Dietary exposure biomarkers in nutritional intervention and observational studies to discover biomarkers of intake and disease-risk through a HPLC-QToF-MS metabolomics approach

<u>Mar Garcia-Aloy</u>, Rafael Llorach, Mireia Urpi-Sarda, Rosa Vázquez-Fresno, Olga Jáuregui, Cristina Andres-Lacueva

Seminari de Recerca de la Facultat de Farmàcia Barcelona, 19 d'abril de 2016

Department of Nutrition & Food Science Pharmacy School University of Barcelona

"BIOMARKERS AND NUTRITIONAL & FOOD METABOLOMICS" RESEARCH GROUP

IP Cristina Andrés-Lacueva Postdoctoral Scientists Rafael Llorach Mireia Urpi-Sardà Raúl Zamora-Ros Sara Tulipani Mar Garcia-Alov Nina Görner Montse Rabassa Bonet PhD students Lvda Ximena Mora Enrique Almanza Aguilera Fco. Javier Madrid Gambín Sheila Estruel Amades Maria Trinidad Soria florido Magalí Palau Rodríguez Collaborators Olga Jauregui Alexandre Perera Lluna

www.nutrimetabolomics.com

margarcia@ub.edu

Dept. of Nutrition & Food Science Pharmacy School University of Barcelona (Spain)

Diagonal Campus. Av. Diagonal, 643 Av. Joan XXIII s/n (Barcelona)

(Bingham Public Health Nutr, 2002; Livingstone & Black J Nutr, 2003; Tucker Nutr Metab Cardiovasc Dis, 2007)

(Bingham Public Health Nutr, 2002; Livingstone & Black J Nutr, 2003; Tucker Nutr Metab Cardiovasc Dis, 2007)

⁽Manach, Glasgow 2013; Scalbert et al. Am J Clin Nutr, 2014)

TION	CHRONIC INTERVENTION STUDY	OBSERVA	TIONAL STUDY
5 10 10 5 5 5 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		5 0 0 0 0 0 0	
ol of the diet	Hetero	geneity of the	population
	bl of the diet	CHRONIC INTERVENTION STUDY	DI OF the diet Heterogeneity of the

(Llorach R et al. J Agric Food Chem, 2012; Pujos-Guillot et al. J Proteome Res, 2013)

Introduction	Objectives	Methodology	Results	Conclusions							
[DIET COMPLEXITY TO DISCOVERY NUTRITIONAL BIOMARKERS										
Distribution of cor	npounds into various fo	oods Confluenc in co	e of various compou mmon metabolites	Inds Microbial Metabolism Host Metabolism							
Procyanidir	n B2 (+)-Catechin	ELLAGITA	NNINS:	METABOLOME							
-2-X		Sa.									
		Pedunculag	in Sanguiin H6	Punicalagin							
- L			\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	atter for							
		No. 10 March		<u>-52°</u>							
4 m m m m			2								
	¹⁰ 2 ¹⁰ 2 ¹⁰		Urolithins	9							
-	us La			19 I							
Hydroxyphenyl- valerolactones	Hydroxyphenyl- valeric acids	Penol-Explorer	"the r	Garcia-Muñoz & Vaillant. Crit Rev Food Sci Nutr, 2014							
(Llorach R et al. J Agric Fo	od Chem, 2012; Scalbert et	al. Am J Clin Nutr, 2014)									

Since metabolomics offers a new approach for the determination of biomarkers of dietary exposure, we will observe differences in metabolic fingerprints associated with the consumption of food, which will allow us to predict its intake.

MAIN OBJECTIVE

Identify biomarkers related to the intake of certain foods (**markers of consumption**) and its possible association with health (**markers of effect**) by the application of an HPLC-QToF-MS nontargeted metabolomic strategy in nutritional studies with different designs .

Introduction	Objectives	Methodology	Results	Conclusions
SPECIFI	C OBJECTIVES			

Characterize urinary metabolic fingerprint associated with the intake of widely consumed foods: bread, nuts, cocoa.

Replicate characterized biomarkers of exposure in controlled clinical trials in a free-living population.

Develop predictive models for determining usual intake and compare its predictive ability with respect to the ability of the metabolites evaluated individually.

Introduction	Objectives		Meth	odol	ogy			Re	sults			С	onclu	isions	
HP	HPLC-QToF-MS UNTARGETED METABOLOMIC ANALYSIS														
Biological Samples	Data Acquisition		Ar	Data alysi	S		Bio Iden	omark htifica	er tion	Þ	Bic Inter	ologic preta	al tion		
Quali	ity control														
• QC1: Milli-Q wate	er														
QC2: pool of phe	nolic compounds														
QC3: pool of end	ogenous compounds		D)isti	ribu	tior	ו of	sar	nplo	es &		Cs ii	n pl	ates	5
QC4: reinjection	of opposite samples			1	2	3	4	5	6	7	8	9	10	11	12
		٢	A	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10- QC4	S11	S12
			в	S13	S14	S15	S16	S17	S18	S19	S20	QC1	QC2	QC3	S21
			с	S22	S23	S24	S25	S26	S27	S28	S29	S30- QC4	S31	S32	S33
Equili	bration between plates	J	D	S34	S35	S36	S37	S38	\$39	S40	QC1	QC2	QC3	S41	S42
Rar	Randomization in plates		E	S43	S44	S45	S46	S47	S48	S49	S50- QC4	S51	S52	S53	S54
and the second se			F	S55	S56	S57	S58	S59	S60	QC1	QC2	QC3	S61	S62	S63
			G	S64	S65	S66	S67	S68	S69	QC4	S71	S72	S73	S74	S75
(1999)		L	н	576	577	578	\$79	580	QC1	-QC2	QC3				

(Llorach et al. J Proteome Res, 2009; Llorach et al. J Proteome Res, 2010; Llorach-Asuncion et al. J Pharm Biomed Anal, 2010)

Introduction	Objectives	Methodology	Results	Conclusions							
E	DIET COMPLEXITY TO DISCOVERY NUTRITIONAL BIOMARKERS										
Distribution of con	npounds into various fo	cods Confluenc in co	e of various compou mmon metabolites	Inds Host Metabolism Host Metabolism Host Metabolism							
Procyanidir	n B2 (+)-Catechin	ELLAGITA	NNINS:	METABOLOME							
-5 ² G-		Ba		<u> 1</u>							
		Pedunculag	in Sanguiin H6	Punicalagin							
				AND							
		igneter									
	, jerni ()		Urolithins								
Hydroxyphenyl- valerolactones	_人。 Hydroxyphenyl- valeric acids	Penol-Explorer		Garcia-Muñoz & Vaillant. Crit Rev Food Sci Nutr, 2014							
(Llorach R et al. J Agric Fo	od Chem, 2012; Scalbert et	al. Am J Clin Nutr, 2014)									

(Xia et al. Metabolomics, 2013)

In	troduction	Objectiv	es	Methodology	Results	sults Conclusions		
				BREAD		Ĩ	Predined Prevention con Diste Mathemana	
RT (min)	DETECTED MASS (m/z)	ASSIGNATION	1	DENTIFICATION		🗙 vs 🔪	🔀 vs 🐧	Vs 💜
0.88	188.0049	[M – H] ⁻	2-Amino	phenol sulphate		1	1	-
1.48	328.1036	[M + H]+	HPAA glu	curonide		Ť	1	-
	326.0851	[M – H] ⁻				-	1	-
2.07	168.0609	[M + H]+	HHPAA			-	1	<u>↑</u>
3.40	372.0925	[M + H]+	HMBOA g	lucuronide		Ť	-	-
	370.0772	[M – H] ⁻				Ť	1	-
3.68	326.0922	[M – H] ⁻	HBOA gly	/coside		-	1	1
3.72	152.0671	[M + H]+	HPPA			-	1	-
4.78	196.0596	[M + H]+	HMBOA			Ť	1	-
	194.0410	[M – H] ⁻				1	1	-
2.85	357.0791	[M – H] ⁻	DHPPA g	lucuronide		↑		<u>↑</u>
3.12	233.0118	[M – H] ⁻	3,5-Dihy	droxyphenylethanol sul	lphate	-	1	-
5.75	289.0412	[M – H] ⁻	DHPPTA	sulphate		-	↑	↑ (
3.67	313.0558	[M – H] ⁻	Hydroxyl	penzoic acid glucuronide	e	1	1	-
4.72	275.0219	[M – H] ⁻	Dihydrof	erulic acid sulphate		-	1	1
6.32	299.1278	[M + H - GlcA] ⁺	Enterolad	tone glucuronide		-	1	1
	473.1447	[M – H] ⁻				-	1	↑
2.73	255.1345	[M + H]+	Pyrraline			-	1	-
	253.1172	[M – H] ⁻				-	1	↑
3.25	338.0871	[M + H]+	3-Indole	carboxylic acid glucuron	nide	-	1	
	336.0697	[M – H] ⁻				-	1	1
4.65	377.1475	[M + H] ⁺	Riboflavi	ne		↑.	↑ (
0.63	218.1140	[M + H] ⁺	N-a-Acet	ylcitrulline		-	Ļ	-
4.20	338.0882	[M + H] ⁺	2,8-Dihy	droxyquinoline glucuror	nide	-	1	↑ T
	160.0382	[M – H – GlcA] ⁻				-	1	↑
(Garcia-	Alov M et al. M	etabolomics, 2015)						

Introduction Obje	ctives	tives Methodolo		Results	Cor	clusions
		B	REA	D		Predimed Prevención con Dieza Maltionalmos
AUCs	X	vs 🥟		s vs 🌽	ws .	R
HPAA glucuronide HHPAA	73.5% (63.8%-83.2%)	64.0% 67.8%	(53.3%-74.6%) (57.7%-77.9%)	69.7% (59.3%-	30.1%)
HMBOA glucuronide HPPA	68.2% (57.8%-78.7%)	69.9%	(59.8%-79.9%)		
Enterolactone glucuronide	68.4% (57.8%-79.0%)	69.6%	(55.6%-77.0%) (59.7%-79.5%) (55.6%-76.0%)	73.0% (63.0%-	33.1%)
3-Indolecarboxylic acid glucuronide Riboflavin	64.2% (53.4%-75.0%)	67.2% 73.2%	(57.0%-77.4%) (63.7%-82.8%)	65.5% (54.6%- 62.9% (51.5%-	76.5%) 74.4%)
2-Aminophenol sulphate HPAA glucuronide	66.4% (56.0%-76.7%)	68.9% 62.0%	(59.0%-78.9%) (51.7%-72.4%)		
HMBOA glucuronide HBOA glycoside HMBOA	69.2% (55.9%-76.3%) 59.2%-79.3%)	73.0%	(50.5%-71.5%) (63.6%-82.4%) (56.8%-76.7%)	63.4% (52.6%-	74.2%)
DHPPA glucuronide 3,5-Dihidroxifeniletanol sulphate	64.9% (54.4%-75.4%)	78.4% 67.0%	(69.8%-87.1%) (56.8%-77.2%)	65.1% (54.5%-	75.8%)
DHPPTA sulphate Hydroxybenzoic acid glucuronide	67.4% (57.2%-77.6%)	76.7% 61.3%	(67.6%-85.7%) (50.8%-71.7%)	76.1% (67.1%-	35.1%)
Dihydroferulic acid sulphate Enterolactone glucuronide			74.3% 65.6%	(65.0%-83.6%) (55.4%-75.7%)	74.6% (65.0%- 62.8% (52.2%-	34.2%) 73.4%)
Pyrraine 3-Indolecarboxylic acid glucuronide	llaut. 80% 000	(70%	64.8% 66.8%	(54.7%-75.0%) (56.9%-76.7%)	62.5% (51.6%- 63.0% (52.3%-	/3.3%) 73.7%)
90%-100% = exc	enent; 80%–90%	6 = yooa; 70%-80%	% = Tair; 60	1‰−70% = poor; γ 505	%−00% = Tall	

Introduction	Objectives	Methodology	Results	Conclusions	
		BREA	D	Prediined Pressibility on Data Institutional	
MULTIMETABOI COMBINED MOD	LITE DELS Coef.	Err. Est. p			
HPAA glucuronide	1,565	0,542 0,004	ر		
HHPAA HMBOA glucuronide HPPA		8 00 - (%), fighter	AUC = 80.56%		
HMBOA	1,639	0,556 0,003	(72.13%-88.98%)		
Enterolactone glucuronide		8 -	ſ		
Pyrraline			1		
3-Indolecarboxylic acid glu	curonide	o -	V		
Riboflavin	0,842	0,340 0,013	100 80 60 40 20 0		
2-Aminophenol sulphate	1,359	0,401 0,001	оряланыху (тар		
HPAA glucuronide		ê -			
HMBOA glucuronide					
HBOA glycoside					
НМВОА	1,816	0,445 <0,001	<u>ب</u> ۲	_	
DHPPA glucuronide		a the second	AUC = 77.76%		
3,5-Dihidroxifeniletanol sul	pnate	8 9 -	(69.11%-86.40%)		
DHPPTA sulphate		8 -	<i>F</i> /		
Bibudroformlia acid culphot	ronide			90%-100% = excellent	
Enterolactone glucuropide	5	0 -	Y	80%-90% = good	
Pyrraline			100 80 60 40 20 0 Specificity (%)	70% - 80% = fair 60% - 70% = poor	
3-Indolecarboxylic acid alu	curonide		all control of the	50%-60% = fail	
(Garcia-Aloy M et al. Metabo	olomics, 2015)				

Introduction Object	tives		Viethodolo	ogy	Results	Conclusions	
			B	REA	D	Predimed Prevention can been Madherrained	
MULTIMETABOLITE COMBINED MODELS	Coof	VS		0 <u>1</u>		7	
HPAA alucuronide	coer.	LII. L3L.	μ				
ННРАА	1.750	0.787	0.026	00	1		
HMBOA glucuronide	-/	-,	-,	<u>s</u> 8 -	~		
НРРА	1,361	0,579	0,019	d'vib	AUC = 93.0 (88.74%-97.4	7%	
НМВОА	1,362	0,674	0,043	- 4 S	(00.74/0 57.4	0/0/	
Enterolactone glucuronide	1,642	0,559	0,003	- 3			
Pyrraline	1,436	0,636	0,024				
3-Indolecarboxylic acid glucuronide	1,617	0,556	0,004	0 -			
Riboflavin	1,921	0,524	<0,001		100 80 60 40 20 Specificity (%)	0	
2-Aminophenol sulphate							
HPAA glucuronide							
HMBOA glucuronide				<u>5</u> -		7	
HBOA glycoside				_	/		
НМВОА	1,856	0,659	0,005	8 -	r /		
DHPPA glucuronide	1,289	0,439	0,003	£ 8 -			
3,5-Dihidroxifeniletanol sulphate				ituniy (AUC = 93.7	'3%	
DHPPTA sulphate	1,685	0,481	<0,001	- 42 S	(89.36%-98.	10%)	
Hydroxybenzoic acid glucuronide							
Dihydroferulic acid sulphate	0,911	0,438	0,037	- 12		90%-100% = excellent 80%-90% = good	
Enterolactone glucuronide	1,157	0,581	0,047	0 -	-V	70%-80% = fair	
Pyrraline	1,397	0,502	0,005	L .	100 80 60 40 20	60%-70% = poor	
3-Indolecarboxylic acid glucuronide	0,980	0,449	0,029		Specificity (%)	50%-60% = fail	
(Garcia-Aloy M et al. Metabolomics, 2015)							

Introduction	Objectives	Methodology	Results	Conclusions	
		BRE	AD	Predimed Providence in the statementance	
MULTIMETABOI COMBINED MOE	LITE DELS Coef.	VS	°	7	
HPAA glucuronide	2 0 2 2	0.024 0.002			
HMBOA glucuronide HPPA HMBOA	2,923	0,924 0,002 (8)	8 - AUC = 85. 8 - (78.19%-92	53% .87%)	
Enterolactone glucuronide	2,009	0,500 <0,001	8 -		
Pyrraline	1,248	0,536 0,020			
3-Indolecarboxylic acid glu Riboflavin	curonide		100 80 60 40 20 Specificity (%)	0	
2-Aminophenol sulphate HPAA glucuronide HMBOA glucuronide HBOA glucoside HMBOA DHPPA glucuronide		Ta) Averau	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12%	
3,5-Dihidroxifeniletanol sul	pnate	0 227 <0 001	ę	43707	
Hydroxybenzoic acid glucu	ronide	0,327 \0,001	R-		
Dihydroferulic acid sulphate	e 1.077	0.355 0.002		90%-100% = excellent	
Enterolactone glucuronide		.,	•	80%-90% = good 70%-80% = fair	
Pyrraline			Specificity (%)	60%-70% = poor	
3-Indolecarboxylic acid glu	curonide			50%-60% = fail	
(Garcia-Aloy M et al. Metabo	olomics, 2015)				

Introduction Obje		tives	Methodology			Results	Conclusions	
				NUTS	\$ &	WALN	IUTS	
C.G.		NTERVENTI	ON STUD		OBS	ERVATIO	NAL STUDY Predimed	
RT (min)	DETECTED MASS (m/z)	ASSIGNATION	IDENTIFIC	ATION	RT (min)	MASA DETECTADA (m/z)	ASIGNACIÓN	IDENTIFICACIÓN
4.80	257.0085	[M - H]-	10-Hydroxy-dec	cene-4,6-	4.62	257.0149	[M – H] [_]	10-Hydroxy-decene-4,6-diynoic
6.25	385.1844 386.1880	[M - H] ⁻ ¹³ C[M - H] ⁻	Tridecadienoic/tridecynoic acid glucuronide		6.20	385.1838 386.1899	[M – H] ⁻ ¹³ C[M – H] ⁻	Tridecadienoic/tridecynoic acid glucuronide
	387.2011 211.1688	[M + H] ⁺ [M + H - GlcA] ⁺				387.1995 388.2035 211.1668	$[M + H]^+$ $^{13}C[M + H]^+$ $[M + H - G[cA]^+$	
6.72	229.1403 230.1441	[M + H] ⁻ [M - H] ⁻ ¹³ C[M - H] ⁻	Dodecanedioic acid Pvrogallol sulfate		5.22 5.25	419.0618 403.0662	[M - H] ⁻ [M - H] ⁻ ¹³ C[M - H] ⁻	Urolithin C glucuronide Urolithin A glucuronide
2.55	211.1314 167.1433 204.9827	$[M - H - H_2O]^2$ $[M - H - H_2O - CO_2]^2$ $[M - H]^2$				227.0398	[M - H - GICA] ⁻ ¹³ C[M - H - GICA] ⁻	
5.10	233.0118 325.0890 326.0987	[HSO ₃ – H] ⁻ [M – H] ⁻ ¹³ C[M – H] ⁻	p-Coumaryl alco	phol		405.0830 422.1100 229.0490	[M + H]* [M + NH ₄]* [M + H - GlcA]*	
5.28	403.0627 404.0654	[M - H] ⁻ ¹³ C[M - H] ⁻ [M - H - G[cA] ⁻	Urolithin A gluci	uronide	5.35 6.25	483.0227 387.0770 211.0381	[M – H] ⁻ [M – H] ⁻ [M – H – GlcA] ⁻	Urolithin A sulfoglucuronide Urolithin B glucuronide
	405.0817 229.0495	[M + H] ⁺ [M + H - GlcA] ⁺				212.0436 389.0864 213.0534	$^{13}C[M - H - GlcA]^{-}$ [M + H] ⁺ [M + H - GlcA] ⁺	
6.55	483.0195 229.0197 230.0221 149.0615	[M - H] ⁻ [M - H] ⁻ ¹³ C[M - H] ⁻ [M - H - sulfate] ⁻	p-Coumaryl alco	policuronide ohol sulfate	6.34	473.1491 474.1525 297.1127	[M - H] ⁻ ¹³ C[M - H] ⁻ [M - H - GlcA] ⁻	Enterolactone glucuronide
	150.0646	¹³ C[M – H – sulfate]			6.67	243.0295	[M + NH ₄] [M - H - sulfate]	Urolithin C sulfate
6.75 4.30	306.9885 297.0560	[M – H] ⁻ [M – H] ⁻	Urolithin A sulfa N-Acetylseroton	ite in sulfate	6.72	306.9915	[M - H] ⁻ [M - H - sulfate] ⁻	Urolithin A sulfate
4.62	190.0505 146.0614	[M - H] ⁻ [M - H - CO ₂] ⁻	Hydroxyindolea	cetic acid	3.23	336.0751 338.0854	[M - H] ⁻ [M + H] ⁺	3-Indolecarboxylic acid glucuronide
	192.0648 174.0539 146.0592	$[M + H]^+$ $[M + H - H_2O]^+$ $[M + H - CH_2O_2]^+$			3.83 4.20	270.0081 297.0561	[M – H] ⁻ [M – H] ⁻	Hydroxyindoleacetic acid sulfate N-Acetylserotonin sulfate

Introduction	Objectives	Methodology	Results	Co	nclusions	
		NUTS & WA	LNUTS			
		OBSERVATION	AL STUDY	Preditied Prevention can Direa Masterraines		
	AUCs	Subsa	mple 1	Subsan	ıple 2	
10-Hydroxy-decer	ne-4,6-diynoic acid sulfate	74.4% (66.	4%-82.5%)	72.6% (65.0	%-80.3%)	
Tridecadienoic/	tridecynoic acid glucuroni	ide 85.1% (79.	8%-90.4%)	77.2% (70.4%-84.0%)		
Urolithin C glucuro	onide	75.4% (67.	7%-83.0%)	71.4% (63.8	%-79.0%)	
Urolithin A gluci	uronide	82.0% (75.	7%-88.4%)	83.2% (77.3	%-89.1%)	
Urolithin A sulfogle	ucuronide	70.4% (62.	0%-78.7%)	79.0% (72.1	%-85.9%)	
Urolithin B glucuro	onide	59.1% (50.	6%-67.7%)	67.7% (59.6%-75.8%)		
Enterolactone glue	curonide	62.3% (54.	1%-70.5%)	66.3% (58.4%-74.2%)		
Urolithin C sulfate		69.7% (61.	5%-78.0%)	73.3% (65.7	%-80.9%)	
Urolithin A sulfate		78.7% (71.	3%-86.1%)	79.2% (72.5	%-85.9%)	
3-Indolecarboxylic	acid glucuronide	73.7% (66.	2%-81.3%)	60.2% (52.0%-68.4%)		
Hydroxyindoleace	tic acid sulfate	61.0% (52.	5%-69.6%)	68.8% (61.2%-76.3%)		
N-Acetylserotonin	sulfate	64.5% (56.	2%-72.8%)	64.5% (56.5%-72.5%)		
	90%-100% = excellent; 80%-90%	= good; 70%-80% = fair; 60	%-70% = poor; y 50	%-60% = fail		

(Garcia-Aloy M et al. J Proteome Res, 2014)

Introduction	Objectives	Methodology	Results		Conclusions
		NUTS & WA	LNUTS		
	(OBSERVATION	AL STUDY		Predified
STEPWISE LOG	ISTIC REGRESSION	Coefficient	Standard Error	p	
10-Hydroxy-decen	e-4,6-diynoic acid sulfa	ite 1,041	0,431	0,016	
Tridecadienoic/tric	decynoic acid glucuroni	de 2,212	0,491	<0,001	
Urolithin C glucuronic	de				
Urolithin A glucuro	nide	0,778	0,305	0,011	
Urolithin A sulfoglucu	ıronide				
Urolithin B glucuronic	de				
Enterolactone glucure	onide				
Urolithin C sulfate					
Urolithin A sulfate		0,812	0,395	0,040	
3-Indolecarboxylic ac	cid glucuronide	0,945	0,306	0,002	
Hydroxyindoleacetic acid sulfate					
N-Acetylserotonin sulfate					
(Garcia-Aloy M et al. J Pro	oteome Res, 2014)				

⁽Garcia-Aloy M et al. J Proteome Res, 2014)

	Introduction		Objectives Methodo	ology		Results	Conclusions
	СОСОА						
	INTERVENTION STUDY OBSERVATIONAL STUDY Predit						NAL STUDY Predimed
RT (min)	DETECTED MASS (m/z)	ASSIGNATION	IDENTIFICATION	RT (min)	DETECTED MASS (m/z)	ASSIGNATION	IDENTIFICATION
0.87	199.0832/197.0691	[M + H]*/[M - H]·	AMMU	0.63	151.0259	[M – H] [.]	Xanthine
1.08	183.0493	[M + H]*	7-Methyluric acid	0.67	199.0816	[M + H]*	AMMU
1.22	199.0844/197.0701	[M + H]*/[M - H]*	AMMU Isomer	0.87	199.0785	[M + H]*	AMMIL isomer
2.05	167.0575	[M + H]*	7-Metilyanthine	1 12	192.0500/191.0225	[M H]+/[M H]-	2 Methyluris peid
2.47	167.0570/165.0429	[M + H]*/[M - H]	3-Metilxanthine	1.15	163.0309/181.0323	[M + H]·/[M - H]	5-Metriyiuncaciu
2.80	197.0688/195.0526	[M + H]+/[M - H]-	3,7-Dimethyluric acid	1.37	167.0568	[M + H]*	7-Metilxanthine
3.37	181.0719	[M + H]*	Theobromine	1.62	167.0597/165.0416	[M + H]+/[M - H]-	3-Metilxanthine
3.67	343.0684	[M – H] [.]	Vanillic acid glucuronide	1.85	197.0678/195.0500	[M + H]*/[M - H]*	3,7-Dimethyluric acid
3.85	226.0711/224.0592	$[M + H]^{+}/[M - H]^{-}$	Vanilloglycine	2.75	181.0707	[M + H]*	Theobromine
4.95	465.10/1	[M - H]:	(Epi)catecnin glucuronide	4 38	230 9982	[M - H]:	Vanillin sulfate
5.59	545.0200	[M - H]·	(Epi)catechin sulfoqucurónido	4.40	465,1012	[11 11]+	(Fai)astaskis alususasida
6.02	383 0486	[M – H]·	Methyl(epi)catechin sulfate	4.48	405.1013	[M + H]*	(Epi)catechin giucuronide
6.32	383.0459	[M - H]·	Methyl(epi)catechin sulfate	4.85	167.0365	[M – H] [.]	Vanillic acid
4.05	401.1112	[M – H] [.]	HDHPVA glucuronide	5.37	369.0252	[M – H] [.]	(Epi)catechin sulfate
4.23	401.1090	[M – H] [.]	HDHPVA glucuronide	3.73	401.1072	[M – H] [.]	HDHPVA glucuronide
4.35	223.0972	[M + H]*	MHPV	3,90	415.1237	[M - H]:	HHMPVA alucuronide
4.38	415.1270	[M - H]	HHMPVA sulfate	2.00	222.0025	[M H]+	MUDV
4.87	207 1165	[M + H]*/[M - H]*	MHDV glucuronide	5.50	223.0923	[PT T T]	
5.05	463 0584	[M - H]·	DHPV sulfoqueuronide	4.15	287.0229	[M - H - GICA]	DHPV sulfoglucuronide
5.12	289.0365	[M + H]+	DHPV sulfate	4.20	383.1005	[M – H] [.]	DHPV glucuronide
5.13	367.1025	[M - H]	HPV alucuronide	4.30	225.0736	[M – H] [.]	HDHPVA
5.17	305.0335	[M – H] [.]	HDHPVA sulfate	4.37	305.0291	[M - H]·	HDHPVA sulfate
5.45	397.1127	[M – H] [.]	MHPV glucuronide	4 42	385 1105/383 0972	[M + H]+/[M - H]-	DHPV alucuronide
5.53	289.0379	[M – H] [.]	DHPV sulfate	4.00	310.0405	[11 1 1] /[11 - 11]	ULIMPN/A sulfate
5.72	287.0221	[M - H]*	DHPV sulfate	4.60	319.0495	[M - H].	nnmpva suirate
6.45	289.03/4/28/.0188	[M + H]·/[M - H]·	HPVA sulfate	4.60	397.1101	[M – H] [.]	MHPV glucuronide
6 50	301 0416	[M - H]	MHPV sulfate	4.70	367.0990	[M – H] ⁻	HPV glucuronide
7.12	289.0406	ГМ – H1 [.]	DHPVA sulfate	5.22	289.0343	[M + H]*	DHPV sulfate
7.17	273.0453	[м – н] [.]	HPVA sulfate	5.62	191.0678	[M - H - sulfato]	HPV sulfate
0.62	140.0328	[M + H]*	Hydroxynicotinic acid	6 54	280.0201	[M L1]	DHDVA sulfate
2.83	169.0941	[M + H]*	Cyclo(propylalanyl)	0.54	203.0331	[m = n]	Unit va suitate
3.08	151.1227	[M + H]*	3,5-Diethyl-2-methylpyrazine	6.64	273.0454	[M – H]:	HPVA sulfate
4.67	2/8.0698	[M - H]:	N-14'-Hydroxycinnamoyl]-L-aspartic acid	1.88	170.0449	[M + H]+	Furoylglycine
1.22	262 0350	$[M \rightarrow H]$	Tyrosine sulfate	4.72	261.0872	[M – H] [.]	Cyclo(aspartyl-phenylalanyl)
1.97	232.1547	[M + H]+	Butyrylcamitine	4.73	281.1135/279.0943	[M + H]+/[M - H]-	Aspartyl-Phenylalanine
2.28	290,1600	[M + H]*	Methylolutarylcamitine	1.97	200 1500	[M + H]+	Methylolutandcamitine
(T les	rooh P at al Mol	Nets Dood Do	a 2012, Consis Alon M at al Mal No	uter Too	ad Day 2015)		

25

Introduction	Objectives	Methodology	Results	Conclusions
		COCO,	A	
	(DBSERVATIONA		President can Date Mathematica
		AUCe		POC
АММИ		88.18% (79.47%-96.90)%) § -	NOC
AMMU isomer		76.66% (65.05%-88.27	7%)	
3-Methyluric acid		82.23% (71.23%-93.22	2%)	1 1
7-Metilxanthine		88.28% (80.09%-96.48 85 16% (75 59%-94 72	3%) %) %) %	- ¹
3,7-Dimethyluric ac	id	83.59% (73.28%-93.93	1%)	Assisj — Assis Jonero Assis Joneticico
Theobromine		69.82% (56.45%-83.20)%) 📲	- 7-lielibarina - 3-lielbarina - Åcido 3,7-devettire - Teotromia - MRV suffice
Methoxyhydroxyphe	enylvalerolactone	73.44% (60.63%-86.24	4%) · · · · · · · · · · · · · · · · · · ·	- DBY plcoriside - DBY state
5-(3',4'-Dihydroxip	henyl)-valerolactone GlcA	68.26% (55.02%-81.53	1%)	Specificity (%)
5-(3',4'- Dihydroxip	henyl)-valerolactone sulfa	te71.09% (58.27%-83.92	2%)	

90%-100% = excellent; 80%-90% = good; 70%-80% = fair; 60%-70% = poor; y 50%-60% = fail

(Garcia-Aloy M et al. Mol Nutr Food Res, 2015)

Introduction Ot	jectives	Methodology		Results	Conclusions
		CO	COA		
	MULTIM	IETABOLITE	СОМВІ	NED MODE	LS Preditied
STEPWISE LOGISTIC RE TRAINING SET	GRESSION	Coefficient	Standard Error	p	
AMMU isomer					
3-Methyluric acid					
7-Metilxanthine		5,563	1,899	0,003	
3-Metilxanthine					
3,7-Dimethyluric acid					
Theobromine					
Methoxyhydroxyphenylvalero	lactone				
5-(3',4'-Dihydroxiphenyl)-va	lerolactone GlcA	4,081	1,559	0,009	
5–(3',4'– Dihydroxiphenyl)–va	lerolactone sulfat	e			
arcia-Alov M <i>et al. Mol Nutr Food I</i>	Res. 2015)				

	Results	

- 1. Metabolic footprint of daily consumption of BREAD is characterized by compounds from own cereal phytochemicals, such as benzoxazinoids and alkylresorcinols metabolites; by compounds produced by the microbiota, as the metabolites of the enterolactones, hy-droxybenzoic acid and dihydroferulic acid; as well as other compounds such as pyrraline and 3-indolecarboxylic acid glucuronide. Furthermore, among consumers of whole-grain bread showed increased and decreased excretion of 2,8-dihydroxyquinoline glucuronide and acetylcitrulline, respectively, which might be involved in the beneficial effects associated with the intake of bread previously observed in epidemiological studies.
- 2. Metabolic footprint of regular consumption of NUTS, particularly WALNUTS, is characterized by markers of fatty acid metabolism, compounds derived from the metabolism of ellagitannins by the microbiota, as well as compounds of tryptophan and serotonin metabolic pathway. The importance of the identification of the latter class of compounds is in the role of serotonin in the regulation of energy balance.

				Results	
--	--	--	--	---------	--

- 3. Metabolic footprint of habitual consumption of COCOA is characterized by compounds of theobromine and polyphenol metabolism, as well as metabolites related to the processing of cocoa. Cocoa consumption has also been associated with reduced urinary excretion of metabolites related to the metabolism of acylcarnitines and tyrosine sulfation, which may be related to cardiovascular disease.
- 4. Many of the characterized biomarkers in clinical trials of nutritional intervention have been replicated in free-living subjects evaluated in observational conditions.
- 5. Analysis of stepwise logistic regression allows the combination of different metabolites with discriminatory capacity for consumption of certain foods that are characterized by being formed by compounds of different nature that might provide additional information.

	Results	

- 6. The predictive ability of dietary exposure through the combined multi-metabolite models is improved compared to the ability of these compounds evaluated individually. The combined models could be useful in improving the accuracy in the assessment of dietary intake.
- 7. The nutrimetabolomics allows us to reveal possible mechanisms of action to explain the effect of diet observed in epidemiological studies and, thus, contribute to the generation of new hypotheses in the field of food and health.

