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ON THE RATIONALIZATION OF THE CIRCLE

CARLES CASACUBERTA

(Communicated by Frederick R. Cohen)

Abstract. We give an example showing that, for a nilpotent group G and

a set of primes P, the jP-localization homomorphism /: G —► Gp need not

induce an isomorphism in cohomology with arbitrary (twisted) Z/>-module co-

efficients. From this fact we infer that, in the pointed homotopy category of con-

nected CW-complexes, the inclusion of the subcategory of spaces whose higher

homotopy groups are Z^-modules and whose fundamental group is uniquely

/"-radicable does not admit a left adjoint.

0. Introduction

The purpose of this note is to give the details and discuss the implications

of a counterexample which was mentioned in [3]. Let G be a nilpotent group,

P a set of primes (different from the set of all primes), and /: G -> Gp the

/'-localization homomorphism [12]. It is well known that, given a nilpotent

action of Gp on a Z/>-module A,

(0.1) G±GP"Aut(A),

the induced homomorphisms in cohomology (with twisted coefficients via (0.1))

(0.2) l*:Hk(GP;A)^Hk(G;A)

are isomorphisms for all k (see [12, Theorem 1.4.14]). If one removes the

assumption that the action co be nilpotent, then this needs no longer be true.

We supply a counterexample in § 1: The group G is chosen to be the group of

integers (multiplicatively written); then its TMocalization (i.e., the group Zp of

TMocal integers, multiplicatively written) acts by multiplication on the rational

group algebra Q[Z^], and it turns out that

(0.3) H2(ZP;Q[LP])^Q,

while, of course, 772(Z; Q[Z/>]) = 0 because Z has cohomological dimension

one. Thus (0.2) fails to be an isomorphism for k — 2 in this case.

On the other hand, we know that (0.2) turns out to be an isomorphism,

for all k, for a certain broad class of not necessarily nilpotent actions (see
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Theorem 1.1), including all those in which im co is a torsion group of finite

exponent (see [3, 16]).

Our interest in this question arose in the following context: Let <%* denote the

pointed homotopy category of connected CW-complexes. For a set of primes P,

let 2p be the full subcategory of %f of spaces X whose higher homotopy

groups 7ii(X), i > 2, are Z/>-modules, and whose fundamental group nx(X)

is uniquely P'-radicable (i.e., each of its elements has a unique pth root for

every prime p & P; cf. [12, 17]). In Example 7.3 of [2] the class 2Sp was
erroneously described as the class of targets (or "local objects") associated to a

certain idempotent monad in %?. We pointed out the difficulty in [3, 4], where

we described the class of spaces truly arising in that example of [2]. In the

present note, we go further by showing that, in fact, the class 2p cannot be the

class of local objects associated to any idempotent monad in %?.

Our argument is the following. It is well known that the map

(0.4) S1-*K(ZP,1)

induced by the embedding of Z in Zp is universal among maps from Sx to

nilpotent spaces in 3Sp (cf. [12]). However, the observation (0.3) together with

a standard obstruction theory argument (see §2) show that (0.4) is not universal

in %f among maps from Sx to arbitrary spaces in 31 p. Moreover, we show

that no map f:Sx -* X with X in 3}P can induce a bijection of pointed

homotopy classes of maps f*:[X,Y] = [Sx,Y] for all spaces Y in 3p , so

that the inclusion of 31 p in %f does not admit a left adjoint.

When this paper was first written, it was based on the observation that

H2(Q'> Q[Q]) # 0; which had been obtained by hand calculation. This fact
had implications on the properties of the rationalization map Sx —> K(Q, 1),

as a special case of the results in §2. This is the origin of the title of the pa-
per. Later, Dicks and Kropholler indicated how to check, by other methods,

that H2(G; A[G]) is indeed different from 0 for every noncyclic subgroup G

of Q and every nonzero abelian group A. Thus the paper was rewritten—

without changing the title—so as to apply, more generally, to an arbitrary set of

primes P.

1. Algebraic remarks

We recall the following result from [3]. It is an improvement of an earlier

observation of Reynol [16].

Theorem 1.1. Let G be a nilpotent group, P a set of primes, and I: G —» Gp the

P-localization homomorphism. Let Gp act on a ZP-module A in such a way

that the semidirect product Ax Gp is uniquely P'-radicable. Then the induced

homomorphisms I*: Hk(Gp; A) —> Hk(G; A) are isomorphisms for all k .   a

All nilpotent Zp[c7/>]-modules A , as well as many others, satisfy the assump-

tion that the semidirect product A x Gp is uniquely P'-radicable (cf. [3]). Our

goal in this section is to supply a counterexample to Theorem 1.1 when this

assumption on the action is removed.

Since we are going to deal with group algebras of the form Q[G], with G a

subgroup of Q, it is convenient to use additive notation for the elements of Q

when they occur as coefficients, but multiplicative notation when Q is viewed
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as an abstract group. Thus we fix a symbol £, and consider the group algebra

Q[Q] of formal sums

£ «,<?',        a,eQ,

where almost all coefficients aq are zero and the multiplication is given by

grgs _ gr+s jn particular, the cyclic group generated by £ is identified with the

group of integers Z. Of course, Q[Q] comes with a canonical action of Q by

multiplication, which restricts to any subgroup of Q and will be implicit in the

coefficients of the cohomology groups in all of what follows.

As we said in the Introduction, the fact that H2(G; Q[G]) ^ 0 if G is a
noncyclic subgroup of Q is essentially known. It can be proved by combining

techniques from [11, 13], or also using [6, 7]. The argument that we give here

was suggested by the referee; it is interesting because it is comparatively simple

and self-contained.

Proposition 1.2. Let G be any noncyclic subgroup of Q containing Z. Denote

by  <pn:Z—>Z   the nth power map   (pn(£,)=£,n and by

(cpny:Hx(Z;Q[G])-+Hx(Z;Q[G])

the homomorphism induced by tpn . Then:

(a) (cp„)* is not surjective if n > 2.
(b) Given two integers n > 2, m > 1, not necessarily distinct, the image of

(9nm)* is properly contained in the image of (cpm)* ■

(c) 772(G;Q[C7]) is uncountable.

Proof. Note that (a) follows from (b) by taking m = 1 . We next prove (b), in

a slightly more general form: Assume given a diagram

(1.1) Z -*=♦ Z -^ Z -?-» Aut(Q[C7])

where the action x is defined by sending the generator £ to multiplication by

a fixed element x = £9 £ G, q # 0 (the statement of (b) refers to the special
case x = £,). Thus (1.1) gives rise to a commutative diagram

77'(Z;Q[C7])       (H        HX(Z;Q[G])        (H* 77'(Z;Q[fJ])

|= 1= 1=
Q[C7]/(t-1)Q[C7]     $     Q[G]/(x" - 1)Q[C7]     I     Q[G]/(x"m-l)Q[G]

in which the bottom arrows are projections of the endomorphisms of Q[C7]

defined, respectively, as multiplication by

a - 1 +x + x2 -\-\-x"~x,
$ = 1 +T" + T2" + ... + T(m-l)J>_

Now the class of P in Q[G]/(xnm - 1)Q[G] belongs to the image of ~B , but

not to the image of the composition [la. Indeed, suppose that /? = fiap +
(x"m - \)v in Q[C7], for some elements p, v. Then, since xnm - 1 =

fia(x - 1), we have /i[l - a(p + (x - l)u)] = 0. Since Q[G] has no zero

divisors [15], this tells us that a is a unit in Q[C7], which is absurd unless

t = 1 .  This completes the proof of part (b). To prove (c), observe that the
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group G is isomorphic to the direct limit of a certain system

(1.2) Z^Z^Z^.-.

in which each n, is an integer bigger than or equal to 2. The (k + 1 )th copy

of Z in this system acts on Q[C7] as multiplication by £1/"1 '"*. Now consider

the associated Milnor exact sequence [18, p. 273]

(1.3) 0 -Um'tf'fZ; Q[G]) - 772(C7; Q[fJ]) - hm772(Z; Q[C7]) ̂ 0,

and look at the inverse system

(1.4) 77' (Z; Q[C7]) {t^-' 771 (Z; Q[G]) ̂  771 (Z; Q[G]) (f^* • ■ •

associated to (1.2). Since ((pni)*(<Pn2Y • • ■ (<PnkY = (<Pnin2-nkY> part (b) ensures

that (1.4) is not Mittag-Leffler. Since the groups in (1.4) are countable, The-

orem 2 in [14] (see also [10]) tells us that \imxHx(Z; Q[G]) is uncountable,

which gives the desired result.   □

Part (a) of Proposition 1.2 is significant in the context of [3], since it shows

that the standard map <p„: Sx —► Sx of degree n > 2 need not induce an iso-

morphism in cohomology with arbitrary (twisted) coefficients whose underlying

abelian group is a Q-vector space.

In the next section we explain another consequence of Proposition 1.2.

2. Implications in homotopy theory

In what follows, all spaces are assumed to be based connected CW-complexes.

We fix a set of primes P, different from the set of all primes. The multiplication
action of Z/> on Q[ZP] can be realized by an action by basepoint-preserving

homeomorphisms of Z/> on an Eilenberg-Mac Lane space K(Q[Zp], 2). Con-
sider the space

(2.1) L = E(Zp)xZpK(Q[ZP],2)

obtained by dividing out the diagonal action of ZP on E(ZP) x 7<(Q[Z/>], 2),
where E(Zp) is the universal cover of a K(Zp, 1). This space L has fun-

damental group isomorphic to ZP and a single nonvanishing higher homotopy

group, namely n2, which is isomorphic to Q[Z/>]. Thus it belongs to the class

3p of spaces whose higher homotopy groups are Z/>-modules and whose fun-
damental group is uniquely 7"-radicable.

Recall from [5, 9] that, given a space X and a group homomorphism

cp: nx(X) —► Zp, there is a one-to-one correspondence between the second co-

homology group H2(X; Q[Z/>]) with twisted coefficients via tp and the set of

pointed homotopy classes of maps /: X -> L inducing tp on the fundamental
group.

Now suppose that the map /: K(Z, 1) —> K(ZP, 1) is universal (initial) in

%? among maps from K(Z, 1) to spaces in 3P . Then, in particular, we have

a bijection of pointed homotopy classes of maps

(2.2) r:[K(Zp,\),L]^[K(Z,\),L],
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which restricts to a bijection of classes of maps inducing, respectively, the iden-

tity of Zp and the inclusion Z —► Z/> on the fundamental group. This provides
a cohomology isomorphism

(2.3) /*: H2(ZP; Q[ZP]) " 772(Z; Q[ZP])

contradicting Proposition 1.2 and hence proving that / fails to be universal in

%?. Moreover, we next show that this difficulty cannot be solved by replacing

K(ZP, 1) by any other space.

Proposition 2.1. The inclusion of 3p in %? does not admit a left adjoint.

Proof. Assume that some map f:Sx -»I is universal in %* among maps from

Sx to spaces in 3P . Then for every uniquely P'-radicable group G we have a

bijection

f:[X,K(G, l)]^[Sx,K(G, 1)],

which is equivalent to

/*: Hom(7r, (X), G) 2 Hom(Z, G),

and this tells us that /»: Z —> nx(X) is a P-equivalence of groups. Since X

is in 3p , it follows that nx(X) = Zp. Note that we are using here the easily

checked fact that the inclusion Z —> Z/> is universal among homomorphisms

from Z to uniquely P'-radicable groups, not only in the category of nilpotent

groups [12] but also in the category of all groups (contrary to what happens in

the homotopy-theoretical analogue under discussion!).

Now let nx(X) act by multiplication on Q[Z/»] and obtain, by the same

argument used in (2.2) and (2.3), a bijection f*:[X, L] = [Sx, L] restricting

to an isomorphism

(2.4) f: H2(X; Q[Z/>]) = H2(SX; Q[ZF]).

But for every space X the Serre spectral sequence associated to the universal

covering !-.!-» K(nx(X), 1) tells us that H2(nx(X); A) embeds as a sub-

group in H2(X; A) for every coefficient module A . Thus, by Proposition 1.2,

H2(X; Q[ZP}) ? 0, which contradicts (2.4).   □

In [3] we study certain subcategories of 3p whose inclusion in %? does

admit a left adjoint. The main examples are the class of 77»( ; Z/>)-local

spaces in the sense of Bousfield [1], and the class of spaces X for which the

/7th power map a h-» op on the loop space SIX is a self-homotopy equivalence

for all primes p & P. It is interesting that these two classes of spaces seem to

be respectively minimal and maximal within 3p with the property that a left

adjoint of their inclusion into 3? exists and sends Sx to a K(Zp, 1). Note

that the space L that we used above, as well as many others, must have been

left out of the latter two classes of spaces.

We finally observe that, in the context of the recent work of Dror Farjoun [8],

Proposition 2.1 implies that there is no map f: A -> B in %f such that the class

of /-local spaces (i.e., spaces X such that /*: map„(P, X) ~ map,(A, X))

coincides with 3P.
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