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Abstract. A description of the Bloch functions that can be approx-
imated in the Bloch norm by functions in the Hardy space Hp of the
unit ball of Cn for 0 < p < ∞ is given. When 0 < p ≤ 1, the result is
new even in the case of the unit disk.

1. Introduction.

Let D and T be, respectively, the unit disk and the unit circle of the complex
plane C. For 0 < p <∞, recall that the Hardy space Hp(D) is the space of
analytic functions f in the unit disc such that

‖f‖pp = sup
0<r<1

∫ 2π

0
|f(reiθ)|p dθ

2π
< +∞.

For p = ∞, H∞(D) is the space of all bounded analytic functions in the
unit disk. Recall also that the Bloch space B(D) is formed by the analytic
functions f on D such that

‖f‖B = sup
z∈D

(1− |z|2) |f ′(z)| <∞.

In [10], a characterization of the closure in the Bloch norm of Hp ∩ B for
1 < p < ∞ was given in terms of the area of certain non-tangential level
sets of the Bloch function: given a function f ∈ B and ε > 0 define the level
set of f as

Ωε(f) := {z ∈ D : (1− |z|2)|f ′(z)| ≥ ε}.

Recall that a Stolz angle with vertex in ζ ∈ T is the set

Γ(ζ) = Γα(ζ) := {z ∈ D : |z − ζ| < α

2
(1− |z|)},
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with α > 2, and that

Ah(Ω) :=

∫
Ω

dA(z)

(1− |z|2)2
,

where dA(z) is the area measure in D, represents the hyperbolic area of
Ω ⊂ D. Then the result is the following:

Theorem A. Let f be a function in the Bloch space B and 1 < p < ∞.
Then f is in the closure in the Bloch norm of B ∩Hp if and only if for any
ε > 0 the function Ah(Γ(ζ) ∩ Ωε(f))1/2 is in Lp(T).

A basic tool in the proof of this result was the characterization of Hardy
spaces in terms of the area function (a result due to Marcinkiewicz and
A. Zygmund [9] for p > 1, and extended to the case 0 < p ≤ 1 by A.
Calderón [3]), that is, for 0 < p <∞, a function f is in Hp if and only if its
corresponding Lusin Area function

A(f)(ζ) =

(∫
Γ(ζ)
|f ′(z)|2dA(z)

)1/2

is in Lp(T). The proof of Theorem A was based on a previous result by P.
Jones on the closure of BMOA in B (see [6]). The duality argument given
in the proof in [10] can not be used for 0 < p ≤ 1, so that this case requires
of new techniques. In this paper we solve the case 0 < p ≤ 1. It turns out
that the proof given works equally for all 0 < p < ∞, and furthermore, it
may be done in the open unit ball Bn of the n-dimensional complex space
Cn. The case p = ∞ is still an open problem, and will be discussed in the
last Section.

Now we are going to introduce some notation. For z, w ∈ Cn, let

〈z, w〉 = z1w̄1 + · · ·+ znw̄n.

Hence, |z|2 = 〈z, z〉. In this context, for 0 < p <∞ the Hardy space Hp(Bn)
consists of those holomorphic functions f on Bn such that

‖f‖pp = sup
0<r<1

∫
Sn
|f(rζ)|p dσ(ζ) < +∞,

where Sn denotes the unit sphere in Cn and σ is the normalized surface
measure on Sn. As in the case for n = 1, for p =∞ the corresponding space
H∞(Bn) is the space of bounded holomorphic functions defined on Bn.
The Hardy space Hp(Bn) may be also characterized by means of a cor-
responding area function. In order to define it, let Rf denote the radial
derivative of f , that is,

Rf(z) =
n∑
k=1

zk
∂f

∂zk
(z), z = (z1, . . . , zn) ∈ Bn.
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Besides, the hyperbolic measure in Bn is given by

dλn(z) =
dv(z)

(1− |z|2)n+1
,

where dv(z) is the normalized volume measure in Cn. The admissible Area
function is then defined as

Af(ζ) =

(∫
Γ(ζ)
|Rf(z)|2 (1− |z|2)2 dλn(z)

)1/2

, ζ ∈ Sn,

where Γ(ζ) denotes now the admissible Koranyi region, that is,

Γ(ζ) = Γα(ζ) :=
{
z ∈ Bn : |1− 〈z, ζ〉| < α

2
(1− |z|2)

}
,

for α > 2 fixed. When n = 1 this region coincides with the usual Stolz angle
in D. The following result is the generalization of the area theorem for Bn
and can be found, for example, in [4] or [12, Theorem 5.3].

Theorem B. Let 0 < p <∞, then f ∈ Hp(Bn) if and only if Af ∈ Lp(Sn).
Furthermore, if f(0) = 0 the norms ‖f‖Hp and ‖Af‖Lp are comparable.

The Bloch space B := B(Bn) consists of those functions f holomorphic on
Bn such that

‖f‖B = sup
z∈Bn

(1− |z|2)|Rf(z)| <∞,

This seminorm is not conformally invariant (for more details, see [15, Chap-
ter 3]), but it is equivalent to the seminorm defined above for the unidi-
mensional case, and more convenient for the statements here. As in the
one-dimensional case, H∞(Bn) ⊂ B(Bn).

The level sets here are defined as

Ωε(f) := {z ∈ Bn : (1− |z|2)|Rf(z)| ≥ ε}.

Clearly, the hyperbolic volume of any set Ω ⊂ Bn is

Vh(Ω) =

∫
Ω
dλn.

The result proved in this paper is the following one.

Theorem 1. Let f be a function in the Bloch space B(Bn) and 0 < p <∞.
Then f is in the closure in the Bloch norm of B ∩Hp(Bn) if and only if for

any ε > 0 the function Vh(Γ(ζ) ∩ Ωε(f))1/2 is in Lp(Sn).

The paper is organized as follows. After some preliminaries given in Section
2, we prove Theorem 1 in Section 3. Finally, in Section 4, we disprove a
conjecture of Xiao on the closure of H∞(D) in the Bloch space.
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2. Preliminary results

We will use the fact given in [15, p.51] that one may express a function
f ∈ B as

(1) f(z) = f(0) +

∫
Bn

Rf(w)L(z, w) dvβ(w),

where the kernel

L(z, w) =

∫ 1

0

(
1

(1− t〈z, w〉)n+1+β
− 1

)
dt

t

satisfies

|L(z, w)| ≤ C

|1− 〈z, w〉|n+β
.

Here

dvβ(z) = cβ(1− |z|2)β dv(z),

where β > −1 and cβ is a normalizing constant taken so that vβ(Bn) = 1.

The following integral estimate has become indispensable in this area of
Analysis. One may find the proof in [15, Theorem 1.12].

Lemma C. Let t > −1 and s > 0. There is a positive constant C such that∫
Bn

(1− |w|2)t dv(w)

|1− 〈z, w〉|n+1+t+s
≤ C (1− |z|2)−s

for all z ∈ Bn.

The next result may be thought as a generalized version of Lemma C, and
appears in [11, Lemma 2.5].

Lemma D. Let s > −1, r, t > 0, and r + t− s > n+ 1. If t, r < s+ n+ 1
then, for a, z ∈ Bn, one has∫

Bn

(1− |w|2)s

|1− 〈z, w〉|r |1− 〈a,w〉|t
dv(w) ≤ C 1

|1− 〈z, a〉|r+t−s−n−1
.

The following estimation may be found in [2] and [7], and it is the analogue
in Bn of [8, Proposition 1].

Lemma E. Let 0 < s < ∞ and b > nmax(1, 1/s). Then there exists a
constant C > 0 depending on s, b and on the angle of the region Γ(ζ) such
that ∫

Sn

(∫
Bn

( 1− |z|2

|1− 〈z, ζ〉|

)b
dµ(z)

)s
dσ(ζ) ≤ C

∫
Sn
µ(Γ(ζ))s dσ(ζ),

where µ is a positive measure on Bn.
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3. Proof of Theorem 1.

Let first f be in the closure in the Bloch norm of Hp ∩ B. Then, given
ε > 0 there exists g ∈ Hp such that ‖f − g‖B < ε/2. As in the proof of
Theorem A in [10], one just needs to observe that Ωε(f) ⊆ Ωε/2(g) to see
that for any ζ ∈ Sn

Vh(Γ(ζ) ∩ Ωε(f)) ≤ 4

ε
Ag(ζ)2.

Since Ag ∈ Lp(Sn), the necessity is proved.

From now on, set Ωε = Ωε(f). Let f be in the Bloch space and assume that

Vh(Γ(ζ)∩Ωε)
1/2 is in Lp(Sn). Given ε > 0, we need to find f2 ∈ B∩Hp such

that ‖f − f2‖B ≤ ε. To this end, and applying (1), f may be decomposed
in the sum of two functions f(z) = f1(z) + f2(z), where

f1(z) =

∫
Bn\Ωε

Rf(w)L(z, w) dvβ(w)

and

f2(z) = f(0) +

∫
Ωε

Rf(w)L(z, w) dvβ(w),

with β big enough to be fixed later. It is easy to see that

|Rf1(z)| ≤ (n+ 1 + β)

∫
Bn\Ωε

|Rf(w)|
∣∣∣∣∫ 1

0

〈z, w〉
(1− t〈z, w〉)n+2+β

dt

∣∣∣∣ dvβ(w)

≤ εC(n, β)

∫
Bn

(1− |w|2)β−1

|1− 〈z, w〉|n+β+1
dv(w).

Now Lemma C with t = β − 1 and s = 1 shows that ‖f1‖B ≤ C ε.

Thus it remains to see that f2 ∈ Hp(Bn), or by Theorem B, that Af2 ∈
Lp(Sn). As in the previous estimation for Rf1 one has that

|Rf2(z)|2 ≤ C(n, β) ‖f‖2B
(∫

Ωε

(1− |w|2)β−1

|1− 〈z, w〉|n+β+1
dv(w)

)2

≤ C̃(n, β) ‖f‖2B
(∫

Ωε

(1− |w|2)β−1

|1− 〈z, w〉|n+β+1
dv(w)

)
(1− |z|2)−1,

after an application of Lemma C. Then Fubini’s theorem gives

Af2(ζ)2 ≤ C1

∫
Γ(ζ)

(∫
Ωε

(1− |w|2)β−1

|1− 〈z, w〉|n+β+1
dv(w)

)
dv(z)

(1− |z|2)n

= C1

∫
Ωε

(∫
Γ(ζ)

dv(z)

(1− |z|2)n |1− 〈z, w〉|n+β+1

)
(1− |w|2)β−1dv(w).
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Now, z ∈ Γ(ζ) implies that (1− |z|2) ' |1− 〈z, ζ〉|. Then, applying Lemma
D with r = t = n+ β + 1 and s = β + 1 one has that∫

Γ(ζ)

dv(z)

(1− |z|2)n |1− 〈z, w〉|n+β+1
'
∫

Γ(ζ)

(1− |z|2)β+1 dv(z)

|1− 〈z, ζ〉|n+β+1 |1− 〈z, w〉|n+β+1

≤
∫
Bn

(1− |z|2)β+1 dv(z)

|1− 〈z, ζ〉|n+β+1 |1− 〈z, w〉|n+β+1

≤ C2

|1− 〈w, ζ〉|n+β
.

Hence,

‖Af2‖pLp ≤ C3

∫
Sn

(∫
Ωε

1

|1− 〈w, ζ〉|n+β
(1− |w|2)β−1 dv(w)

)p/2
dσ(ζ)

= C3

∫
Sn

(∫
Ωε

(1− |w|2)n+β

|1− 〈w, ζ〉|n+β

dv(w)

(1− |w|2)n+1

)p/2
dσ(ζ)

= C3

∫
Sn

(∫
Bn

(
(1− |w|2)

|1− 〈w, ζ〉|

)n+β

dµ(w)

)p/2
dσ(ζ).

Here

dµ(w) =
χΩε(w)dv(w)

(1− |w|2)n+1
,

where χΩε denotes the characteristic function of Ωε, is a positive Borel mea-
sure. Then Lemma E with s = p/2 and b = n + β, where β is positive and
bigger than n · (2/p− 1), shows that Af2 ∈ Lp(Sn). This finishes the proof.

4. The case p =∞ and n = 1.

We consider only the one variable case of the unit disk in this last section.
The problem of describing the closure of the space of bounded analytic func-
tions in the Bloch norm was posed in [1], and still remains open. Remember
that H∞ ⊂ B. Theorem B does not hold for p =∞, so the proof given here
does not work in this case. Nevertheless, it is interesting to observe that the
proof given also works if one considers the class of analytic functions with
area function Af in L∞.

One may also see that the analogue for p = ∞ of the condition given in
Theorem 1 (that is, Ah(Ωε(f) ∩ Γ(ζ)) ∈ L∞(T)) is not necessary for a
function f to be in the closure in the Bloch norm of the space of bounded
analytic functions. To this end, for k ∈ N take the points zk = 1 − 2−k,
and consider the sequence {zk}, which is a radial separated sequence. In
particular, {zk} is an interpolating sequence for H∞ (see [5, Chapter VII,
p.279]). By Carleson interpolation theorem, there exists δ > 0 such that

(1− |zk|2)|B′(zk)| ≥ δ,
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where B denotes the Blaschke product with zeros {zk}, which is clearly in
H∞. Given now ε < δ/4 there exists ρ > 0 such that (1 − |z|2)|B′(z)| ≥ ε
on each Dh(zk, ρ), that is, the hyperbolic disk with center zk and radius ρ.
Hence, ⋃

k∈N
Dh(zk, ρ) ⊂ Ωε(B) ∩ Γ(1).

Since the sequence is separated, one can take ρ > 0 so that the disks
Dh(zk, ρ) are pairwise disjoints. Now it is easy to see that Ah(Ωε(B)∩Γ(ζ))
is not in L∞(T), since Ah(Dh(zk, ρ)) ≥ C for a certain constant C > 0 only
depending on ρ.

In [13, Section 3.6] one finds a sufficient condition for a Bloch function to be
in the closure in the Bloch norm of H∞(D). The condition is the following:
For every ε > 0 one has that

(2) sup
w∈D

∫
Ωε(f)

1

|1− wz|2
dA(z) <∞.

The sufficiency of this condition is checked by following the argument from
[10] given in the proof of Theorem 1. Let f ∈ B satisfy (2). Without loss
of generality one may take f(0) = f ′(0) = 0. Hence the function can be
expressed by the following integral (see [14, Proposition 4.27])

f(w) =

∫
D

(1− |z|2)f ′(z)

z(1− zw)2
dA(z) = f1(w) + f2(w),

where f1 and f2 are taken as in the previous section. As before, we see that
‖f1‖B ≤ C ε. In order to see that f2 ∈ H∞ one just has to observe that

|f2(w)| ≤
∫

Ωε(f)

(1− |z|2)|f ′(z)|
|z||1− wz|2

dA(z) ≤ C(ε) ‖f‖B
∫

Ωε(f)

dA(z)

|1− wz|2
,

and then apply the hypothesis.

Actually, in [13, p.71], J. Xiao conjectured that condition (2) is also neces-
sary. Nevertheless, the same example as above gives a counterexample to
that conjecture, just by evaluating the integral for w approaching 1 non-
tangentially. Indeed, if wm = 1− 2−m, then∫

Ωε(B)

1

|1− wmz|2
dA(z) ≥

m∑
k=1

∫
Dh(zk,ρ)

1

|1− wmz|2
dA(z).

Now, using the estimate (2.20) in p.63 of [15], it is easy to see that there is a
constant C depending on ρ such that |1−wmz| ≤ C(1−|zk|) for z ∈ Dh(zk, ρ)
and k ≤ m. This clearly implies that∫

Ωε(B)

1

|1− wmz|2
dA(z) −→ +∞

as m→∞, proving that the condition (2) is not necessary.
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