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(Communicated by Paul S. Muhly)

Abstract. It is proved that for each inner function 6 there exists an inter-

polating sequence {zn} in the disk such that sup„ |ö(z„)| < 1 , but every

function g in H°° with g(z„) = 9(z„) (n = 1,2, ...) satisfies ||gj|oo > 1 .

Some results are obtained concerning interpolation in the star-invariant sub-

space H2 Q OH2 . This paper also contains a "geometric" result connected with

kernels of Toeplitz operators.

Let Hp denote the classical Hardy space of holomorphic functions in the

open unit disk D. The norm in Hp will be denoted by || • Up. If {zk} is a

sequence of points in D satisfying J2k(l - \zk\) < +00, let B = F{Z/j stand

for the Blaschke product whose zero sequence is {zk}, i.e.,

B(z) = H
k=\

def
where zk/\zk\ = -1 for zk = 0. Set

zk    zk - z

\zk\ l-zkz'

Bj{z)= n
k : k?j

zk    zk

\zk\ 1 - ZkZ

Recall that  {zk}  is called an interpolating sequence (i.s.)   iff F = F{2j
def

satisfies ô(B) = inf, \Bj(zj)\ > 0. In this case B itself is called an interpolating

Blaschke product (i.B.p.). A famous theorem of Carleson (see [Gar] or [K]) says

that {{f(zk)} : f £ H°°} = /°° if and only if {zk} is an i.s.
Recall that a function 6 in H°° is called inner iff |0(C)| = limr_i_0 |ö(rC)| =

1 for AAî-almost all Ç £ T (here T = dB and m is the normalized Lebesgue

measure on T). Theorem 1 of this paper treats inner functions as interpolating

functions of minimal norm. Roughly speaking, it says that, given an inner

function 0, one can find an i.s. {zn} in D such that the values |ö(z«)| are

bounded away from 1, but nevertheless 8 is an H°° function of minimal norm

that interpolates 6(zn) in zn.
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1008 K. M. DYAKONOV

Theorem 1. There are absolute constants ß and ôo (0 < ß < 1, 0 < So < I)

with the following property: For each inner function 8 there exists an i.B.p.

B — B{Zky such that

(i)  supk\8(zk)\<ß;

(ii) 0(B) > So ;
(iii) infAg^oollö + ÄÄII«, = 1.

Proof. Fix a number a, 0 < a < 1 , and let y be another small positive

number that will be chosen later on. Once 8, a, and y are given, a theorem

due to Marshall (see [Gar, Chapter viii, Theorem 4.1]) says there exists an i.B.p.

B = B{Zk} such that

(a) |F(z)| <y if \8(z)\<a   (z e D) ;

(b) supk\8(zk)\<ß<l;
(c) 0(B) >¿0>0,

where ß and So are some constants depending only on a and y.

Thus B satisfies (i) and (ii), so it suffices to show that for some choice of a

and y we have

(iii) dist(0 , BH°°) = infA6//oo ||0 + F/zlU = 1 .

(From now on dist(-, •) denotes the distance measured in F°° .)

We now make the following

Claim. For each a, 0 < a < 1 , there is a positive number y = y (a) such

that the property (a) above implies

(1) dist(02F,//°°)< 1.

Assuming that the Claim is already established, we complete the proof. Let

a and y = y(a) be such that (a) implies (1), and let B be the i.B.p. given by

Marshall's construction when applied to 8 , a , and y . Suppose (iii) fails, then

we have dist(0F, H°°) < 1 and dist(0F, 8H°°) < 1 . (The former inequality
is contrary to (iii) and the latter coincides with (1).) However, such a situation

is incompatible with the following well-known fact (e.g., see [Do]): if u is a

unimodular function on T such that dist(w, H°°) < 1 and dist(w, H°°) < 1 ,

then every function h in /7°° satisfying \\u - /z||oo < 1 is outer (in fact, it is

even invertible in H°°). In our case set u - 8B . Both distances are < 1, but

there is a function h in 8H°° (hence not outer) with \\u - h\\x < 1 . This is

impossible, and the contradiction proves (iii).

Since a was arbitrary throughout, one can take a = j . This done, all the

constants in the above construction become numerical. The proof is complete,

except for the Claim.

To prove the Claim, fix a £ (0, 1 ) and consider the system Tn of the so-

called Carleson curves associated with 8 and a. More precisely, let Y„ be a

countable union of simple closed rectifiable curves in Clos D with the following

properties.

1. The curves in the system Yn have pairwise disjoint interiors.

2. For z £ T,» n D we have n(a) < \8(z)\ < a , where n(a) is some positive

number depending only on a .

3. Arc length |úfz| on T„nD is a Carleson measure, i.e., Hx c L'(r„ , \dz\)

and the norm N(a) of the arising embedding operator depends only on a .
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4. For any <P, <P G //' , we have

h G(z) Jr 8(z)

provided the curves in Ta are oriented in the appropriate way. A similar equal-

ity holds if 8 is replaced by any positive power of itself.

Carleson's construction is described in [Gar, Chapter viii].

Now let F satisfy (a). Then supronD|F| < y and a standard duality argument

yields

dist(02F, H°°)
keH<

sup
k

<.

sup
■ IWI

J_
2ñ

y

I82Bzkdm

i

Bk
dz

i sup
2nn(a)2   k

i \k\\d
Jr„

sup
k

Z\<

1    f Bk-,
2¿JrWdz

1  yN(a)

2n n(a)2 '

where we have used the properties of TQ listed above. Setting y
—2

we get dist(0 B, H°°) < 1 as desired.   D

n(a)2/N(a)

Remark. This theorem should be compared to the following result of Stray and

0yma [S0].

Theorem A. If h is an extreme point in the unit ball of H°° (i.e., \\h\loo = I and

f log( 1 - \h\) dm - -oo), there exists an interpolating sequence {z„} tending to

one point such that h is the unique H°° function of norm < 1 that interpolates

h(zn) in z„.

Of course, each inner function is an extreme point, and so Theorem A deals

with a larger class of functions than Theorem 1. However, the construction in

[SO] gives lim„_oo |A(z„)| = 1. Hence the equality dis\(h, F{Znj.//°°) = 1 is

immediate, and it is the uniqueness of h that really matters in Theorem A.

Theorem 2. There is an absolute constant N, JVeN, with the following prop-

erty: for each inner function 8 there exists an i.B.p.  B such that

(2) dist(F, 0H°°) < I,

(3) dist(8N, BH°°) < 1.

Proof. Let a = ¿ , y be small enough, and B = B{Zk} be the i.B.p. possessing

the properties (a), (b), (c) given by Marshall's theorem (see the proof of Theo-

rem 1). It has been actually proved (see the proof of the Claim above) that for

a suitable y the inequality (2) holds.

Clearly, disi(8N, F//°°) = d(N) equals inf{||/Hoo : f £ H°°, f(zn) =
8N(zn) (n = 1,2, ...)}. Since sup„ |0(z„)| < ß and ô(B) > S0 (conditions

(b) and (c)), Carleson's interpolation theorem [Gar, Chapter vii] yields

d(N) <i-(l+log-^)ßN,

where the constant c is numerical.
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Choosing N to be large enough, so that

one arrives at (3). Since the constants a, ß , y , ¿o were numerical, the same

is true of N.    D

Here is an interesting open question, posed by Nikolskiï [N]. Given an arbi-

trary inner function 8 , does there necessarily exist an i.B.p. F such that (2)

and (3) hold with N — 1 ? An affirmative answer (which seems quite probable

in view of Theorem 2) could be restated to say that for any 8 the correspond-

ing star-invariant subspace K2 = H2 © 8H2 possesses an unconditional basis

of reproducing kernels.

Now let {z„} be an i.s.; by F = F/Zfj we denote the operator given by

Tf={(l-\zn\)x'2f(zn)}Zx.

It is well known [Gar, K] that TH2 = I2 .

Once again, let 8 be an inner function and let Kg = H2 © 8H2 be the star-

invariant (i.e., invariant under the backward shift operator) subspace generated

by 8 . Consider the following interpolation problem: Describe the conditions

on 8 and i.s.  {z„} under which

(4) T{Zn]K2 = I2.

A standard duality argument shows that (4) holds iff sup„ |0(z„)| < 1  and

the family {ac„} of reproducing kernels, ac„(Ç) = (1 - 8(z„)8(Ç))(l - z„Ç)~x ,

forms an unconditional basis in its closed linear hull. The latter statement is

known [HNP] to be equivalent to

(5) dist(6, BH°°)< 1,        B = B{Zn).

Thus (4) and (5) are equivalent. However, (5) is still rather implicit, and one

would think of more explicit conditions implying (4). Theorems 3 and 4 below

contain simple sufficient conditions. The proofs will be based on the following

results due to Oyma [0].

Theorem B. Let {zk} be an i.s. in D and assume wn —* 0. Then there ex-

ists a unique H°° function f of minimal norm such that f(zn) = wn (n =

1,2,...). This function is a constant times an inner function and has analytic

continuation across T\Clos{z„}.

Theorem C. Assume that {z„} is an i.s. and z„ —> 1 nontangentially. Then the

unique function f of Theorem B is a constant times a Blaschke product.

For an arbitrary inner function 8 let Sq denote its singular support, i.e., the

smallest of all closed subsets F of T such that 8 is analytic across T\F.

Theorem 3. Suppose 8 is inner, {z„} is an i.s., lim„^008(zn) = Q, and Clos{z„}

n T C se . Then we have (4).

Proof. By Theorem B there exists a unique function / such that / £ d + BH00 ,

ll/lloo = dist(0, BH°°). Moreover, / is inner (up to a constant factor) and

analytic across T\Clos{z„}.  Since Clos{z„}nT is strictly contained in Sg ,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



INTERPOLATING FUNCTIONS OF MINIMAL NORM 1011

one infers that 8 is not analytic across T\Clos{z„}. Hence f ^ 8 . In other

words, 8 is not the unique function of minimal norm that interpolates the

values 8(zn) in z„ . Thus ||/||oo < Halloo = 1 > and one arrives at (5), which is

the same as (4).   D

Theorem 4. Fe? 8(z) = exp(- J(Ç + z)(Ç - z)~x dp(Q), where p is a positive

Borel singular measure on T. Then p-almost all points Ç of T enjoy the

following property: if {z„} is an i.s. and z„ —> Ç nontangentially, then (4)

holds.

Proof. It is well known [Gar, Chapter ii] that the nontangential limit of 8 at

C equals 0 for /¿-almost all Ç e T. Let Co be such a point, and let {z„} be an

i.s. tending to Co nontangentially. From Theorem C one sees that the unique

extremal function in 8 + B{Zn}H°° is a constant times a Blaschke product,

whereas 8 is singular. Therefore 8 is not extremal. Hence (5) holds, and so

does (4).    D

The next proposition is, in fact, a mere combination of Theorems 1 and 2.

Theorem 5. There exist absolute constants So (0 < So < 1) and N (N £ N)

with the following property: For each inner function 8 one can find an i.s. {z„}

such that ô(B{Zn}) > ô0, T{Zn]K2 ¿ I2, but T{Zn}K2N = I2.

Proof. Let {z„} be constructed as in the proof of Theorem 1, and let N be

chosen as in the proof of Theorem 2.   □

We conclude with a "geometric" result pertaining, in a way, to the subject.

Let tp £ F°° , and let Ty denote the Toeplitz operator with symbol <p :

(T9f)(z)^jVf^dm(0       (zep).

We treat T9 as a bounded operator going from //'  to Hp , 0 < p < 1 , and
def

consider its kernel K(tp) = KerF^,, which is assumed to be nontrivial from

now on. Theorem 6 below provides an explicit characterization of the extreme

points in the unit ball of K(tp). Recall that K(tp) is endowed with F'-norm,

and so ball(K(cp)) = {f £ Hx : ||/||, < 1, T9f = 0}. Once the symbol q> is

fixed, we set f=zjf and note that K(<p) = {f £ Hx : f £ //'}. Finally, if /
is an //' function, If stands for the inner factor in the canonical factorization

of /.

Theorem 6. Let f £ K(tp), \\f\\\ — 1. The following statements are equivalent.

(i) / is an extreme point of ball(K(<p)).

(ii) The inner functions If and If are relatively prime (i.e., they have no

common inner divisors).

Proof. We need the following lemma, which can be found in [Gam, Chapter V,

§9].

Lemma. Suppose X is a closed subspace of Hx , and let f £ X, \\f\\x = 1. Faj?

function f is an extreme point in the unit ball of X iff any function h in L§°

for which fh £ X is constant almost everywhere. ( We write h £ Lg° to mean

that h is a real-valued function in L°° .)
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In fact, Gamelin considers the case X — Hx , but the same proof works in

case X is an arbitrary subspace of Hl. In particular, one can take X — K(tp).

We prove now that (i) implies (ii). Let f be an extreme point, and let the

inner function u be the greatest common divisor of // and If. We have then

fu = zlpfu = fîi, and the latter function belongs to Hx because u divides

I>. Hence fu £ K(<p). Similarly one sees that fu £ K(tp). It follows that the

product / • Re w = \f(u + ü) is also in K(tp). Since / is an extreme point,

the above lemma yields Reu = const, whence u = const and so the functions

// and I? are relatively prime.

Conversely, let (ii) hold. Suppose we have fh £ K(tp) for a function h

in Ff . Setting g = fh we get g = zlpfh = fh £ Hx . Thus h = g/f =

g/f, whence fg = fg and a similar equality holds for the inner factors:

Iflg = Iflg . Recalling that // and I? are relatively prime, we conclude that

// divides Ig ; that is, Ig/If £ H°°. Therefore the bounded function h,
h = g/f, can be also written in the form h = gx/fx , where both f and g\

are in Hx, and besides f\ is outer. This means h £ H°° . Since h belongs

also to Fg", it cannot help being constant. Thus, assuming (ii) holds, we have

shown that the inclusion fh £ K(q>) implies h = const. The statement (i) now

follows by Lemma.   G

Corollary 1. If f is any function in K(tp) with \\f\\x = I, it can be written in

the form f= j(f + f2), where f and f2 are extreme points of ball(K(tp)).

Proof. The desired representation is obtained by setting fiy2 = /{l ±Re(Xu)},

where u is again the greatest common divisor of // and /? and X is a complex

number with |A| = 1 for which / |/| Re(Xu) dm - 0, The details are very much

the same as in [Gar, Chapter IV, Theorem 5.1] where the needed assertion is

proved for the special case <p = 0, in which case K(tp) = Hx .   D

Corollary 2. The extreme points of ball(K(<p)) form a dense subset (with respect

to Lx norm) of the unit sphere of K(tp), provided <p ̂  0.

def
Proof. For a fixed function / in K(tp) with ||/||i = 1, set fa = f - acff,

where a £ D and cff stands for the outer factor of /. One easily verifies

that fa £ K(tp), Ifa = (If - a) / (I -alf), and I? = If. By Frostman's

theorem (see [Gar, Chapter ii]) Ifa is a Blaschke product for a £ B\A, where

A is a certain set of zero logarithmic capacity. Now let {zj} be the zero

sequence of /?, and let  {an}  be a sequence of points in D\(^4 U {If(zj)})

tending to 0. As readily seen, the inner factors of fan and fan are relatively

prime for n = 1, 2,... . Therefore the unit norm functions fa„/\\fa„h are

extreme points of ball(K(q>)). They also converge to / in F1 norm, and the

proof is complete.   D

Remarks. 1. As mentioned above, F(0) = //' and so, formally speaking, The-

orem 6 extends the well-known theorem of de Leeuw and Rudin that says the

extreme points of ball(Hx) are precisely the outer functions of unit norm. To

derive this from Theorem 6 one should notice that tp = 0 implies / = 0 for

all / in Hx and define If to be also 0. Note that the statement of Corollary

2 fails if <p = 0; the F'-closure of the extreme points of ball(Hx) is known
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to contain precisely those unit norm functions in Hx that have no zeros in D.

(See [H, Chapter 9]).

2. In the case that tp = 8 , 8 being an inner function, K(q>) becomes the star-

invariant subspace Kex = Hx C\z8Hx that can be also defined as ClosLi K\ . For

this special case Theorem 6 and its corollaries have been previously obtained by

the author [Dyal]. See also [Dya2] for some information on the exposed points

in K\ . In particular, it is proved there that Corollary 2 remains valid after

K(tp) is replaced by Kg and the word "extreme" is replaced by "exposed".
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