ R
N such that |ξ|, |ξ′| ≤ h, |ξ − ξ′| ≥ s, for a.e. x ∈ Ω (cf. [7]). Let

δ = δ(ε) be given from Lemma 5.2, replacing ε and A by ε/3 and E3, respectively.
Using (5.8), the equation, and (5.1), we obtain∫

E3

γ(x) dx ≤
∫
E3

(a(x,∇un)− a(x,∇um)) · ∇(un − um) dx ≤ 2‖f‖1t < δ,

choosing t = δ/(4‖f‖1). From Lemma 5.2, it follows that meas(E3) < ε/3.
Thus, using (5.7) and the estimates obtained for E1, E2, and E3, it follows that
meas({|∇un −∇um| ≥ s}) ≤ ε, for all n,m ≥ n0(s, ε), proving the claim.

As a consequence, (∇un)n converges in measure to some measurable function v.
Finally, since (∇Ttun)n is uniformly bounded in Lp(·)(Ω), for all t > 0, it converges
weakly to ∇(Ttu) in L1(Ω). Therefore, v coincides with the weak gradient of u (see
Proposition 3.1). �
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We now prove the main theorem in this paper.

Proof of Theorem 1.2. Fix t > 0, ϕ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω), and choose Tt(un − ϕ)

as a test function in (1.6), with u replaced by un, to obtain∫
Ω

a(x,∇un) · ∇Tt(un − ϕ) dx =

∫
Ω

fn(x) Tt(un − ϕ) dx.

We note that this choice can be made using a standard density argument. We
now pass to the limit in the previous identity. Concerning the right-hand side,
the convergence is obvious since fn converges strongly in L1 to f and Tt(un − ϕ)
converges weakly-∗ in L∞, and a.e. to Tt(u− ϕ).

Next, we write the left-hand side as

(5.9)

∫
{|un−ϕ|≤t}

a(x,∇un) · ∇un dx−
∫
{|un−ϕ|≤t}

a(x,∇un) · ∇ϕ dx

and note that {|un − ϕ| ≤ t} is a subset of {|un| ≤ t + ‖ϕ‖∞}. Hence, taking
s = t+ ‖ϕ‖∞, we rewrite the second integral in (5.9) as∫

{|un−ϕ|≤t}
a(x,∇Ts(un)) · ∇ϕ dx.

Since a(x,∇Ts(un)) is uniformly bounded in (Lp′(·)(Ω))N (by assumption (1.3) and
(5.5)) and by Proposition 5.3, we have that it converges weakly to a(x,∇Ts(u)) in

(Lp′(·)(Ω))N . Therefore the last integral converges to∫
{|u−ϕ|≤t}

a(x,∇u) · ∇ϕ dx.

The first integral in (5.9) is nonnegative, by (1.2), and it converges a.e. by
Proposition 5.3. It follows from Fatou’s lemma that∫

{|u−ϕ|≤t}
a(x,∇u) · ∇u dx ≤ lim inf

n→+∞

∫
{|un−ϕ|≤t}

a(x,∇un) · ∇un dx.

Gathering results, we obtain∫
Ω

a(x,∇u) · ∇Tt(u− ϕ) dx ≤
∫
Ω

f(x)Tt(u− ϕ) dx;

i.e., u is an entropy solution of (1.1).
The uniqueness follows from Theorem 4.1 and the regularity properties from

Corollaries 3.5 and 3.7. �

To obtain Theorem 1.3 we need to prove, in particular, that u satisfies the
equation in the distributional sense, i.e., that (1.6) holds. For this, we need two
technical lemmas. The first one is an extension of Lemma 6.1 in [5].

Lemma 5.4. Let (vn)n be a sequence of measurable functions. If vn converges in
measure to v and is uniformly bounded in Lq(·)(Ω), for some 1 
 q(·) ∈ L∞(Ω),
then vn → v strongly in L1(Ω).
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Proof. Note first that Lq(·)(Ω) ⊂ Lq−(Ω), and hence we may assume (vn)n to be
uniformly bounded in Lq−(Ω). Using this fact and the Hölder inequality, we obtain∫

Ω

|vm − vn| dx =

∫
{|vm−vn|≤s}

|vm − vn| dx+

∫
{|vm−vn|>s}

|vm − vn| dx

≤ |Ω|s+meas({|vm − vn| > s})1/q
′
−‖vm − vn‖q−

≤ |Ω|s+ C meas({|vm − vn| > s})1/q′− ,(5.10)

for all s > 0.
Taking s small enough in (5.10) and using the convergence in measure of (vn)n,

we obtain that, for all ε > 0, there exists n0 = n0(ε) such that ‖vm − vn‖1 < ε, for
all m,n ≥ n0(ε). �

The second technical lemma will be the key point to prove that the entropy
solution satisfies the equation in the sense of distributions.

Proposition 5.5. Assume (1.2)–(1.5), f ∈ L1(Ω) and (5.1). Let un ∈ W
1,p(·)
0 (Ω)

be the solution of (5.2). If p(·)− 1 
 q1(·), then the following assertions hold:
(i) a(x,∇un) converges to a(x,∇u) strongly in L1(Ω).
(ii) a(x,∇u) ∈ Lq(·)(Ω), for some 1 
 q(·).
(iii) u and ∇u satisfy (3.4) and (3.6).

Proof. (i) – (ii) By Proposition 5.3 and the Nemitskii Theorem (cf. [24, p. 20]), we
obtain that a(x,∇un) converges to a(x,∇u) in measure. Moreover, using (1.3), we
have

|a(x,∇un)| ≤ β
(
j(x) + |∇un|p(x)−1

)
,

with j ∈ Lp′(·)(Ω) ⊂ Lq(·)(Ω), for all 1 ≤ q(·) 
 N/(N − 1). By Corollary 3.7
applied to un, (5.1) and the assumption that p(·) − 1 
 q1(·), we have that
(|∇un|p(·)−1)n is uniformly bounded in Lq(·)(Ω), for some 1 
 q(·). Hence, us-
ing Lemmas 5.3 and 5.4, we obtain that a(x,∇un) converges to a(x,∇u) strongly
in L1(Ω), and a(x,∇u) ∈ Lq(·)(Ω).

(iii) It follows from taking the limit as n → +∞ in Corollaries 3.5 and 3.7 applied
to un and using (5.1). �

Proof of Theorem 1.3. Let un ∈ W
1,p(·)
0 (Ω) be the solution of (5.2) and let u be

given by Proposition 5.1. Using Proposition 5.5 (i) and the strong convergence in
L1 of the fn to f , we obtain (1.6) by passing to the limit in∫

Ω

a(x,∇un) · ∇ϕ dx =

∫
Ω

fn(x)ϕ dx,

for all ϕ ∈ C∞
0 (Ω).

Now, we claim that 1 
 q1(·) and 1 
 q0(·) under the assumption 2−1/N 
 p(·).
By definition,

q1(·) =
p(·)2

p(·) + p′+(1− p(·)/N)
;

therefore, 1 
 q1(·) if and only if

(5.11)
p′+/p(·)− (p(·)− 1)

p′+

 1

N
.
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Noting that the left-hand side is decreasing in p(·) and that p′+ = p−/(p− − 1),
(5.11) is equivalent to

(2− p)+ = 2− p− =
p′+/p− − (p− − 1)

p′+
<

1

N
,

i.e., (p− 2 + 1/N)− > 0 , proving the first assertion. On the other hand, 1 
 q0(·)
is equivalent to

1 
 (p− − 1)
Np(·)

p−(N − p(·)) .

Since the right-hand side is increasing in p(·), it is sufficient to prove that

1 < (p− − 1)
N

(N − p−)
,

which follows easily from the assumption 2− 1/N 
 p(·).
As a consequence, from Corollaries 3.5 and 3.7,

u ∈ Lq(·)(Ω), for all 1 ≤ q(·) 
 q0(·)
and

u ∈ W
1,q(·)
0 (Ω), for all 1 ≤ q(·) 
 q1(·). �

Remark 5.6. Assumption p(·)−1 
 q1(·), which is obviously satisfied for p constant,
is equivalent to the condition

(5.12)
Np′(·)
N − p(·) � p′+.

The analysis of the behaviour of the function on the left-hand side of this inequality
leads to the following conclusions:

(i) if p+ <
√
N , then (5.12) is satisfied for any function p(·) such that

1

p−
− 1

p+
<

p+ − 1

N
;

(ii) if p− ≤
√
N ≤ p+, then (5.12) is satisfied for any function p(·) such that

p− >
N

2
√
N − 1

;

(iii) if p− >
√
N , then (5.12) is satisfied for any function p(·).

The condition in case (i) only holds if p− is close to p+, so it forces a modest
variation in the field of values of p(·).
Remark 5.7. We finally comment on the significance of assumption p(·)−1 
 q1(·),
under 2− 1/N 
 p(·). Observe that:

• It always holds if p(·) 
 2 since then p(·)− 1 
 1 
 q1(·).
• The condition in case (i) above is only pertinent for dimensions N ≥ 5 since

p(·) 
 2 if p+ <
√
N , for N = 2, 3, 4. Moreover, for N ≥ 5, the condition

is satisfied if

sup
p−>2− 1

N

1

p−
=

N

2N − 1
<

2
√
N − 1

N
= inf

2≤p+<
√
N

{
1

p+
+

p+ − 1

N

}
,

which holds for N ≤ 10.
• The condition in case (ii) above always holds for dimensions N ≤ 10, since
then N

2
√
N−1

< 2− 1
N .
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Therefore, up to dimension N = 10, assumption p(·) − 1 
 q1(·) is automatically
satisfied when we assume 2− 1/N 
 p(·).
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