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A detailed study is presented of the influence of several parameters on the energy-loss probability
of fast electrons (~ 100 keV) incident on small metallic spherical particles. We consider the collec-
tive modes of the sphere, including bulk-type modes which do not appear to have been considered
previously in the literature. A Gaussian distribution is used to describe the electron in the plane
transverse to the trajectory. We discuss the effects of the variation of several parameters—incident
beam size, probe velocity, radius of the sphere, impact parameter, and the excited mode—and con-
clude that the absorption spectra depend critically on the geometry of the probe as the experimental

data of Batson and Treacy suggest.

I. INTRODUCTION

The problem of inelastic scattering of fast electrons
passing through or nearby small spherical particles has
been studied by a number of authors. The incident elec-
tron is represented either as a plane wave' or as a point
classical particle with an eventual averaging over impact
parameter.” The recent development of high-resolution
scanning-transmission electron microscopy (STEM) has
renewed the interest in this problem. STEM has made
available a technique of electron energy spectroscopy in
highly localized regions of inhomogeneous specimens.
Schmeits* has calculated the excitation probability of the
I =1 and 2 surface modes by a 50-keV classical electron
scattered from a free-electron sphere with a well-defined
impact parameter, the bulk plasmon excitation probability
being obtained by a closure relation.

In this work we use a free-electron model to describe
the response of the medium with explicit inclusion of non-
local dispersive effects. In Sec. II we analyze in detail the
bulk and surface excited modes. In Sec. III we compare
the predictions of a theory treating the incident particle
classically with those obtained by a more realistic quan-
tum approach where the electron makes a transition from
an incident state, highly localized in two dimensions, to a
plane-wave final state describing a situation in which the
scattered electron is collected in a spectrometer with an
entrance aperture subtending a half angle of 6~5 mrad at
the specimen. A discussion of our results is presented in
Sec. IV.

II. NORMAL MODES

In the hydrodynamical model a set of linearized equa-
tions® is written for the fluctuations in the electron densi-
ty n, electrostatic and velocity potentials ¢ and .
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Here ng is the mean electron density; the value of
B(B2=3v}/5) is taken to reproduce the random-phase-
approximation bulk plasmon dispersion relation, vy being
the Fermi velocity of the electron gas. We ignore retarda-
tion and damping effects and use atomic units throughout
(e=fi=m=1).

The normal mode solutions of frequency w, (a denotes
angular and radial components) satisfy the equation

Vin+k*n=0, (4)
where
k*=(wy—wp)/B? (5

with w, the bulk plasma frequency.
The solutions of Eq. (4) can be written as

n(r,t)=3 Agji(kr)Y;,(6,9)e "¢ Lt Hoc. , (6)
a
where (7,0,¢) are the polar coordinates, j; is the spherical
Bessel function, and Y}, the spherical harmonic.
Using Eq. (6) for n, together with the continuity of ¢
and its radial derivative at the surface (» =R) of the
sphere, we obtain for the electrostatic potential ¢

!
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—iw,t
xXe *Y,,(6,p)+H.c., r<R (7)
and
I+1
#(6,)= 3 B R (kR
“21+1 +
—io t
xXe *Y;,(6,p)+H.c., r>R (8)

where the constants A4, and B, are related by
47A,=—k’B,.

The mode frequencies w, are fixed by the additional
boundary condition that the radial velocity 31 /dr should

vanish at » =R. This follows from the requirement that
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FIG. 1. Surface plasmon frequency dependence upon the
sphere radius R, for several values of /.

charge and current densities should be finite everywhere.®

After some algebra we get

I+1 /0@ @ aQ? )

I jia(Q) oy 1+aQ*’

where Q=kR and a =[/3/(wa)]2. For an aluminum
sphere of R=7 nm, a ~10~* Equation (9) is a simpli-
fied version of the result of Crowell and Ritchie! for a
sphere embedded in a dielectric medium and it is also im-
plicit in the work of Fujimoto and Komaki.? However,
the results for surface and bulk modes when dispersion is
included do not seem to have been worked out previously.

A. Surface modes

Surface modes (w,<w®,) correspond to imaginary
values of Q (=i8). Except for a very small sphere the ar-
gument of the Bessel functions is large and they can be re-
placed by their asymptotic expression J;(i8)=i'e®/28
yielding the well-known result for w,,"’

wa=w,[1/(21 +1)]"/*. (10)

When the approximations leading to Eq. (10) remain
valid, the surface mode frequencies are not affected by the
fB-dependent dispersion term. In Fig. 1 we show the sur-
face /=1,2,3 modes as a function of the radius of an
aluminum sphere (w,~0.56). Our results show the same
behavior as those of Boardman and Paranjape.® (See also
Ref. 9.)

For R <100 a.u., the R dependence of w, must be con-
sidered even if a local undispersed model is used for the
response of the medium. For bulk modes, however, the R
dependence of w is only relevant for very small values of
R (R < 10), but in this case a nonlocal potential must al-
ways be used.

B. Bulk modes

Bulk modes (o, >®,) appear for real arguments of the
Bessel function. From the well-known behavior of j;(p)

J
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FIG. 2. Bulk plasmon frequency as a function of the sphere
radius R for several values of / and v.

we deduce that there is a solution lying in the range
PI+1,v<Q <piyr1<pi_1,v+1 Where p;, and p;, denote the
vth root of j;(p) and jj (p), respectively. The prime here
indicates the derivative with respect to the argument. As
Q increases from p; ,, to pj, . the left-hand side of Eq.
(9) goes from O to 1. Since the difference between p; |,
and p;_;, is quite small for typical values of the pa-
rameters, we take Q=p;,;, as a first approximation.
This corresponds to zero field outside the sphere [see Eq.
(8)] and is exact for [ =0.

The bulk mode frequencies w,=w;, are thus specified
by a total angular component / and a radial component v,
each mode having a 2/ 41 degeneracy arising from the
possible values of the azimuthal number m. For the Lv
mode the density fluctuation exhibits / angular and v—1
radial nodes.

The requirement of charge conservation for the sphere
excludes the wyp=w, mode. This is also automatically
fulfilled for /> 1 because the angular function averages to
zero. For [ =0, v+£0 we have

R
J, JolQr/Rir’dr=R%j1(0)/Q =0 (an

because Q=p; 1, - .
Figure 2 shows for several modes the variation of «;,
with the sphere radius.

III. EXCITATION PROBABILITY

We can write the Hamiltonian of the free sphere
1
H= f T

in second quantization form in terms of the creation and
annihilation operators of the modes. It allows us to deter-
mine the amplitude coefficient B, for each mode:

no(Vap)? B 2 d? (12)
0 —nd+ ng n r

2 172 2 —1/2
4mw), vi . 2 wp +1:2
«= | Ry 412 | [TV kR KR) | 5 1| (= DV HRR) , (13)
a a
where y =1 for surface modes and y = — 1 for bulk modes.

In writing (12) we have assumed that the mean negative charge distribution cancels out point by point the positive jelli-



6356 N. BARBERAN AND J. BAUSELLS 31

um over the whole volume of the sphere. The probability that the sphere be excited from the ground state |0) to an ex-
cited state |a) after the passage of the fast electron is, in the Born approximation

Was| [ atal B 10) [, (14)
where H; is the interaction Hamiltonian
Hy= — [ Wip(r,)¥,d%r . (15)
Here W; and W/ are field operators describing the initial and final electron states.
A. Classical probe
The incident particle is described as a point charge represented by a distribution density (see Fig. 3)
(W)W, ) =8(x —x0)8(y —po)8(z +v1) . (16)
After a straightforward calcﬁlation, we obtain for the / =1, m =0 surface mode
Wﬁ,:z—“ﬁfiﬁ 2y, bR a7
v v
c 2 V3720 D p3n 7 dx _ o |°
Wio=2w; sm(a)lf)+w—%R [sin(w7) — w7 cos(w7)] + :{R fw NNV cos b | b<R (18)

where K|, is the modified Bessel function, b =(x3+y3)'/?
is the electron impact parameter, and r=2(R2—b2)1"2/p
is the time the electron spends inside the sphere.

Equation (17) agrees with the first term of the expres-
sion obtained by Echenique and Ferrell'® for the probabil-
ity of energy loss by a classical electron with impact pa-
rameter b. They find that the probability of exciting a
mode (I,m) when the incident electron is outside the

FIG. 3. Trajectory assumed for the incident electron.

sphere is proportional to (w;R /v)*K2 (w;b /v). A detailed
study of the number of modes excited using a realistic ex-
perimental dielectric response function has been made by
Echenique et al.!' To compare the classical results with
those obtained considering a finite-size quantum probe,
we integrate the point-particle result over a Gaussian dis-
tribution of classical trajectories,

P= [ |®(p—b) |>Wp)d% (19)
with p=(x,y), b=(x yo) and

| @(p—b) | 2= Zexp( —2v{(x —x0 P+ —30)]} (20

and v=2.77/D? (D being the Gaussian width).

In Fig. 4 are plotted the results of a numerical calcula-
tion of Eq. (19) as a function of the sphere radius for a
fixed width D =50 a.u. and zero impact parameter.

Ritchie!? has proved that the total probability for a
quantum probe which is described by a Gaussian is equal

P (1072)

FIG. 4. Variation of the energy-loss probability P for the sur-
face mode /=1, m =0 for a classical electron, against the
sphere radius. The Gaussian distribution has a width D =50
a.u. Initial velocity v =76.6 a.u. and zero impact parameter.
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FIG. 5. Relative differential energy-loss probability along the
incident direction for the / =1, m =0 mode against the impact
parameter (see text). Several values of the width of the Gauss-
ian distribution are considered. v =76.6 and R =100 a.u.

to the integrated probability of classical trajectories with
the same Gaussian distribution:

web)= [ |®b—p)|*WS(p)d?p .

To our knowledge there is no proof of an equivalent ex-
pression valid for a particular final direction. This is only
valid after the Gaussian has been integrated over all final
momentum values.

2D

B. Quantum probe

The excitation probability is given by

2wL .
w2=="=3 |(f| [ a> ¥ a|H|O)¥;|i)|?
v
kP kf
X6 —5"-—-—2"-—600, (22)
We take for ¥; and ¥ the following states:
172
- — 2 21 _ik.-
\Il,'(r,t)=§ ;—Z o Tx =R YT~k ra,t'_ ,
(23)

—ik,
V=3 (L)"% e,
kg
where L3 is the normalization volume and az is the elec-

tron creation operator.
The probability per unit solid angle is then given by

dwe v

_ 25, )72
dQ 27 @ @a)

—l(x—xq?+y?] |

led3re—iqz(a|H,|0)e ,

(24)

where g=v—(v?—2w,)!”? is the momentum transfer
along the z direction.
To examine the influence of the probe size on the exci-
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FIG. 6. Relative differential energy-loss probability along the
incident direction for the / =1, m =1 mode as a function of the
width of the Gaussian. xo=150, R =100, and v =76.6 a.u.

tation probabilities for an aluminum sphere, we have
evaluated dW2/dQ numerically for several values of the
relevant parameters and normalized them to the elastic
scattering result [i.e., that obtained by changing the in-
teraction Hamiltonian in Eq. (24) to the identity opera-
tor].

IV. RESULTS AND DISCUSSION

In Figs. 5—7 we show the dependence of the differential
energy-loss probability

[ =(aW/dW)inetastic/ (AW S /d Q)qtagtic]

. of the =1, m =0,1 modes upon the impact parameter

and the width D of the Gaussian. The excitation proba-
bility is very much dependent on the mode excited and on
the size of the probe as the experimental data of Batson
and Treacy suggest.!>
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FIG. 7. The same as in Fig. 5 for the / =1, m =1 mode.
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FIG. 8. The same as in Fig. 5 for the full /=1 mode.
Several values of the velocity are considered. D =50 and
R =100 a.u.

For the I =1, m =0 case (Fig. 5) the highest excitation
probability corresponds to small impact parameters
(xo=~0) as a logical consequence of the fact that the angu-
lar distribution Y0(6,¢) leads to significant values of the
density fluctuation only along the z axis.

Figure 7 corresponds to the /=1, m =1 mode. For
this mode the induced charge fluctuation lies in the equa-
torial plane of the sphere. It leads to a maximum excita-
tion probability at values of the impact parameter close to
the radius of the sphere, i.e., grazing incidence.

As the Gaussian width increases, the electron density
decreases and therefore the excitation probability also de-
creases. However, this effect is balanced by the propor-
tion of flux being scattered at grazing incidence,'* as is
shown in Fig. 6, where a beam centered at 50 a.u. strikes.a
sphere of radius R =100 a.u. The excitation probability
initially increases with D, and reaches its maximum at
D =350 a.u., corresponding to the beginning of grazing in-
cidence and then decreases for greater values of D.
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FIG. 9. Variation of the relative differential energy—loss
probability with the radius R, for several surface and bulk
modes. Zero impact parameter, v =76.6 and D =50 a.u.
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FIG. 10. Relative energy-loss probability for surface (big
scale) and bulk (small scale) plasma excitations for several
values of /and v,m =0. Incident plane wave.

The total excitation probability of the dipole mode / =1
is shown in Fig. 8. The relative weight of each mode m
depends on the ratio between v and w,R. For high veloci-
ties (v =76.6 a.u.) the largest contribution is due to the
m =1 mode while for low velocities (v =20 a.u.) the
m =0 dominates. This is in agreement with the results
obtained by Kohl.'*

Figure 9 shows the excitation probability as a function
of the sphere radius for zero impact parameter and a
width of 50 a.u. We obtain a structure of peaks of de-
creasing height as R increases. For each mode there are
particular values of R for which there is a resonance ef-
fect.

According to our results the excitation of bulk modes is
usually more important than that of the surface modes.
This effect is a direct consequence of the incident beam
geometry as is shown by using an incident plane wave in-
stead of a Gaussian distribution (see Fig. 10). In Fig. 11
we plot for four values of the sphere radius the intensity
of the different excited / modes.
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FIG. 11. Relative energy-loss probability for surface modes
for a fixed radius R as a function of / (incident plane wave).
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FIG. 12. Relative energy-loss probability of the /=1, m =0
surface mode for several values of R with (2) and without (1)
dispersion effects. D =50 and v =76.6 a.u.

We want to make a final comment about the nonlocali-
ty. In this paper we have studied bulk and surface excita-
tions separately. In the former case the B-dependent term,
namely the plasmon dispersion, is always necessary to
have interaction of the incident electron with the modes.
In the latter case plasmon dispersion represents a small ef-
fect as is shown in Fig. 12 where the results of a calcula-
tion of the / =1, m =0 excitation probability are shown
with and without dispersion terms. For most practical
values of R, the excitation probability is roughly the
same, dispersion effects being only relevant for very small
spheres (about 13.5% for R =13.2 A).

According to Penn and Apell!® the full inclusion of
electron-hole excitation is equivalent to allowing the sur-

31 PLASMON EXCITATION IN METALLIC SPHERES 6359

face density fluctuation to extend both into the solid and
into the vacuum. The effect of extending the induced
charge into the solid can be readily obtained by adding an
extra term to Eq. (1) which becomes

n

vi—
no

2
v%¢:—v¢+aw—§v . (25)

The inclusion of this term allows us to recover the
dispersion relation for the bulk modes of an infinite metal
given by the plasmon pole approximation for the electron
gas response,'’ i.e.,

o’ =0y +Bk>+ Tkt . (26)

Finally, to allow the density fluctuation to extend into
the vacuum region one should have a finite-step potential
at the surface and n(r) would have an exponential falloff
for r > R. Since our main purpose has been to study the
correlation between probe geometry, nature of the modes
and the energy-loss spectra, this is beyond our scope. It
has been claimed'® that nonlocality might change the ab-
solute value of the excitation probability by an order of
magnitude. Nevertheless, we expect this effect will not
change our results qualitatively. Further work along these
lines is in progress.
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