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ISOMORPHISM CLASSES OF SHORT GORENSTEIN LOCAL

RINGS VIA MACAULAY’S INVERSE SYSTEM

J. ELIAS AND M. E. ROSSI

Abstract. Let K be an algebraically closed field of characteristc zero. In
this paper we study the isomorphism classes of Artinian Gorenstein local K-
algebras with socle degree three by means of Macaulay’s inverse system. We
prove that their classification is equivalent to the projective classification of
cubic hypersurfaces in Pn

K . This is an unexpected result because it reduces the

study of this class of local rings to the graded case. The result has applications
in problems concerning the punctual Hilbert scheme Hilbd(P

n
K) and in relation

to the problem of the rationality of the Poincaré series of local rings.

1. Introduction

The classification, up to analytic isomorphisms, of Artinian local K-algebras
plays an important role in commutative algebra and in algebraic geometry. Among
other examples, the study of the irreducibility and the smoothness of the punctual
Hilbert scheme Hilbd(P

n
K) parameterizing zero-dimensional subschemes of fixed de-

gree d in P
n
K , is strictly related to the structure of the Artinian local algebras of

multiplicity d. In particular, because the locus of points of Hilbd(P
n
K) correspond-

ing to Gorenstein subschemes is an open subset, often one can restrict the study
to schemes which are the spectrum of Artinian Gorenstein local algebras; see for
example [5], [6], [9], [10], [14], [21].

In this paper we present structure theorems of Artinian Gorenstein local K-
algebras (A,m) such that m4 = 0. In the main result of this paper we prove that
the classification of the Artinian Gorenstein local K-algebras (A,m) with m4 = 0
is equivalent to the projective classification of the cubic hypersurfaces of Pn

K (see
Theorem 4.1 and Corollary 4.3). The key point of the paper is to prove that an
Artinian Gorenstein local ring A with Hilbert function {1, n, n, 1} is isomorphic to
its own associated graded ring (with respect to the maximal ideal); see Theorem 3.3.
In this case we say that A is canonically graded. This is an unexpected result and it
is false in general, even if the Hilbert function is symmetric. For instance there are
examples of local rings with Hilbert function {1, 2, 2, 2, 1} which are not canonically
graded.
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4590 J. ELIAS AND M. E. ROSSI

From classical results on the projective classification of the homogeneous cubics
in P

r with r ≤ 3, we may deduce the classification of the Artinian Gorenstein local
rings with Hilbert function {1,m, n, 1} where n ≤ 4. This classification allows us to
find geometric interpretations of the singularity of Hilbd(P

n) for low degrees d. In
particular we recover recent results by Casnati and Notari; see [6, Theorem 4.1].

Local rings with low socle degree have also been studied in relation to their free
resolutions. We recall that Bøgvad proved that there exist Artinian Gorenstein local
rings with socle degree three and irrational Poincaré series; see [2]. However Hen-
riques and Şega recently proved that, assuming the existence of exact zero-divisors,
the Poincaré series of finitely generated modules over an Artinian Gorenstein local
ring of socle degree three is rational; see [13, Theorem 4.4]. For Artinian Goren-
stein local rings of socle degree three, the main result of this paper will translate
the problems to Gorenstein graded K-algebras (see [7] for recent developments).
As a consequence of this approach, taking advantage of the graded case, Corollary
3.9 recovers the quoted result by Henriques and Şega in the particular case of rings.

A central tool in this paper is Macaulay’s inverse system (see [19]) which es-
tablishes a one-to-one correspondence between Artinian Gorenstein algebras and
suitable polynomials. This classical correspondence has been deeply studied in the
homogeneous case, among other authors, by Iarrobino in a long series of papers;
see, for example, [15], [16], [17]. Notice that from a categorical point of view,
Macaulay’s correspondence comes from Matlis duality; see [22, Theorem 5.2].

In the local case the situation is more complicated than in the graded one; nev-
ertheless, the classification under the action of isomorphisms of algebras can be
translated to the classification of the inverse system polynomials under the action
of a group of transformations explicitly described. Emsalem devoted [11, Section
C] to present an approach to the classification of Artinian Gorenstein local alge-
bras by means of their inverse systems. In Section 2 we collect results spread over
different papers (see [11], [15], [16], etc.) and also present explicit methods. The
strategy of classifying inverse system polynomials instead of the corresponding Ar-
tinian Gorenstein local algebras has at least two advantages: first, we deal with one
polynomial instead of a system of generators of the defining ideals (as in [5], [6],
[9], [10]) and, second, we may perform effective computations, often reduced to a
linear algebra problem (see Proposition 2.2).

We hope that this approach will be useful in studying numerical invariants of
local Gorenstein singularities.

2. Inverse system for Artinian local rings

Throughout this paper K denotes an algebraically closed field of characteristic
zero. Let R = K[[x1, . . . , xn]] be the ring of the formal series with maximal ideal
M = (x1, . . . , xn) and let P = K[y1, . . . , yn] be a polynomial ring. For a positive
integer s, we let P≤s denote the set of polynomials of degree ≤ s.

Let I be an ideal of R such that R/I has finite length. Set A = R/I. We let
m = M+I denote the maximal ideal of A. The socle of A is the colon ideal (0 :A m)
and the socle degree s of A is the largest integer for which ms �= 0. It is well known
that A is Gorenstein if and only if dimK(0 : m) = 1. From now on we assume that
the embedding dimension of A is n.

Consider grm(A) :=
⊕

i≥0m
i/mi+1 the associated graded ring of A = R/I. It

is well known that grm(A) � K[x1, . . . , xn]/J where J is the homogeneous ideal
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ISOMORPHISM CLASSES OF SHORT GORENSTEIN LOCAL RINGS 4591

of K[x1, . . . , xn] generated by the initial forms of the elements of I. The Hilbert
function of A is by definition the Hilbert function of grm(A), i.e.,

HFA(i) = dimK

(
mi

mi+1

)
.

In this section we recall the main facts and establish notation concerning the
Macaulay inverse system in the study and classification of Artinian local rings
(A,m). The reader should refer to [11] and [16] for an extended treatment. The
graded case is much better understood than the local case, and several interesting
papers have been written (see for example [19, Chapter IV] and [17]).

It is known that P has an R-module structure by means of the action

◦ : R× P −→ P
(f, g) → f ◦ g = f(∂y1

, . . . , ∂yn
)(g),

where ∂yi
denotes the partial derivative with respect to yi. If we denote by xα =

xα1
1 · · ·xαn

n and yβ = yβ1

1 · · · yβn
n , then

xα ◦ yβ =

⎧⎨
⎩

β!
(β−α)! y

β−α if βi ≥ αi for i = 1, . . . , n,

0 otherwise,

where β!
(β−α)! =

∏n
i=1

βi!
(βi−αi)!

. We remark that for every f, h ∈ R and g ∈ P , it

holds (fh) ◦ g = f ◦ (h ◦ g), and we have Ms+1 ◦ g = 0 if and only if g ∈ P≤s.
Let S ⊆ P be a set of polynomials. In the following we will denote by 〈S〉K the

K-vector space generated by S, and by 〈S〉R the R-submodule of P generated by
S, i.e., the K-vector space generated by the elements of S and by the corresponding
derivatives of all orders. Starting from ◦, we consider the exact pairing of K-vector
spaces:

〈 , 〉 : R× P −→ K
(f, g) → (f ◦ g)(0).

For any ideal I ⊂ R, we define the following R-submodule of P :

I⊥ := {g ∈ P | 〈f, g〉 = 0 ∀f ∈ I } = {g ∈ P | I ◦ g = 0}.
If I = Ms+1, then I⊥ coincides with P≤s. In general if R/I has socle degree s, then
I⊥ is generated by polynomials of degree ≤ s. Conversely, for every R-submodule
M of P we define

AnnR(M) := {g ∈ R | 〈g, f〉 = 0 ∀f ∈ M},
which is an ideal of R; a simple computation shows that AnnR(M) = {g ∈ R | g ◦
M = 0}. If M is cyclic, that is M = 〈f〉 = R ◦ f with f ∈ P, then we will write
AnnR(f).

Emsalem [11, Section B, Proposition 2] and Iarrobino [16, Lemma 1.2] proved
that there exists a one-to-one correspondence between ideals I ⊆ R such that R/I
is an Artinian local ring and R-submodules M of P which are finitely generated.

Since R/I and I⊥ are finitely generated K-vector spaces, it is easy to see that
the action 〈 , 〉 induces the following isomorphism of K-vector spaces (see [11,
Proposition 2 (a)]):

(1) (R/I)∗ � I⊥,

where ()∗ denotes the dual with respect to the paring 〈 , 〉 induced on R/I.
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4592 J. ELIAS AND M. E. ROSSI

Hence dimK R/I (= multiplicity of R/I) = dimK I⊥. As in the graded case, it
is possible to compute the Hilbert function of A = R/I via the inverse system. We
define the K-vector space

(2) (I⊥)i :=
I⊥ ∩ P≤i + P<i

P<i
.

Then, by (1), it is known that

(3) HFR/I(i) = dimK(I⊥)i.

Given a K-algebra C, we will denote by Aut(C) the group of the automorphisms
of C as a K-algebra and by AutK(C) a K-vector space. The automorphisms of R as
a K-algebra are well known. They act as replacement of xi by zi, i = 1, . . . , n, such
that M = (x1, . . . , xn) = (z1, . . . , zn). Actually, since Ms+1 ⊆ I, we are interested
in the automorphisms of R/Ms+1 of K-algebras induced by the projection π :
R −→ R/Ms+1. Clearly Aut(R/Ms+1) ⊆ AutK(R/Ms+1).

Let E = {ei} be the canonical basis of R/Ms+1 as a K-vector space consisting of
the standard monomials xα ordered by the deg-lex order with x1 > · · · > xn. Then
the dual basis of E with respect to the perfect paring 〈 , 〉 is the basis E∗ = {e∗i } of
P≤s where

(xα)∗ =
1

α!
yα,

in fact e∗i (ej) = 〈ej , e∗i 〉 = δij , where δij = 0 if i �= j and δii = 1. Hence, for any
ϕ ∈ AutK(R/Ms+1), we may associate a matrix M(ϕ) with respect to the basis
E of size r = dimK(R/Ms+1) =

(
n+s
s

)
. We have the following natural sequence of

morphisms of groups:

(4) Aut(R)
π−→ Aut(R/Ms+1)

σ−→ AutK(R/Ms+1)
ρE−→ Glr(K).

Given I and J ideals of R such that Ms+1 ⊂ I, J, there exists an isomorphism
of K-algebras

ϕ : R/I → R/J

if and only if ϕ is canonically induced by a K-algebra automorphism of R/Ms+1

sending I/Ms+1 to J/Ms+1. In particular ϕ is an isomorphism of K-vector spaces.
Dualizing

ϕ∗ : (R/J)∗ → (R/I)∗

is an isomorphism of the K-vector subspaces (R/I)∗ � I⊥ and (R/J)∗ � J⊥ of
P≤s. Hence tM(ϕ) is the matrix associated to ϕ∗ with respect to the basis E∗ of
P≤s.

We can complete (4) by the following commutative diagram which helps to vi-
sualize our setting:

AutK(R/Ms+1)
ρE−→ Glr(K)

↓ ∗ ↓ t()

AutK(P≤s)
ρE∗−→ Glr(K).

We denote by R the subgroup of AutK(P≤s) (automorphisms of P≤s as a K-
vector space) represented by the matrices tM(ϕ) of Glr(K) with ϕ ∈ Aut(R/Ms+1).

Theorem 2.1 ([11, Proposition 15]). The classification, up to analytic isomor-
phism, of the Artinian local K-algebras of multiplicity d, socle degree s and em-
bedding dimension n is equivalent to the classification, up to the action of R, of
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ISOMORPHISM CLASSES OF SHORT GORENSTEIN LOCAL RINGS 4593

the K-vector subspaces of P≤s of dimension d, stable by derivations and containing
P≤1 = K[y1, . . . , yn]≤1.

More precise results can be stated for Artinian Gorenstein local K-algebras. A
local ring A = R/I is an Artinian Gorenstein local ring of socle degree s if and
only if its dual module I⊥ is a cyclic R-submodule of P generated by a polynomial
F ∈ P of degree s (see also [18, Theorem 220] and [16, Lemma 1.2]). We will denote
by AF the Gorenstein Artin algebra associated to F ∈ P, i.e.,

AF = R/AnnR(F ).

Hence each Artinian Gorenstein local ring of socle s will be equipped with a
polynomial F ∈ P of degree s. The polynomial F is not unique, but is determined
up to a unit u of R (F can be replaced by u ◦ F ).

Our goal is to translate the classification of the Artinian Gorenstein local rings
A = R/I of socle s in terms of the corresponding polynomials of degree s in P.

Let ϕ ∈ Aut(R/Ms+1). From the previous facts we have

(5) ϕ(AF ) = AG if and only if (ϕ∗)−1(〈F 〉R) = 〈G〉R.
It is easy to verify that

(6) ϕ(AF ) = AG if and only if (ϕ∗)−1(F ) = u ◦G where u is a unit in R.

Let u be an invertible element of R/Ms+1. The corresponding action of u in
P≤s is a K-vector space isomorphism, so we can consider the associated matrix
N(u) ∈ Glr(K) with respect to the basis E∗. If F = b1e

∗
1 + · · ·+ bre

∗
r ∈ P≤s, then

we will denote the row vector of the coefficients of the polynomial with respect to
the basis E∗ by

[F ]E∗ = (b1, . . . , br).

Hence from (6) we deduce the following key result:

Proposition 2.2. The Artinian Gorenstein local rings AF and AG of socle degree s
are isomorphic if and only if there are ϕ ∈ Aut(R/Ms+1) and an invertible element
u ∈ R/Ms+1 such that

(7) [G]E∗(tN(u) M(ϕ)) = [F ]E∗ .

The above result enables us to study the isomorphism classes of Artinian Goren-
stein algebras in an effective computational framework. The strategy of this paper
is to classify the Artinian local algebras by classifying their inverse systems by
means of (7). Notice that the Proposition 2.2 result extends [17, Appendix A] or
[11, Section C, Proposition 17] to the nonhomogeneous case.

We say that F ∈ P = K[y1, . . . , yn] is nondegenerate if the embedding dimension
of the Gorenstein algebra AF is n, i.e., HFAF

(1) = n. Hence a polynomial F of
degree s is nondegenerate if and only if the dimension of the K-vector space of the
derivatives of order s − 1 of F is n or, equivalently, the ideal AnnR(F ) does not
contain elements of valuation one.

In order to classify the Artinian Gorenstein local rings of given multiplicity,
we need information on the admissible Hilbert functions. In the graded case, the
Hilbert function of an Artinian Gorenstein algebra is symmetric. Little is known
about the Hilbert function in the local case. The problem comes from the fact
that, in general, the associated algebra G = grm(A) =

⊕
n≥0 m

n/mn+1 is no longer
Gorenstein.
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4594 J. ELIAS AND M. E. ROSSI

Nevertheless, Iarrobino in [16] proved interesting results concerning G. Let us
consider a filtration of G by a descending sequence of ideals

G = C(0) ⊇ C(1) ⊇ · · · ⊇ C(s− 2)

whose successive quotient

Q(a) = C(a)/C(a+ 1)

are reflexive graded G-modules of socle degree s−a
2 (s = socle-degree of A); see [16,

Theorem 1.5]. Hence Q(a) has symmetric Hilbert function.
In particular Q(0) = G/C(1) is the unique (up to isomorphism) graded Goren-

stein quotient of G with the same socle degree s. Iarrobino proved that if HFA(n)
is symmetric, then G = Q(0) and it is Gorenstein. The same result has also been
proved in a different manner by J. Watanabe in [23]. Hence if A is Gorenstein ([16,
Proposition 1.7] and [11, Proposition 7])

G is Gorenstein ⇐⇒ HFA(n) is symmetric ⇐⇒ G = Q(0).

The G-module Q(0) plays a crucial role, and it can be computed in terms of the
corresponding polynomial in the inverse system. Let F ∈ P be a polynomial of
degree s and denote by Fs the form of highest degree in F, that is, F = Fs + · · ·
terms of lower degree, then

Q(0) � R/AnnR(Fs);

see [11, Proposition 7] and [16, Lemma 1.10].

3. Artinian Gorenstein algebras with HFA = {1, n, n, 1}
Let I be an ideal of R = k[[x1, . . . , xn]]. Assume A = R/I is an Artinian Goren-

stein local ring with Hilbert function HFA = {1, n, n, 1}. This means that the socle
degree is three and HFA(1) = HFA(2) = n,HFA(0) = HFA(3) = 1. As we have
seen, since HFA is symmetric, then G = grm(A) is Gorenstein. We recall that
G = K[x1, . . . , xn]/J , where J is the ideal generated by the initial forms of the
elements of I. Since A is Artinian, there is a natural isomorphism between G and
R/JR. In this section we prove that there exists an isomorphism of local rings
between A and G (actually between A and R/JR); see Theorem 3.3.

It is very rare that a local ring is isomorphic to its associated graded ring.
Following Emsalem [11], we say that A is canonically graded if A � G. Gorenstein
local rings with symmetric Hilbert function are not necessarily canonically graded.
The following example shows that we cannot extend the main result of this section
to higher socle degrees without new assumptions.

Example 3.1. Let A be an Artinian Gorenstein local K-algebra with Hilbert
function HFA = {1, 2, 2, 2, 1}. Then A is isomorphic to one and only one of the
following rings:

(a) R/I with I = (x4
1, x

2
2) ⊆ R = K[[x1, x2]], and I⊥ = 〈y31y2〉. In this case A

is canonically graded.
(b) R/I with I = (x4

1,−x3
1+x2

2) ⊆ R = K[[x1, x2]], and I⊥ = 〈y31y2 + y32〉. The
associated graded ring is of type (a) and it is not isomorphic to R/I. Hence
A is not canonically graded.

(c) R/I with I = (x2
1+x2

2, x
4
2) ⊆ R = K[[x1, x2]], and I⊥ = 〈y1y2(y21 − y22)〉. In

this case A is canonically graded.
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ISOMORPHISM CLASSES OF SHORT GORENSTEIN LOCAL RINGS 4595

The computation can be performed by using Proposition 2.2; a different approach
can be found in [9].

Since G is a graded Gorenstein algebra of embedding dimension n, it will be
useful to get information on the homogeneous cubics F ∈ P = K[y1, . . . , yn] such
that HFAF

= {1, n, n, 1}, that is, to characterize the homogeneous cubics which
are nondegenerate.

Remark 3.2. We consider a homogeneous form F3 ∈ P = K[y1, . . . , yn] of degree
three. We write F3 in the dual basis E∗

F3 =
∑
|i|=3

αi
1

i!
yi.

F3 is nondegenerate if and only if theK-vector space generated by all the derivatives
of order two has dimension n, that is,

〈∂iF3 : |i| = 2〉K = P1.

This condition can be formulated in terms of the rank of a matrix, say ΔF3
,

given by the coefficients of the linear forms ∂iF3, |i| = 2. The matrix ΔF3
has size

n×
(
n+1
2

)
with entries in the α′

is ∈ K. We label the rows by j = 1, . . . , n, and the

columns by i ∈ N
n, |i| = 2. We have

(8) (ΔF3
)j,i = αi+δj ,

where δj is the n-tuple with zero entries but 1 in position j, hence i + δj =
(i1, . . . , ij + 1, . . . , in). In fact we have

∂iF3 =
∑
|p|=3

αp yp−i =

n∑
j=1

αi+δj yj .

Hence F3 is nondegenerate if and only if rk(ΔF3
) = n.

Theorem 3.3. Let A be an Artinian Gorenstein local K-algebra with Hilbert func-
tion {1, n, n, 1}. Then A is canonically graded.

Proof. Let A = R/I with R = K[[x1, . . . , xn]] and let F = F0 + F1 + F2 + F3

be a polynomial of P = K[y1, . . . , yn] of degree three such that I = AnnR(F )
(Fi denotes the homogeneous components of degree i). Since HFA is symmetric,
then G = grm(A) is Gorenstein, in particular G = Q(0) � R/AnnR(F3) = AF3

and rk(ΔF3
) = n being F3 nondegenerate for the Hilbert function {1, n, n, 1}. By

the admissibility of F3 we deduce that P≤1 ⊆ 〈F2 + F3〉R. Hence we may assume
F = F3 + F2, that is,

I⊥ = 〈F 〉R = 〈F2 + F3〉R.
So we have to prove that, however we fix F2, there exists an automorphism ϕ of

R/M4 which induces

AF3
� AF2+F3

.

Let ϕ be an automorphism of R/M4 with the identity as Jacobian defined as

ϕ(xj) = xj +
∑
|i|=2

ajix
i
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4596 J. ELIAS AND M. E. ROSSI

for j = 1, . . . , n. We prove that there exists a = (a1i , |i| = 2; . . . ; ani , |i| = 2) ∈
Kn(n+1

2 ), the row vector of the coefficients defining ϕ, such that

(9) [F3]E∗M(ϕ) = [F2 + F3]E∗ .

The matrix associated to ϕ, say M(ϕ), is an element of Glr(K), r =
(
n+3
4

)
, with

respect to the basis E of R/M4, hence

M(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 In 0 0

0 D I(n+1
2 ) 0

0 0 B I(n+2
3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where for all t ≥ 1, It denotes the t × t identity matrix. The first block column
corresponds to the image ϕ(1) = 1; the second block column corresponds to the
image of ϕ(xi), i = 1, . . . , n; the third block column corresponds to the image of
ϕ(xi) such that |i| = 2; and finally the last block column corresponds to the image
of ϕ(xi) such that |i| = 3, i.e., the identity matrix.

Hence D is the
(
n+1
2

)
× n matrix defined by the coefficients of the degree two

monomials of ϕ(xi), i = 1, . . . , n and B is the
(
n+2
3

)
×
(
n+1
2

)
matrix defined by the

coefficients of the degree three monomials appearing in ϕ(xi), |i| = 2. It is clear
that M(ϕ) is determined by D, and the entries of B are linear forms in the variables

aji , with |i| = 2, j = 1, . . . , n. Let

F2 =
∑
|i|=2

βi
1

i!
yi and F3 =

∑
|i|=3

αi
1

i!
yi.

Hence (9) is equivalent to the equality

[αi]B = [βi].

Then we get a system of
(
n+1
2

)
equations which are bihomogeneous polynomials in

the {αi} and a ∈ K n(n+1
2 ) of bidegree (1, 1). Then there exists a matrix MF3

of

size
(
n+1
2

)
× n

(
n+1
2

)
and entries in the {αi}′s such that

t([αi]B) = MF3

ta,

where ta denotes the transpose of the row vector a. We have to prove that the
following linear system in

(
n+1
2

)
equations and the n

(
n+1
2

)
indeterminates a =

(a1i ; . . . ; a
n
i )

MF3

ta = t[βi]

is compatible. The result follows if we show that rk(MF3
) is maximal, i.e., rk(MF3

)
=

(
n+1
2

)
.
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Claim. The matrix MF3
has the upper-diagonal structure

MF3
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
F3

* · · · * *

0 M2
F3

· · · * *

...
...

...
...

...

0 0 0 Mn−1
F3

*

0 0 0 0 Mn
F3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where M l
F3

is an (n− l + 1)×
(
n+1
2

)
matrix, l = 1, . . . , n, such that

(i) 1-st row of M1
F3

= 2 times the 1-st row of ΔF3
,

t-th row of M1
F3

= t-th row of ΔF3
, t = 2, . . . , n.

(ii) 1-st row of M l
F3

= 2 times the l-st row of ΔF3
, for l = 2, . . . , n,

t-th row of M l
F3

= (l + t − 1)-th row of ΔF3
, for t = 2, . . . , n − l + 1,

l = 2, . . . , n,

where ΔF3
is the matrix defined in Remark 3.2 of the coefficients of the second

derivatives of F3. �

Proof of the Claim. Let us recall that the entries of the columns of B are the co-
efficients of the degree three monomials of the support of ϕ(xi), |i| = 2. Hence
the entries of the ali-th column of MF3

are the coefficients of the terms of degree

three in the support of F3 which appear in ϕ(xi) with coefficient ali. Given integers

1 ≤ l ≤ j ≤ n, let us compute ϕ(xlxj). If l �= j, then

ϕ(xlxj) = xlxj +
∑
|i|=2

ajix
ixl +

∑
|i|=2

alix
ixj + terms of degree 4.

Since xixj = xi+δj and j > l, we get

(MF3
)δl+δj ,al

i
= αi+δj

and

(MF3
)δl+δj ,a

j
i
= αi+δl .

If j = l, then

ϕ(x2
l ) = x2

l + 2
∑
|i|=2

alix
ixl + terms of degree 4

so

(MF3
)2δl,al

i
= 2αi+δl .

Hence the row (δl + δj)-th of MF3
, j > l, can be split in two nonzero subsets

of entries. The first subset, with respect to the lex ordering, corresponds to the
columns ali, |i| = 2, with entries αi+δj , the second subset of entries corresponds to

the column aji with entries αi+δl . From these facts we get the upper-diagonal block

structure of MF3
. In particular, if we fix l = 1, . . . , n, the matrices M l

F3
, l = 1, . . . , n

appearing in the claim are determined by the columns ali and the rows δl + δj with

l ≤ j ≤ n ((n− j + 1)-rows) and

(M l
F3
)δl+δj ,al

i
= αi+δj if l > j, (M l

F3
)δl+δj ,al

i
= 2αi+δj if l = j.
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By Remark 3.2 and equation (8) we get

(M l
F3
)δl+δj ,al

i
= (ΔF3

)j,i if l > j, (M l
F3
)δl+δj ,al

i
= 2(ΔF3

)j,i if l = j

as claimed.
Now we prove that

rk(MF3
) =

(
n+ 1

2

)
.

Since F3 is nondegenerate, by Remark 3.2 we have rank(ΔF3
) = n. Now M l

F3
for

l = 1, . . . , n is a matrix of size n − l + 1 ×
(
n+1
2

)
obtained by ΔF3

by deleting the

first l rows. Hence rk(M l
F3
) = n− l + 1 and the result follows. �

From the previous result, we easily get the following consequences.

Corollary 3.4. There exists an isomorphism between the Artinian Gorenstein lo-
cal K-algebras (A,m) and (B, n) with Hilbert function {1, n, n, 1} if and only if
grm(A) � grn(B) as graded K-algebras.

Corollary 3.5. The classification of Artinian Gorenstein local K-algebras with
Hilbert function HFA = {1, n, n, 1} is equivalent to the projective classification of
the hypersurfaces V (F ) ⊂ P

n−1
K , where F is a degree three nondegenerate form in

n variables.

The classification of the Artinian Gorenstein local rings with Hilbert function
HFA = {1, n, n, 1} for 1 ≤ n ≤ 3 has been studied by Casnati and Notari in [6,
Theorem 4.1] and by Cartwright et al. in [4]. By using Corollary 3.5, the problem
can be reduced to the homogeneous case which is well known for 1 ≤ n ≤ 3. Hence
we can describe the geometric models of the varieties defined by them.

If n = 1, then it is clear that A ∼= K[[x]]/(x4), so there is only one analytic
model.

Proposition 3.6. Let A be an Artinian Gorenstein local K-algebra with Hilbert
function HFA = {1, 2, 2, 1}. Then A is isomorphic to one and only one of the
following quotients of R = K[[x1, x2]].

Model A = R/I Inverse system F Geometry of C = V (F ) ⊂ P
1
K

(x3
1, x

2
2) y21y2 Double point plus a simple point

(x1x2, x
3
1 − x3

2) y31 − y32 Three distinct points

Proof. Let us assume n = 2, then grm(A) = K[y1, y2]/Ann(F ) where F ∈ K[y1, y2]
is a degree three form on two variables y1, y2. Since K is an algebraic closed field,
F can be decomposed as product of three linear forms L1, L2, L3, i.e., F = L1L2L3.
We set d = dimK〈L1, L2, L3〉, so we only have to consider three cases. If d = 1, then
we can assume F = y31 , but this case does not occur because F is degenerated. If
d = 2, then we can assume F = y21y2. It is easy to see that Ann(〈y21y2〉) = (x3

1, x
2
2).

If d = 3, then we can assume F = y31 − y32 . In this case we get Ann(〈y31 − y32〉) =
(x1x2, x

3
1−x3

2). Since V (y21y2) (resp. V (y31−y32)) is a degree three subscheme of P1
K

with two (resp. three) point basis, we deduce that the algebras of the statement
are not isomorphic. �
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We know that any plane elliptic cubic curve C ⊂ P
2
K is defined, in a suitable

system of coordinates, by a Legendre’s equation

Lλ = y22y3 − y1(y1 − y3)(y1 − λy3)

with λ �= 0, 1. This equation is equipped with the j-invariant

j(λ) = 28
(λ2 − λ+ 1)

λ2(λ− 1)2
.

It is well known that two plane elliptic cubic curves Ci = V (Lλi
) ⊂ P

2
K , i = 1, 2,

are projectively isomorphic if and only if j(λ1) = j(λ2); see [12].

Proposition 3.7. Let A be an Artinian Gorenstein local K-algebra with Hilbert
function HFA = {1, 3, 3, 1}. Then A is isomorphic to one and only one of the
following quotients of R = K[[x1, x2, x3]]:

Model A = R/I Inverse system F Geometry of C = V (F ) ⊂ P
2
K

(x2
1, x

2
2, x

2
3) y1y2y3 Three independent lines

(x2
1, x1x3, x3x2

2, x
3
2, x

2
3 + x1x2) y2(y1y2 − y23) Conic and a tangent line

(x2
1, x

2
2, x

2
3 + 6x1x2) x3(x1x2 − x2

3) Conic and a nontangent line

(x2
3, x1x2, x2

1 + x2
2 − 3x1x3) y22y3 − y21(y1 + y3) Irreducible nodal cubic

(x2
3, x1x2, x1x3, x3

2, x
3
1 + 3x2

2x3) y22y3 − y31 Irreducible cuspidal cubic

(x2x3, x1x3, x1x2, x3
2 − x3

3, x
3
1 − x3

3) y31 + y32 + y33 Elliptic Fermat curve

I(λ) = (x1x2, H1, H2) Lλ, j(λ) �= 0 Elliptic non-Fermat curve

with H1 = λ2x2
1 + λ(1 + λ)x1x3 + (λ2 − λ+ 1)x2

3, H2 = λ2x2
2 + λx1x3 + (1 + λ)x2

3,
and I(λ1) ∼= I(λ2) if and only if j(λ1) = j(λ2).

Proof. Let us assume that F is the product of the linear forms l1, l2, l3. If l1, l2, l3
are K-linear independent, we get the first case. On the contrary, if these linear
forms are K-linear dependent, we deduce that F is degenerate.

Let us assume that F is the product of a linear form l and an irreducible quadric
Q. According to the relative position of V (l) and V (Q), we get the second and the
third case.

Let F be a degree three irreducible form. If C = V (F ) is singular, then we get
the fourth and fifth cases. If C = V (F ) is nonsingular, then we may assume that
F = Lλ for λ ∈ K \ {0, 1}, i.e., C is an elliptic cubic curve. If j(λ) = 0, then C
fits in the orbit of Fermat’s curve y31 + y32 + y33 ≡ 0, and we get the sixth case. If
j(λ) �= 0, then it is easy to see that

J = (x1x2, H1, H2) ⊂ AnnR(Lλ).

Since λ2 − λ + 1 �= 0, then J is a complete intersection with Hilbert function
{1, 3, 3, 1}. Hence (x1x2, H1, H2) = AnnR(Lλ). �

Remark 3.8. As before, the classification of Artinian Gorenstein K-algebras with
Hilbert function {1, 4, 4, 1} can be obtained by using results on the classification of
the degree three hypersurfaces of P3; see, for instance, [3].

As a consequence of Theorem 3.3, in the particular case of Artinian algebras
over a characteristic zero field, we obtain a recent result proved by Henriques and
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Şega on the rationality of the Poincaré series; see [13, Theorem 4.2]. We denote by
PA
K (z) the Poincaré series of A, that is

PA
K(z) =

∑
j≥0

TorAj (K,K)zj .

We recall that a nonzero element a ∈ m is an exact zero-divisor if (0 : a) is a
principal ideal. Notice that, in the graded case, if A = AF with F a generic cubic
form, then an exact zero-divisor always exists and this implies the existence of a
Koszul filtration; see [8, Theorem 6.3].

Corollary 3.9 ([13, Theorem 4.2]). Let A be an Artinian Gorenstein local K-
algebra with m4 = 0 and HFA(1) = n ≥ 3. If there exists an exact zero-divisor in
A, then A is Koszul and hence PA

K (z) is rational.

Proof. By the existence of an exact zero-divisor, the Hilbert function of A is bal-
anced, that is, HFA = {1, n, n, 1}; see [13, Theorem 4.1]. Hence, by Theorem 3.3,
A is canonically graded. Because there exists an exact zero-divisor in G, by [13,
Remark 3.5] and [8, Proposition 2.3 b)] we conclude that G has a Koszul filtration.
As a consequence, A is Koszul since G is Koszul, and hence PA

K(z) = PG
K (z) is

rational. �

4. Artinian Gorenstein algebras with socle degree three

In [6] Casnati and Notari presented a complete classification of the Artinian
Gorenstein local algebras with Hilbert functions {1,m, 3, 1}, m ≥ 3. In this section
we study the Artinian Gorenstein algebras with Hilbert function {1,m, n, 1}. By
using a result proved by Iarrobino (see [16, Proposition 1.9]), a necessary condition
for which the numerical function {1,m, n, 1} is the Hilbert function of an Artinian
Gorenstein local algebra is that m ≥ n. If m = n, we have proved that every
Artinian Gorenstein algebra with Hilbert function {1, n, n, 1} is canonically graded.
This is no longer true if m > n because the Hilbert function is not symmetric. In
this case the associated graded ring G is not Gorenstein, but another Gorenstein
graded algebra will play the same role: Q(0) (see Section 2) which is the unique
Gorenstein graded quotient of G with the same socle degree. By Iarrobino’s work
we deduce that

HFQ(0) = {1, n, n, 1}.
If we deal with different local rings, we will denote by QA(0) the module corre-
sponding to the local ring (A,m).

Theorem 4.1. The following facts are equivalent:

(a) A is an Artinian Gorenstein local K-algebra with Hilbert function
{1,m, n, 1}, m > n,

(b) A � AF where F ∈ K[y1, . . . , ym], F = F3 + y2n+1 + · · · + y2m with F3 a
nondegenerate form of degree three in K[y1, . . . , yn].

Proof. The part (b) implies (a) is an easy computation based on (3). We prove (a)
implies (b). Let A = R/I with R = K[[x1, . . . , xn]], and let F = F0 +F1 +F2 +F3

be a polynomial of P = K[y1, . . . , yn] of degree three such that I = AnnR(F )
(Fi denotes the homogeneous components of degree i). We know that Q(0) �
R/AnnR(F3) and it has Hilbert function {1, n, n, 1}. Since Q(0) is a graded alge-
bra of embedding dimension n < m, there exist Ln+1, . . . , Lm independent linear
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forms contained in AnnR(F3), hence we may assume there exist L1, . . . , Ln, . . . , Lm

generators in P1 such that F3 ∈ S = K[L1, . . . , Ln].
Since the Hilbert function of A is {1,m, n, 1}, and hence dimK(I⊥)1 = m, it is

easy to see that
〈F 〉R = 〈F2 + F3〉R.

Now we can write F2 = C +D where C ∈ K[Ln+1, . . . , Lm], and D is a quadratic
form in the monomials LiLj with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since the field K is
algebraically closed of characteristic zero, we may assume there exist λi ∈ K such
that F2 = λmL2

m + · · ·+ λn+1L
2
n+1 +D′ with D′ the corresponding replacement of

D.
Since HFA(1) = m, we remark that, by (2) and (3), λm, . . . , λn+1 are differ-

ent from zero. Summing up this information, we can conclude that there exist
L1, . . . , Ln, . . . , Lm independent linear forms of P such that

A � AF ,

where F = F3 +L2
m + · · ·+L2

n+1 +H with F3 a homogeneous form of degree three
in K[L1, . . . , Ln] and H a homogeneous form of degree two in the monomials LiLj

with 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Since we are considering the linear change of coordinates in P sending yi → Li,

we should replace R and P via the corresponding linear automorphism. For short,
we still denote by R = k[[x1, . . . , xm]] and P = k[y1, . . . , ym] the corresponding
images. Then we have that

A � AF ,

where F = F3 + y2n+1 + · · ·+ y2m +H with F3 a homogeneous form of degree three
in K[y1, . . . , yn] and H a homogeneous form of degree two in the monomials yiyj
with 1 ≤ i ≤ n, 1 ≤ j ≤ m. So we have to prove that, however we fix H, there
exists an automorphism ϕ of R/M4 which induces

AF3+y2
n+1+···+y2

m
� AF3+y2

n+1+···+y2
m+H .

Let ϕ be the automorphism of R/M4 with the identity as Jacobian defined as

ϕ(xj) = xj +
∑
|i|=2

ajix
i

for j = 1, . . . ,m. We prove that there exists a = (a1i ; . . . ; a
m
i ) ∈ Km(n+1

2 ) the vector
of the coefficients defining ϕ such that

(10) [F3 + y2n+1 + · · ·+ y2m]E∗M(ϕ) = [F3 + y2n+1 + · · ·+ y2m +H]E∗ .

Repeating the same computation as in Theorem 3.3, the matrix associated to ϕ,
say M(ϕ), is an element of Glr(K), r =

(
n+3
4

)
, with respect to the basis E of R/M4

ordered by the degree-lexicographic order, hence

M(ϕ) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 Im 0 0
0 D I(m+1

2 ) 0

0 0 B I(m+2
3 )

⎞
⎟⎟⎟⎠ .

Precisely, D is the
(
m+1
2

)
×m matrix defined by the coefficients of the degree two

monomials of ϕ(xj), j = 1, . . . ,m, and B is the
(
m+2
3

)
×

(
m+1
2

)
matrix defined

by the coefficients of the degree three monomials appearing in ϕ(xi), |i| = 2. It
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is clear that M(ϕ) is determined by D and the entries of B are linear forms in

the variables aji , with |i| = 2, j = 1, . . . ,m. Notice that, by the peculiarity of

ϕ, both D and B have several zero-rows (precisely the rows corresponding to the
monomials of degree three divided by xi, i > n). Let H =

∑
∗ βij yiyj , where

i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m and F3 =
∑

|i|=3 αi
1
i!y

i1
1 · · · yinn , hence (10) can be

reduced to the equality

[αi]B
′ = [βij ],

where B′ is the submatrix of B of size
(
n+2
3

)
×[

(
n+1
2

)
+n(m−n)] obtained considering

the rows and columns corresponding to the degree three monomials in x1, . . . , xn

appearing in ϕ(xixj) with i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we get a system of(
n+1
2

)
+ n(m− n) equations which are bihomogeneous polynomials in the {αi} and

a = (a1i ; . . . ; a
m
i ) ∈ K m(n+1

2 ) of bidegree (1, 1). Then there exists a matrix MF of

size [
(
n+1
2

)
+ n(m− n)]× m

(
n+1
2

)
and entries in the {αi} such that

t([αi]B
′) = MF

ta.

We have to prove that the following linear system in the
(
n+1
2

)
+ n(m − n)

equations and m
(
n+1
2

)
indeterminates a = (a1i ; . . . ; a

n
i )

MF
ta = t[βi]

is compatible. The result follows if we show that rk(MF ) is maximal, i.e., rk(MF )
=

(
n+1
2

)
+ n(m − n). We will prove that the matrix MF has the following upper-

diagonal structure:

MF =

⎛
⎜⎜⎜⎜⎜⎝

MF3
∗ · · · ∗ ∗

0 ΔF3
· · · ∗ ∗

...
...

...
...

...
0 0 0 ΔF3

∗
0 0 0 0 ΔF3

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m− n times,

where

(i) MF3
is the

(
n+1
2

)
× n

(
n+1
2

)
matrix defined in the Claim of Theorem 3.3,

(ii) ΔF3
(m − n times) is the n ×

(
n+1
2

)
matrix defined in Remark 3.2 of the

coefficients of the second derivatives of F3.

Following the definition of B′, we compute ϕ(xixj), i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Hence the entries of the ali-th column of MF , l = 1, . . . ,m, are the coefficients of

the degree three terms in the support of F3 which appear in ϕ(xixj) with coefficient
ali.

If 1 ≤ i ≤ j ≤ n, we are in the same setting of the Claim of Theorem 3.3, and
we get MF3

corresponding to the ali-th columns with l = 1, . . . , n.

We now compute ϕ(xixj) with i = 1, . . . , n and j = n+ 1, . . . ,m, then

ϕ(xixj) = xixj +
∑
|i|=2

ajix
ixi +

∑
|i|=2

alix
ixj + terms of degree 4.

Since xixj does not appear in the support of F3 because j > n, then for every
j = n+ 1, . . . ,m we get

(MF )δi+δj ,a
j
i
= αi+δi .

Licensed to University de Barcelona. Prepared on Wed Feb  6 09:43:00 EST 2013 for download from IP 161.116.100.92.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ISOMORPHISM CLASSES OF SHORT GORENSTEIN LOCAL RINGS 4603

Hence

(MF )δi+δj ,a
j
i
= (ΔF3

)i,i

and (i) and (ii) are proved.
Since F3 is nondegenerate for the Hilbert function {1, n, n, 1}, then by Remark

3.2 rk(ΔF3
) = n and, from the proof of Theorem 3.3, rk(MF3

) =
(
n+1
2

)
. It follows

that

rk(MF ) =

(
n+ 1

2

)
+ n(m− n),

as required. �

We will extend Corollary 3.4 to this more general situation.

Corollary 4.2. There exists an isomorphism between the Artinian Gorenstein local
K-algebras (A,m) and (B, n) with Hilbert function {1,m, n, 1}, m ≥ n, if and only
if QA(0) � QB(0) as a K-algebra.

Proof. If m = n, then Q(0) coincides with the associated graded ring and the result
follows by Corollary 3.4. Assume m > n, then the result follows from Theorem 4.1
which says that the isomorphism classes of AF only depend on F3 and hence on
the isomorphism classes of Q(0). �

The next result extends Corollary 3.5.

Corollary 4.3. The classification of Artinian Gorenstein K-algebras A with Hilbert
function HFA = {1,m, n, 1}, m ≥ n, is equivalent to the projective classification
of the cubic hypersurfaces V (F ) ⊂ P

n−1
K , where F is a degree three nondegenerate

form in n variables.

By taking advantage of the projective classification of the cubic hypersurfaces
in P

r, with r ≤ 3, the above result gives a complete classification of the Artinian
Gorenstein local K-algebras with Hilbert functions {1,m, n, 1}, n ≤ 4.
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Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via 585, 08007

Barcelona, Spain

E-mail address: elias@ub.edu
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