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ABSTRACT. We establish weak factorizations for a weighted Bergman space Apα, with
1 < p < ∞, into two weighted Bergman spaces on the unit ball of Cn. To obtain this
result, we characterize bounded Hankel forms on weighted Bergman spaces on the unit
ball of Cn.

1. INTRODUCTION

A classical theorem of Riesz asserts that any function in the Hardy space Hp on the
unit disk can be factored as f = Bg with ‖f‖Hp = ‖g‖Hp , where B is a Blaschke
product and g is anHp-function with no zeros on the unit disk. An immediate consequence
of that result is that any function in the Hardy space Hp admits a “strong” factorization
f = f1f2 with f1 ∈ Hp1 , f2 ∈ Hp2 and ‖f1‖Hp1 · ‖f2‖Hp2 = ‖f‖Hp , for any p1 and
p2 determined by the condition 1/p = 1/p1 + 1/p2. In [12], C. Horowitz obtained strong
factorizations of functions in a weighted Bergman space on the unit disk into functions
of two weighted Bergman spaces with the same weight (again using Blaschke products).
These strong factorization results are no longer possible to obtain [11] in the setting of
Hardy and Bergman spaces in the unit ball of the complex euclidian space Cn of dimension
n when n ≥ 2, but it is still possible to obtain some “weak” factorizations for functions in
these spaces.

For two Banach spaces of functions, A and B, defined on the same domain, the weakly
factored space A�B is defined as the completion of finite sums

f =
∑
k

ϕkψk, {ϕk} ⊂ A, {ψk} ⊂ B,

with the following norm:

‖f‖A�B = inf

{∑
k

‖ϕk‖A‖ψk‖B : f =
∑
k

ϕkψk

}
.

When 0 < p ≤ 1, weak type factorizations for the Hardy spaces Hp and the weighted
Bergman spacesApα on the unit ball of Cn are well known (see [6] and [9] for Hardy spaces;
and [5], [20] or [24, Corollary 2.33] for Bergman spaces). However, when 1 < p < ∞,
even for unweighted Bergman spaces the problem was still open (see, for example [4]).

In this paper we completely solve the above problem for Bergman spaces by establishing
weak factorizations for a weighted Bergman space Aqβ , with 1 < q <∞ and β > −1, into
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two weighted Bergman spaces with non necessarily the same weight, on the unit ball Bn
of Cn. The following is our main result.

Theorem 1. Let 1 < q <∞ and β > −1. Then

Aqβ(Bn) = Ap1α1
(Bn)�Ap2α2

(Bn)

for any p1, p2 > 0 and α1, α2 > −1 satisfying

(1)
1

p1
+

1

p2
=

1

q
,

α1

p1
+
α2

p2
=
β

q
.

In this context, by “=” we mean equality of the function spaces and equivalence of the
norms. The inclusion Ap1α1

� Ap2α2
⊂ Aqβ with the estimate ‖f‖q,β . ‖f‖Ap1α1

�Ap2α2
is a

direct consequence of Minkowski and Hölder inequalities, so that the interesting part is the
other inclusion with the corresponding estimates for the norms.

Now we are going to recall the definition of the weighted Bergman spaces. First we
need some notations. For any two points z = (z1, ..., zn) and w = (w1, ..., wn) in Cn, we
use

〈z, w〉 = z1w̄1 + · · ·+ znw̄n

to denote the inner product of z and w, and

|z| =
√
〈z, z〉 =

√
|z1|2 + · · ·+ |zn|2

to denote the norm of z in Cn. Let Bn = {z ∈ Cn : |z| < 1} be the unit ball in Cn
and Sn = {z ∈ Cn : |z| = 1} be the unit sphere in Cn. Let H(Bn) be the space of
all analytic functions on Bn. We use dv to denote the normalized volume measure on
Bn and dσ to denote the normalized area measure on Sn. For −1 < α < ∞, we let
dvα(z) = cα(1 − |z|2)α dv(z) denote the normalized weighted volume measure on Bn,
where cα = Γ(n+ α+ 1)/[n!Γ(α+ 1)].

For 0 < p < ∞ and −1 < α < ∞, let Lp(Bn, dvα) be the weighted Lebesgue space
which contains measurable functions f on Bn such that

‖f‖pp,α =

∫
Bn
|f(z)|p dvα(z) <∞.

Denote by Apα = Lp(Bn, dvα) ∩ H(Bn), the weighted Bergman space on Bn, with the
same norm as above. If α = 0, we simply write them as Lp(Bn, dv) and Ap respectively
and ‖f‖p for the norm of f in these spaces.

It is a well-known fact that to obtain weak factorization results is equivalent to give
a “good” description of the boundedness of certain Hankel forms. A Hankel form is a
bilinear form B on a space of analytic functions such that for any f and g, B(f, g) is a
linear function of fg. These forms have been extensively studied on Hardy spaces and on
Bergman spaces. For the case of the Hardy space on the unit disk, a classical result by
Nehari [18] says that the Hankel form

Bb(f, g) := 〈fg, b〉

(under the usual integral pair for Hardy spaces) with an analytic symbol b is bounded on
H2 × H2 if and only if b ∈ BMOA, the space of analytic functions of bounded mean
oscillation. The proof used the fact that a function in H1 can be factored into product of
two functions in H2. Unfortunately, such strong factorization is not possible (see [11]) for
Hardy spaces in the unit ball Bn of Cn. However, Coifman, Rochberg and Weiss [6] were
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able to generalize Nehari’s result to the unit ball Bn by using a weak factorization of H1.
Namely, they proved that

H2(Bn)�H2(Bn) = H1(Bn).

Our approach to the problem for weighted Bergman spaces on the unit ball is the oppo-
site to the one of Coifman, Rochberg and Weiss in [6]. We first characterize boundedness
of the Hankel forms on weighted Bergman spaces, and with this result the weak factoriza-
tion easily follows.

Given α > −1 and a holomorphic symbol function b we define the associated Hankel
type bilinear form Tαb for polynomials f and g by

Tαb (f, g) = 〈fg, b〉α,

where the integral pair 〈 , 〉α is defined as

(2) 〈ϕ,ψ〉α =

∫
Bn
ϕ(z)ψ(z) dvα(z).

Since the polynomials are dense in the weighted Bergman spaces, the Hankel form Tαb is
densely defined on Ap1α1

× Ap2α2
for any p1, p2 > 0 and any α1, α2 > −1. We say that Tαb

is bounded on Ap1α1
×Ap2α2

if there exists a positive constant C such that

|Tαb (f, g)| ≤ C‖f‖p1,α1‖g‖p2,α2 .

The norm of Tαb is given by

‖Tαb ‖ = ‖Tαb ‖Ap1α1
×Ap2α2

:= sup{|Tαb (f, g)| : ‖f‖p1,α1
= ‖g‖p2,α2

= 1 }.

The next result characterizes boundedness of the Hankel form Tαb acting on Ap1α1
× Ap2α2

.
We will see in Section 3 that this implies the weak factorization in Theorem 1.

Theorem 2. Let 1 < p1, p2 <∞, and α, α1, α2 > −1 satisfy

(3)
1

p1
+

1

p2
< 1,

1 + α1

p1
+

1 + α2

p2
< 1 + α.

Then Tαb is bounded on Ap1α1
× Ap2α2

if and only b ∈ Aq
′

β′ , where q and β are real numbers
satisfying (1), and q′ and β′ are determined by the condition

(4)
1

q
+

1

q′
= 1,

β

q
+
β′

q′
= α.

Furthermore, we have ‖Tαb ‖ � ‖b‖q′,β′

Remarks. Note that, condition (3) guarantees that q > 1 and β′ > −1. When q and β
satisfy condition (1), automatically we would have β > −1 (to see this, simply add two
equations in (1) together). By a general duality theorem for weighted Bergman spaces (see
Theorem A in Section 2), the condition b ∈ Aq

′

β′ means that the symbol b belongs to the
dual space of Aqβ under the pairing given by (2).

It turns out that boundedness of the Hankel form Tαb is equivalent to boundedness of a
(small) Hankel operator, which we are going to introduce in a moment. Let α > −1. It is
well-known that, the integral operator

Pαf(z) =

∫
Bn

f(w)

(1− 〈z, w〉)n+1+α
d vα(w)
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is the orthogonal projection from L2(Bn, dvα) onto the weighted Bergman space A2
α. The

above formula can be used to extend Pα to a linear operator fromL1(Bn, dvα) intoH(Bn).
For 1 < p <∞, Pα is a bounded operator from Lp(Bn, dvα) onto Apα.

Denote byApα the conjugate analytic functions f on Bn that are inLp(Bn, dvα). Clearly,

Apα = {f : f ∈ Apα}.

Let Qα denote the orthogonal projection from L2(Bn, dvα) onto A2
α. Clearly one has

Qαf(z) = Pαf(z) =

∫
Bn

f(w)

(1− 〈w, z〉)n+1+α
dvα(w).

Given f ∈ L1(Bn, dvα) and a polynomial g, the weighted (small) Hankel operator is
defined by

hαf g = Qα(fg).

Due to the density of polynomials, the small Hankel operator hαf is densely defined on the
weighted Bergman space Apα for 1 ≤ p < ∞. We will study boundedness of the small
Hankel operator with conjugate analytic symbols, that is, hα

f
with f ∈ H(Bn), from Ap1α1

to Ap2α2 with 0 < p2 < p1 <∞.

Theorem 3. Let 1 < p2 < p1 <∞ and α1, α2 > −1 such that

(5)
1 + α1

p1
<

1 + α2

p2
.

Let f ∈ H(Bn) and α such that

(6) 1 + α >
1 + α2

p2
.

Then hα
f̄

: Ap1α1
→ Ap2α2 is bounded if and only if f ∈ Aqβ , where q and β are real numbers

such that
1

q
=

1

p2
− 1

p1
,

β

q
=
α2

p2
− α1

p1
.

Moreover, we have ‖hαf ‖ � ‖f‖q,β .

Remarks. Condition (5) guarantees that β > −1. It is known that, when 0 < p2 <
p1 < ∞, Ap1α1

⊂ Ap2α2
if and only if (5) is true (see [22, Theorem 70]). Hence the above

result concerns the boundedness of hαf from a smaller space to a larger space. Also, by [24,
Theorem 2.11], condition (6) means that the integral operator Pα is a bounded projection
from Lp2(Bn, dvα2

) onto Ap2α2
.

If one considers the operator

Sαf g = hf̄g(z) = Pα(fg),

clearly, the boundedness of hα
f

is equivalent to the boundedness of Sαf from Ap1α1
to Ap2α2

,
and the norms of hαf and Sαf are equivalent. Now, if g ∈ Ap1α1

and h ∈ Ap2α2
, by Fubini’s

theorem we easily obtain

Tαf (g, h) = 〈gh, f〉α = 〈h, Pα(fḡ)〉α = 〈h, Sαf g〉α.
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Hence, for p2 > 1, by duality (see Theorem A in Section 2), the Hankel form Tαf is
bounded on Ap1α1

× Ap2α2
if and only if the small Hankel operator hα

f
is bounded from Ap1α1

to Ap
′
2

α′
2
, with equivalent norms. Here, the numbers α′2 and p′2 are defined by the relation

1

p2
+

1

p′2
= 1, α =

α2

p2
+
α′2
p′2
.

Comparing Theorem 2 with Theorem 3, notice that the first inequality in (3) is equivalent
to condition 1 < p′2 < p1 < ∞. Also, when p2 and α2 are replaced by p′2 and α′2, con-
dition (6) turns out to be equivalent to α2 > −1, and therefore is always satisfied; and
the second inequality in (3) is equivalent to condition (5). Therefore, Theorem 3 implies
Theorem 2.

In the case of the same weights, that is, when α1 = α2 = β = α, all the restrictions in
Theorem 3 reduces to p2 > 1. We isolate this case here, since it proves a conjecture in [4].

Corollary 4. Let α > −1, 1 < p2 < p1 < ∞ and f ∈ H(Bn). Then hα
f

: Ap1α → Ap2α is
bounded if and only if f ∈ Aqα, with q = p1p2

p1−p2 .

The paper is organized as follows: in Section 2 we give some necessary concepts and
recall some key results which are needed in our proof of the main result. In Section 3 we
give in detail the connection between weak factorizations and Hankel forms. The proof of
Theorem 3 is given in Section 4.

In the following, the notation A . B means that there is a positive constant C such that
A ≤ CB, and the notation A � B means that both A . B and B . A hold.

2. PRELIMINARIES

We need the following duality theorem. In this generality the result is due to Luecking
[16] (see also, Theorem 2.12 in [24]).

Theorem A. Suppose β, β′ > −1 and 1 < q <∞. Then

(Aqβ)∗ = Aq
′

β′

(with equivalent norms) under the integral pair 〈 , 〉α given by (2), where

1

q
+

1

q′
= 1, α =

β

q
+
β′

q′
.

We need the following well known integral estimate that can be found, for example, in
[24, Theorem 1.12].

Lemma B. Let t > −1 and s > 0. There is a positive constant C such that∫
Bn

(1− |w|2)t dv(w)

|1− 〈z, w〉|n+1+t+s
≤ C (1− |z|2)−s

for all z ∈ Bn.

For any a ∈ Bn with a 6= 0, we denote by ϕa(z) the Möbius transformation on Bn that
exchanges 0 and a. It is known that, for any z ∈ Bn

ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
,
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where sa = 1 − |a|2 , Pa is the orthogonal projection from Cn onto the one dimensional
subspace [a] generated by a, and Qa is the orthogonal projection from Cn onto the orthog-
onal complement of [a]. When a = 0, ϕa(z) = −z. ϕa has the following properties:
ϕa ◦ ϕa(z) = z, and

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2
.

For z, w ∈ Bn, the pseudo-hyperbolic distance between z and w is defined by

ρ(z, w) = |ϕz(w)|,

and the hyperbolic distance on Bn between z and w induced by the Bergman metric is
given by

β(z, w) = tanh ρ(z, w).

For z ∈ Bn and r > 0, the Bergman metric ball at z is given by

D(z, r) = {w ∈ Bn : β(z, w) < r}.

It is known that, for a fixed r > 0, the weighted volume

vα(D(z, r)) � (1− |z|2)n+1+α.

We refer to [24] for all of the above facts.
A sequence {ak} of points in Bn is a separated sequence (in Bergman metric) if there

exists a positive constant δ > 0 such that β(zi, zj) > δ for any i 6= j. We need a well-
known result on decomposition of the unit ball Bn. The following version is Theorem 2.23
in [24]

Lemma C. There exists a positive integer N such that for any 0 < r < 1 we can find a
sequence {ak} in Bn with the following properties:

(i) Bn = ∪kD(ak, r).
(ii) The sets D(ak, r/4) are mutually disjoint.

(iii) Each point z ∈ Bn belongs to at most N of the sets D(ak, 4r).

Any sequence {ak} satisfying the conditions of the above lemma is called a lattice (or
an r-lattice if one wants to stress the dependence on r) in the Bergman metric. Obviously
any r-lattice is separated.

For convenience, we will denote by Dk = D(ak, r) and D̃k = D(ak, 4r). Then
Lemma C says that Bn = ∪∞k=1Dk and there is an positive integer N such that every
point z in Bn belongs to at most N of sets D̃k.

We also need the following atomic decomposition theorem for weighted Bergman spaces.
This turns out to be a powerful theorem in the theory of Bergman spaces. The result is ba-
sically due to Coifman and Rochberg [5], and can be found in Chapter 2 of [24].

Theorem D. Suppose p > 0, α > −1, and

b > nmax

(
1,

1

p

)
+

1 + α

p
.

Then we have
(i) For any separated sequence {ak} in Bn and any sequence λ = {λk} ∈ `p, the

function

f(z) =

∞∑
k=1

λk
(1− |ak|2)b−(n+1+α)/p

(1− 〈z, ak〉)b
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belongs to Apα and
‖f‖p,α . ‖λ‖`p .

(ii) There is an r-lattice {ak} in Bn such that, for any f ∈ Apα, there is a sequence
λ = {λk} ∈ `p with

f(z) =

∞∑
k=1

λk
(1− |ak|2)b−(n+1+α)/p

(1− 〈z, ak〉)b
.

and
‖λ‖`p . ‖f‖p,α.

In the proof given in [24], part (i) requires that the sequence {ak} is an r-lattice for some
r ∈ (0, 1], but it is well known that only the separation of the sequence {ak} is needed.

3. WEAK FACTORIZATIONS AND HANKEL FORMS

It is well known to specialists, but difficult to find in the literature, that the obtention
of weak factorizations is equivalent to estimates for small Hankel operators or Hankel
forms (in our case, estimates with loss). The equivalence between boundedness of the
bilinear Hankel form Tαb and weak factorization can be formulated as the following result.
Since this is the basis for our obtention of the weak factorization for Bergman spaces, for
completeness, we offer the proof here of the implication that gives the factorization.

Proposition 5. Let 1 < q < ∞ and α, β > −1. Let p1, p2 and α1, α2 satisfy (3) and (1),
and let q′ and β′ satisfy (4). The following are equivalent:

(i) Aqβ ⊂ Ap1α1
�Ap2α2

with ‖f‖Ap1α1
�Ap2α2

. ‖f‖q,β for f ∈ Aqβ .

(ii) For any analytic function b, if Tαb is bounded on Ap1α1
× Ap2α2

, then b ∈ Aq
′

β′ with
‖b‖q′,β′ . ‖Tαb ‖.

Proof. We will prove (ii) implies (i). The other implication is easier, and the interested
reader can follow the argument in [1, Corollary 1.2] for a proof. By the atomic decom-
position in Theorem D, we have the inclusion Aqβ ⊂ Ap1α1

� Ap2α2
. In order to have the

corresponding estimate for the norms, we will show that, for any bounded linear functional
F on Ap1α1

� Ap2α2
, there is a unique function bF ∈ Aq

′

β′ with ‖bF ‖q′,β′ . ‖F‖ such that
F (f) = 〈f, bF 〉α for f ∈ Aqβ . This would give

‖f‖Ap1α1
�Ap2α2

= sup
‖F‖=1

|F (f)| ≤ sup
‖F‖=1

‖bF ‖q′,β′ · ‖f‖q,β . ‖f‖q,β .

Thus, suppose F ∈ (Ap1α1
�Ap2α2

)∗ with norm ‖F‖. Then for all ϕ ∈ Ap2α2
we have

|F (ϕ)| = |F (1 · ϕ)| ≤ ‖F‖ · ‖1‖p1,α1
· ‖ϕ‖p2,α2

= ‖F‖ · ‖ϕ‖p2,α2
.

Hence F ∈ (Ap2α2
)∗, and so, by Theorem A, there is an unique function b = bF ∈ A

p′2
α′

2

such that F (ϕ) = 〈ϕ, b〉α for all ϕ ∈ Ap2α2
, where p′2 and α′2 satisfy

1

p2
+

1

p′2
= 1,

α2

p2
+
α′2
p′2

= α.

Now, for polynomials g and h we have

|Tαb (g, h)| = |〈gh, b〉α| = |F (gh)|
≤ ‖F‖ · ‖gh‖Ap1α1

�Ap2α2

≤ ‖F‖ · ‖g‖p1,α1 · ‖h‖p2,α2 ,
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which shows that Tαb is bounded on Ap1α1
× Ap2α2

with ‖Tαb ‖ ≤ ‖F‖. Therefore, we know

that b ∈ Aq
′

β′ with ‖b‖q′,β′ . ‖Tαb ‖ . ‖F‖. Hence Λ(f) = 〈f, b〉α defines a bounded
linear form on Aqβ , and coincides with F on polynomials. Thus, for f ∈ Aqβ , we have
F (f) = Λ(f) = 〈f, b〉α. The proof is complete. �

4. PROOF OF THEOREM 3

In this section we prove Theorem 3, from which Theorem 2 follows. Before that, for
s ≥ 0 and α > −1, let Rα,s denote the unique continuous linear operator on H(Bn)
satisfying

Rα,s
(

1

(1− 〈z, w〉)n+1+α

)
=

1

(1− 〈z, w〉)n+1+α+s

for all w ∈ Bn. If f ∈ A1
α, then Rα,sf is given by the following integral expression

(7) Rα,sf(z) =

∫
Bn

f(w)

(1− 〈z, w〉)n+1+α+s
dvα(w).

More properties of the “differential type” operators Rα,s can be found in [24, Section 1.4].
Now we are ready to prove Theorem 3.

Proof of Theorem 3. As we noticed before, we just need to prove that Sαf : Ap1α1
→ Ap2α2

is bounded if and only if f ∈ Aqβ .
Suppose first that f ∈ Aqβ . We need to show Sαf : Ap1α1

→ Ap2α2
is bounded. Let

g ∈ Ap1α1
. If p2 > 1 then Pα : Lp2(Bn, dvα2) → Ap2α2

is bounded, and then from Hölder’s
inequality the result follows. Indeed,

‖Sαf g‖p2,α2
= ‖Pα(fḡ)‖p2,α2

≤ C‖fg‖p2,α2
≤ C‖f‖q,β · ‖g‖p1,α1

which shows that Sαf : Ap1α1
→ Ap2α2

is bounded with

‖Sαf ‖ . ‖f‖q,β .
Conversely, suppose Sαf : Ap1α1

→ Ap2α2
is bounded, we are going to show that f ∈ Aqβ .

We begin with using an argument of Luecking (see, e.g., [17]). Let rk(t) be a sequence of
Rademacher functions (see [8, Appendix A]). Let b be large enough so that

(8) b > n+
1 + α1

p1
.

Fix any r > 0, and let {ak} be an r-lattice and {Dk} be the associated sets in Lemma C.
By Theorem D, we know that, for any sequence of real numbers λ = {λk} ∈ `p1 , the
function

gt(z) =

∞∑
k=1

λkrk(t)
(1− |ak|2)b−(n+1+α1)/p1

(1− 〈z, ak〉)b

belongs to Ap1α1
with ‖gt‖p1,α1 . ‖λ‖`p1 for almost every t in (0, 1). Denote by

gk(z) =
(1− |ak|2)b−(n+1+α1)/p1

(1− 〈z, ak〉)b
.

Since Sαf : Ap1α1
→ Ap2α2

is bounded, we get that

‖Sαf gt‖p2p2,α2
=

∫
Bn

∣∣∣∣∣
∞∑
k=1

λkrk(t)Sαf gk(z)

∣∣∣∣∣
p2

dvα2
(z)

. ‖Sαf ‖p2 · ‖gt‖p2p1,α1
. ‖Sαf ‖p2 · ‖λ‖

p2
`p1
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for almost every t in (0, 1). Integrating both sides with respect to t from 0 to 1, and using
Fubini’s Theorem and Khinchine’s inequality (see [21, p.12]), we get

(9)
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2
)p2/2

dvα2(z) . ‖Sαf ‖p2 · ‖λ‖
p2
`p1 .

Now we estimate

(10)
∞∑
k=1

|λk|p2
∫
D̃k

|Sαf gk(z)|p2dvα2(z) =

∫
Bn

( ∞∑
k=1

|λk|p2 |Sαf gk(z)|p2χD̃k(z)

) 2
p2
· p22

dvα2(z).

If p2 ≥ 2, then 2/p2 ≤ 1, and from (10) we have
∞∑
k=1

|λk|p2
∫
D̃k

|Sαf gk(z)|p2 dvα2
(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2χD̃k(z)

)p2/2
dvα2(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2
)p2/2

dvα2
(z).

If 1 < p2 < 2, then 2/p2 > 1, from (10), by Hölder’s inequality we get
∞∑
k=1

|λk|p2
∫
D̃k

|Sαf gk(z)|p2 dvα2
(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2
)p2/2( ∞∑

k=1

χD̃k(z)

)1−p2/2

dvα2
(z)

≤ N1−p2/2
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2
)p2/2

dvα2(z),

since each z ∈ Bn belongs to at most N of the sets D̃k. Combining the above two inequal-
ities, and applying (9) we have

∞∑
k=1

|λk|p2
∫
D̃k

|Sαf gk(z)|p2 dvα2(z)

≤ min{1, N1−p2/2}
∫
Bn

( ∞∑
k=1

|λk|2|Sαf gk(z)|2
)p2/2

dvα2
(z)

. ‖Sαf ‖p2 · ‖λ‖
p2
`p1 .

By subharmonicity we know that,

|Sαf gk(ak)|p2 . 1

(1− |ak|2)n+1+α2

∫
D̃k

|Sαf gk(z)|p2 dvα2
(z).

From this we obtain

(11)
∞∑
k=1

|λk|p2(1− |ak|2)n+1+α2
∣∣Sαf gk(ak)

∣∣p2 . ‖Sαf ‖p2 · ‖λ‖p2`p1 .
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Let Rα,b be the integral operator defined in (7). Then

Sαf gk(ak) =

∫
Bn

f(w)gk(w)

(1− 〈ak, w〉)n+1+α
dvα(w)

=

∫
Bn

f(w)(1− |ak|2)b−(n+1+α1)/p1

(1− 〈ak, w〉)n+1+α(1− 〈ak, w〉)b
dvα(w)

= (1− |ak|2)b−(n+1+α1)/p1

∫
Bn

f(w)

(1− 〈ak, w〉)n+1+α+b
dvα(w)

= (1− |ak|2)b−(n+1+α1)/p1Rα,bf(ak).

Thus (11) becomes

(12)
∞∑
k=1

|λk|p2(1−|ak|2)(n+1+α2)+[b−(n+1+α1)/p1]p2 |Rα,bf(ak)|p2 . ‖Sαf ‖p2 · ‖λ‖
p2
`p1 .

Since

(n+ 1 + α2) +

(
b− n+ 1 + α1

p1

)
p2 =

(
b+

n+ 1 + β

q

)
p2,

the equation (12) is the same as

(13)
∞∑
k=1

|λk|p2
[
(1− |ak|2)b+(n+1+β)/q|Rα,bf(ak)|

]p2
. ‖Sαf ‖p2 · ‖λ‖

p2
`p1 .

Since {λk} was an arbitrary sequence in `p1 , we know that {λp2k } is an arbitrary sequence
in `p1/p2 . Since the conjugate exponent of p1/p2 is (p1/p2)′ = p1/(p1 − p2), by duality
we obtain that{

(1− |ak|2)b+(n+1+β)/q|Rα,bf(ak)|
}
∈ `p1p2/(p1−p2) = `q,

and

(14)
∞∑
k=1

(1− |ak|2)bq+(n+1+β)|Rα,bf(ak)|q . ‖Sαf ‖q.

This is the discrete version of what we want. Now, we will deduce that f ∈ Aqβ with
‖f‖q,β . ‖Sαf ‖ using duality and the atomic decomposition for Bergman spaces. Indeed,
choose β′ = q′(α−β/q) (which means α = β/q+β′/q′). Note that condition (6) implies
that 1 + α > (1 + β)/q, and this guarantees that β′ > −1. Hence, by the duality result in
Theorem A,

(15) ‖f‖q,β � sup
‖h‖q′,β′=1

|〈h, f〉α|.

Observe that

n+ 1 + α+ b > n+
1 + β′

q′
.

Then, we can apply (14) with the r-lattice {ak} for which the atomic decomposition in
Theorem D forAq

′

β′ holds. That is, for any h ∈ Aq
′

β′ , there exists a sequence µ = {µk} ∈ `q
′

with ‖µ‖`q′ . ‖h‖q′,β′ such that

h(z) =

∞∑
k=1

µk
(1− |ak|2)n+1+α+b−(n+1+β′)/q′

(1− 〈z, ak〉)n+1+α+b
.
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Since
n+ 1 + α+ b− (n+ 1 + β′)/q′ = b+ (n+ 1 + β)/q,

then (15), Hölder’s inequality and (14) gives

‖f‖q,β � sup
‖h‖q′,β′=1

∣∣∣∣∣
∞∑
k=1

µk(1− |ak|2)b+(n+1+β)/q Rα,bf(ak)

∣∣∣∣∣
≤ sup

‖h‖q′,β′=1

∥∥µ∥∥
`q′

[ ∞∑
k=1

(1− |ak|2)bq+(n+1+β)|Rα,bf(ak)|q
]1/q

. ‖Sαf ‖.
Hence f ∈ Aqβ with

‖f‖q,β . ‖Sαf ‖.
This finishes the proof.

�

5. FURTHER RESULTS

5.1. Compactness. Under the assumptions of Theorem 3, actually one has that the small
Hankel operator hα

f
: Ap1α1

→ Ap2α2 is bounded if and only if it is compact. This is from
a general result of Banach space theory. It is known that, for 0 < p2 < p1 < ∞, every
bounded operator from `p1 to `p2 is compact (see, for example Theorem I.2.7, p.31 in [15]).
Since the weighted Bergman space Apα is isomorphic to `p (see, Theorem 11, p.89 in [21],
note that the same proof there works for weighted Bergman spaces on the unit ball Bn),
we get directly the above result.

5.2. Small Hankel operators with the same weights. Concerning the boundedness of
the small Hankel operator hα

f
: Ap1α → Ap2α (the case when all the weights are the same)

for all possible choices of 0 < p1, p2 < ∞, we mention here that the case p1 = p2 > 1 is
by now classical (see [13], [23] and [4]), and in this case the boundedness is equivalent to
the symbol f being in the Bloch space B, that consists of those holomorphic functions f
on Bn with

‖f‖B = |f(0)|+ sup
z∈Bn

(1− |z|2)|Rf(z)| <∞.

Here, Rf denotes the radial derivative of f , that is,

Rf(z) =

n∑
k=1

zk
∂f

∂zk
(z), z = (z1, . . . , zn) ∈ Bn.

The Bloch space also admits an equivalent norm in terms of the invariant gradient ∇̃f(z) :=
∇(f ◦ ϕz)(0) as follows

‖f‖B � |f(0)|+ sup
z∈Bn

|∇̃f(z)|.

The case 0 < p1 ≤ p2 is completely settled in [4] (actually the results are stated for the
unweighted Bergman spaces Ap, but the proofs works also for the weighted case). The
description for the case p1 = p2 = 1 is that f must belong to the so called logarithmic
Bloch space, a result that goes back to the one dimensional result of Attele [2]. Concerning
estimates with loss, in [4] Bonami and Luo obtained a description for the case 0 < p2 < p1

with p2 < 1 (again the result in [4] is stated for the unweighted Bergman spaces). Thus, in
view of Corollary 4, to complete the picture it remains to deal with the case p1 > p2 = 1



12 J. PAU AND R. ZHAO

(this problem is also open for the unit disk). In that case, also in [4], some partial results are
obtained (again for the unweighted case). Mainly, they provide a pointwise estimate that is
necessary for the small Hankel operator to be bounded, and they show that the condition

(16) f(z) log
2

1− |z|
∈ Lp

′
1(Bn, dvα)

is sufficient. Moreover, they conjecture that the previous condition is also necessary. We
have not been able to prove the conjecture, but we are going to shed some light on that
problem.

Theorem 6. Let f ∈ H(Bn), α > −1 and p1 > 1. Let p′1 be the conjugate exponent of p1.
Then hα

f
: Ap1α → A1

α is bounded if and only if the multiplication operator Mf : B → A
p′1
α

is bounded.

Before going to the proof we need first some preparation. First of all, recall that the
Bloch space is the dual of A1

α under the integral pairing 〈 , 〉α (see [24, Theorem 3.17]).
We also need the following lemma, whose one dimensional analogue is essentially proved
in [3].

Lemma 7. Let 1 < p <∞, σ > −1, and n+ 1 + σ < b. Then∫
Bn

|f(z)− f(a)|p

|1− 〈a, z〉|b
dvσ(z) .

∫
Bn
|∇̃f(z)|p dvσ(z)

|1− 〈a, z〉|b

for any f ∈ H(Bn) and a ∈ Bn.

Proof. We are going to prove first that, for 0 ≤ t < n+ 1 + σ,

(17)
∫
Bn

|f(z)− f(0)|p

|1− 〈a, z〉|t
dvσ(z) .

∫
Bn

(1− |w|2)p |Rf(w)|p

|1− 〈a,w〉|t
dvσ(w).

From [24, p.51], for β big enough, say β ≥ 1 + σ, we have

|f(z)− f(0)| ≤ C
∫
Bn

(1− |w|2) |Rf(w)| dvβ−1(w)

|1− 〈z, w〉|n+β
.

Take a small number ε > 0 with σ − εmax(p, p′) > −1, where p′ denotes the conjugate
exponent of p, and t < n+ 1 + σ− εp. An application of Hölder’s inequality and Lemma
B yields

|f(z)− f(0)|p . (1− |z|2)−εp
∫
Bn

(1− |w|2)p |Rf(w)|p dvβ−1+εp(w)

|1− 〈z, w〉|n+β
.

This together with Fubini’s theorem and [19, Lemma 2.5] gives∫
Bn

|f(z)− f(0)|p

|1− 〈a, z〉|t
dvσ(z)

.
∫
Bn

(1− |w|2)p |Rf(w)|p
(∫

Bn

dvσ−εp(z)

|1− 〈a, z〉|t |1− 〈z, w〉|n+β

)
dvβ−1+εp(w)

.
∫
Bn

(1− |w|2)p |Rf(w)|p

|1− 〈a,w〉|t
dvσ(w)

proving (17). Now, a change of variables z = ϕa(ζ) gives (see [24, Proposition 1.13])

∫
Bn

|f(z)−f(a)|p

|1− 〈a, z〉|b
dvσ(z) =

∫
Bn

|(f ◦ ϕa)(ζ)−(f ◦ ϕa)(0)|p

|1−〈a, ϕa(ζ)〉|b
(1−|a|2)n+1+σ

|1−〈a, ζ〉|2(n+1+σ)
dvσ(ζ).
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From [24, Lemma 1.3] we have

1− 〈a, ϕa(ζ)〉 = 1− 〈ϕa(0), ϕa(ζ)〉 =
1− |a|2

1− 〈a, ζ〉
.

Therefore we obtain∫
Bn

|f(z)−f(a)|p

|1− 〈a, z〉|b
dvσ(z) = (1−|a|2)n+1+σ−b

∫
Bn

|(f ◦ ϕa)(ζ)−(f ◦ ϕa)(0)|p

|1−〈a, ζ〉|2(n+1+σ)−b dvσ(ζ).

Due to our condition b > n+ 1 + σ, we have

t = 2(n+ 1 + σ)− b < n+ 1 + σ

and we can apply (17) to get

∫
Bn

|f(z)−f(a)|p

|1− 〈a, z〉|b
dvσ(z) . (1−|a|2)n+1+σ−b

∫
Bn

(1− |ζ|2)p |R(f ◦ ϕa)(ζ)|p

|1− 〈a, ζ〉|2(n+1+σ)−b dvσ(ζ).

Since
(1− |ζ|2) |R(f ◦ ϕa)(ζ)| ≤ |∇̃(f ◦ ϕa)(ζ)| = |∇̃f(ϕa(ζ))|,

another change of variables w = ϕa(ζ) finally gives∫
Bn

|f(z)−f(a)|p

|1− 〈a, z〉|b
dvσ(z) .

∫
Bn

|∇̃f(w)|p

|1− 〈a,w〉|b
dvσ(w).

completing the proof of the lemma. �

After these preparations, we are now ready for the proof of Theorem 6.

Proof of Theorem 6. Assume first that the small Hankel operator hα
f

: Ap1α → A1
α is

bounded. Let g ∈ Ap1α . From the pointwise estimate for Bergman spaces, we get

|〈g, f〉α| = |hαf g(0)| ≤ C‖hα
f
g‖1,α ≤ C‖hαf ‖ · ‖g‖p1,α.

Therefore, by duality, we have that f ∈ Ap
′
1
α with

(18) ‖f‖p′1,α ≤ C‖h
α
f
‖.

Recall that hα
f

: Ap1α → A1
α is bounded, if and only if, Sαf : Ap1α → A1

α is bounded,
with ‖Sαf ‖ � ‖hαf ‖. Also, since for any g ∈ Ap1α and h ∈ B,

(19) 〈Sαf g, h〉α = 〈f, gh〉α = 〈Sαf h, g〉α

we know that Sαf : B → A
p′1
α is bounded, and moreover, we have

‖Sαf ‖B→Ap′1α
. ‖hα

f
‖.

For g in the Bloch space B, one has

‖Mfg‖
p′1
p′1,α

=

∫
Bn
|f(z) g(z) |p

′
1 dvα(z)

.
∫
Bn
|Sαf g(z) |p

′
1 dvα(z) +

∫
Bn
|f(z) g(z)− Sαf g(z)|p

′
1 dvα(z).

(20)
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Due to the boundedness of Sαf : B → A
p′1
α ,

(21)
∫
Bn
|Sαf g(z) |p

′
1 dvα(z) ≤ ‖Sαf ‖

p′1

B→A
p′1
α

· ‖g‖p
′
1

B . ‖h
α
f
‖p

′
1 · ‖g‖p

′
1

B .

On the other hand, by the reproducing formula for Bergman spaces and Hölder’s inequality,

|f(z) g(z)− Sαf g(z)|p
′
1 =

∣∣∣∣∣
∫
Bn

f(w) (g(z)− g(w))

(1− 〈z, w〉)n+1+α
dvα(w)

∣∣∣∣∣
p′1

≤

(∫
Bn

|f(w)|p′1
|1− 〈w, z〉|n+1+α

dvα+εp′1
(w)

)(∫
Bn

|g(z)− g(w)|p1
|1− 〈w, z〉|n+1+α

dvα−εp1(w)

) p′1
p1

,

where ε > 0 satisfies α− εmax(p1, p
′
1) > −1. Using Lemma 7 and Lemma B we get∫

Bn

|g(z)− g(w)|p1
|1− 〈w, z〉|n+1+α

dvα−εp1(w) .
∫
Bn

|∇̃g(w)|p1
|1− 〈w, z〉|n+1+α

dvα−εp1(w)

. ‖g‖p1B (1− |z|2)−εp1 .

Therefore, this together with Fubini’s theorem, Lemma B and the estimate (18) gives∫
Bn
|f(z) g(z)− Sαf g(z)|p

′
1 dvα(z)

≤ C‖g‖p
′
1

B

∫
Bn
|f(w)|p

′
1

(∫
Bn

dvα−εp′1(z)

|1− 〈w, z〉|n+1+α

)
dvα+εp′1

(w)

≤ C‖g‖p
′
1

B · ‖f‖
p′1
p′1,α
≤ C‖hα

f
‖p

′
1 · ‖g‖p

′
1

B .

(22)

Putting together the estimates (20), (21) and (22) it follows thatMf : B → A
p′1
α is bounded

with ‖Mf‖B→Ap′1α
. ‖hα

f
‖.

Conversely, suppose that Mf : B → A
p′1
α is bounded. By the boundedness of the

projection Pα : Lp
′
1(Bn, dvα) → A

p′1
α one deduces that Sαf : B → A

p′1
α is also bounded,

and so obviously, Sαf : B0 → A
p′1
α is bounded, where B0 is the little Bloch space, and it is

well-known that the dual space of B0 is A1
α under the integral pair 〈 , 〉α (see, for example,

Chapter 3 of [24]), from (19) we know that Sαf : Ap1α → A1
α is bounded. �

As a consequence of Theorem 6 we can easily obtain the sufficient and necessary con-
ditions given in [4] as well as another relevant necessary condition for the boundedness of
hα
f

: Ap1α → A1
α.

Corollary 8. Let f ∈ H(Bn), α > −1 and p1 > 1.

(i) If (16) holds, then hα
f

: Ap1α → A1
α is bounded.

(ii) If hα
f

: Ap1α → A1
α is bounded, then

(23) sup
z∈Bn

(1− |z|2)(n+1+α)/p′1 |f(z)|
(

log
2

1− |z|2
)
<∞
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and

(24)
∫
Bn
|f(z)|p

′
1

(
log

2

1− |z|2
) p′1

2

dvα(z) <∞.

Proof. Part (i) follows directly from Theorem 6 and the pointwise estimate for Bloch func-
tions

|g(z)| ≤ ‖g‖B log
2

1− |z|2
.

To prove part (ii), for each z ∈ Bn, the function

gz(w) = log
2

1− 〈w, z〉
is in the Bloch space with ‖gz‖B ≤ C with the constant C independent of the point z.
Therefore, from the pointwise estimate for functions in Bergman spaces, we get

(1− |z|2)n+1+α
(
|f(z)| log

2

1− |z|2
)p′1

= (1− |z|2)n+1+α|f(z) gz(z)|p
′
1

. ‖fgz‖
p′1
p′1,α

= ‖Mfgz‖
p′1
p′1,α

≤ ‖Mf‖B→Ap′1α
· ‖gz‖

p′1
B . ‖Mf‖B→Ap′1α

,

and (23) follows due to Theorem 6. The necessity of (24) is also a consequence of
Theorem 6. Indeed, clearly Mf : B → A

p′1
α is bounded if and only if the measure

dµf (z) = |f(z)|p′1 dvα(z) is a p′1- Carleson measure for the Bloch space (see [7, 10]
for the definition); and by Proposition 1.4 in [7] (the one dimensional case appears in [10]
and [14]) this implies (24), finishing the proof. �

The established connection between Hankel operators on Bergman spaces and Carleson
measures for the Bloch space makes even more interesting the problem (as far as we know,
still open) of describing those measures.
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