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Model-independent bounds for the potential and kinetic energy of liquid “He at zero temperature
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Using the experimental values of the chemical potentials of liquid *He and of a *He impurity
in liquid *He, we derive a model-independent lower (upper) bound to the kinetic (potential) ener-
gy per particle at zero temperature. The values of the bounds at the experimental saturation den-
sity are 13.42 K for the kinetic energy and —20.59 K for the potential energy. All the theoreti-
cal calculations based on the Lennard-Jones potential violate the upper-bound condition for the

potential energy.

The theoretical study of one isolated *He atom in liquid
“He provides the basis for understanding the dilute *He-
“He mixtures' ~* and in addition can provide useful infor-
mation on the host medium. In this paper we are con-
cerned with the second aspect, and the main purpose is to
use the experimental values of the chemical potentials of
the *He impurity (u§*®') and of the liquid “He (u§*®) to
obtain model-independent bounds to the kinetic and po-
tential energies per particle of the liquid “He at zero tem-
perature. These bounds are useful in testing (a) the basic
interactions used in microscopic calculations, and (b) ex-
perimental determinations of the kinetic energy.

The system we study consists of 4 “He atoms and one
3He atom enclosed in a volume @. The Hamiltonian of
the system is given by

HA+1)=H,4)+H [ (4+1), (1
where
hz A A
HA(A)=— ZV,'2+ Z V(r,-j) (2)
2my4 i=1 i,j<=_l
i<j

is the Hamiltonian of the host medium and

—h2 A
H(A4+1)= 5 VI+ DY V) 3)

my i=1

is the Hamiltonian of the impurity. We work in the limit
A— o and Q— oo, keeping the density p=A4/0Q con-
stant.

The chemical potential is defined by the following
difference of expectation values:
(¥ 441 IH(A'l'l) I Y441
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where ¥ 4+, and ¥4 are the wave functions describing the
system of A+1 and A particles, respectively. This
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difference is difficult to evaluate in general. However, its
evaluation is greatly simplified if we take the trial wave
function ¥ 44; to be the wave function used to describe
the liquid “He but with 4+ 1 particles. This approxima-
tion, known as average-correlation approximation (ACA),
is based in the fact that the interaction is the same for all
pairs of particles. In this case u;(p) is given by Baym’s
formula®> for the impurity chemical potential

m
ufCh(p) =pua(p) + 74 -1

t(p), (5)

where u4(p) and ¢(p) are the chemical potential and the
kinetic energy per particle of the liquid *He associated
with the wave function ¥ 4.

The crucial step in establishing the bounds is to analyze
the upper-bound properties of uj*“A. If we use arbitrary
trial wave functions to calculate uf*“*(p), we are con-
fronted with the fact that the difference of two upper
bounds is not necessarily an upper bound. However, when
we assume the trial wave function to be the unknown ex-
act wave function of liquid “He, uf*““(p) provides an
upper bound to uf**'(p),

uf*™(p) + ﬂ—lJt(p)Zu?"‘"(p). 6)
my
Therefore,
LB — mp expt — ,, expt
t(p)zt (= [m4—m1 [uf*® (o) —us*™ (). ()

Once a lower bound to the kinetic energy has been es-
tablished, it is straightforward to determine an upper
bound to the potential energy per particle,

v(p) = vYB(p)=eP(p) —1B(p), ®)

where e *P'(p) is the “He binding energy per particle.
In Fig. 1 we report the bounds to the kinetic and poten-
tial energies and the experimental binding energy in
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FIG. 1. Upper bound to the potential energy, experimental
binding energy and lower bound to the kinetic energy as func-
tions of the density. Also shown are GFMC values for the LJ
(filled circles) and the Aziz (filled triangles) potentials. The two
arrows indicate the densities corresponding to P =0 and P =20
atm.

a density range between 0.3650 > and 0.4240 3
(6=2.556 A) corresponding to a pressure range between
0 and 20 atm. The Green’s-function Monte Carlo method
(GFMC) results®’ for the Lennard-Jones (LJ) and the
Aziz potentials are also shown. The values of e (p),
u®(p), and uf*®(p) necessary to evaluate the bounds
have been taken from Refs. 2 and 8. For the ratio ma/m;
we use 1.327. At the experimental saturation density
(p0=0.3656"3), tB(py)=13.42 K, and 0vYB(py)
=—20.59 K.

Figure 1 points out the different balance of potential
and kinetic energies produced by the two potentials. Due
to the cancellation between kinetic and potential energy,
the differences between the two potentials are less sizable
in the calculation of the total energy. As it is well known,
both potentials give a reasonable equation of state, that
for the Aziz potential being slightly better. The kinetic
energies of the LJ potential are systematically smaller
than for the Aziz potential and very close to the lower
bound. The LJ potential energies are less attractive and
violate the upper bound for all densities.

Table I collects a variety of theoretical predictions of
the kinetic and potential energy per particle at the satura-
tion density. These are to be compared with ¢B(p,) and
vYB(pp). The variational calculations referred to in the
table were performed with trial wave functions containing
two- and three-body correlations. The elementary dia-
grams were calculated using the scaling approximation.®

TABLE I. Theoretical calculations of the kinetic and poten-
tial energy per particle (in kelvin) of liquid *He at the experi-
mental saturation density and at zero temperature. The relevant
bounds are v B(py) =13.42 K and # YB(py) = —20.59 K. SJ and
SJT refer to a Jastrow-type wave function with two- and three-
body correlations respectively.

Reference Potential Method e t v
5,9 LJ Variational SJ —5.71 14.14 —19.85
5,9 LJ Variational SJIT —6.55 13.51 —20.06

6 LJ GFMC —6.85 13.62 —20.77
9 Aziz Variational SJ —5.94 15.25 —21.29
9 Aziz Variational SIT —6.93 14.72 —21.65
7,20 Aziz GFMC —7.11 14.47 -—21.58

All calculations with the LJ potential give a potential en-
eli%g' which is insufficiently attractive, i.e., higher than
vUB(pg). By contrast, the Aziz potential produces, in all
the approximations, energies that do not violate the
bounds. With the improvement of the wave function (i.e.,
upon inclusion of three-body correlations), the kinetic en-
ergy becomes less repulsive and the potential energy more
attractive. In the case of the LJ potential, the resulting
kinetic energy moves very close to the ¢B(py), while the
potential cner%y does not become attractive enough to
drop below vYB(pp). Contributions to the potential ener-
gy from the Axilrod-Teller three-body interaction'® es-
timated in Ref. 6 to be repulsive and of the order of 0.16
K do not help in bringing the LJ potential energy below
LB .

u (po).

All the calculations referred to in Table I were per-
formed at the experimental saturation density po. Usually
the minimization of the energy expectation value with
respect to an approximate trial wave function (e.g., con-
taining only two-body correlations) yields a saturation
density (peq) that is different than po. The upper-bound
property of the variational energy applies to both e(peq)
and e(po); consequently e(peq), being the lowest, is taken
as the estimate of e“*™(py). On the other hand, as the
variational principle applies only to the total energy, the
separate theoretical evaluations of the kinetic and poten-
tial energies should be performed at py. The results
Peq=0.3300 "3, #(peq) =12.05 K, v(peq) =17.87 K, and
e(peq) = —5.82 K, for the LJ case which two-body corre-
lations may be compared with the results of the table.

Several authors have already used ¢“B(p) and v'B(p)
as approximations, estimated to be good at least to 10%,
to the kinetic and potential energy per particle of liquid
“He without exploiting their properties as bounds. In Ref.
11, Davison and Feenberg improved the estimate of the
kinetic energy at po by adding to #'B(py) a perturbative
correction calculated in a correlated basis. The resulting
kinetic energy, t(po) =14.3 K,'2 no longer has the lower-
bound propertg. In Ref. 13, Mantz and Edwards men-
tioned that #“B(py) should be considered a lower bound,
but did not proceed further.

We can also compare t22(py) with experimental deter-
minations of the kinetic energy, which are usually based
on analysis of the dynamic structure function. Several au-
thors !4~ !® have used the impulse approximation to extract
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the kinetic energy from S(Q,w). The resulting kinetic en-
ergies range between 10.9 and 13.2 K and hence violate
the lower bound. The reason is that in practice the values
of Q used to analyze S(Q,w) are not large enough for the
impulse approximation to be valid, so it is necessary to
take account of the final-state-interaction effects.!”

Recently, Sears'®!? has analyzed different ways to ob-
tain z(py) from experimental data. He reports a kinetic
energy of 14.0 0.5 K, which, in addition to respecting
the lower-bound condition, agrees with the GFMC calcu-
lation®?° and with the perturbative estimate. '!

It is also interesting to study the density dependence of
tYB(p) or equivalently that of u§*®(p) —u§® (p). It turns
out that the difference of the chemical potentials Ay is
well fitted by a straight line. Using a least-squares fit to
adjust a straight line to the Au reported by Ebner and Ed-
wards? at eleven equidistant pressures between 0 and 20
atm, we find that Au can be approximated by

ﬁ:—@] ,
Po

Au(p) (K)=(4.38 K)+(8.09 K)

with an error less than 0.3%. The linear correlation
coefficient is 0.999897. To understand this approximate
linear behavior we consider the derivative

d(u;(p) —us(p)) _ mas’a

dp p
where s is the sound velocity in “He and a is the excess
3He volume parameter in liquid *He. This derivative is
the product of an increasing function of the density
(mas?) times a decreasing one (a/p), resulting in very lit-
tle change as p varies over the liquid range. To be more
precise, the derivative is an increasing function of the den-
sity running from 21.25+0.1 Ko’ at P=0 atm to
23.00+ 0.8 Ko® at P =20 atm, implying that Ay should
be a slightly concave function of the density. To calculate
the error in the derivative we have considered s to be well
known, and taken the estimated error of « reported in Ref.
2. Actually, Eq. (10) is the relation conventionally used

10)

to determine uf*P'(p) by numerical integration, direct va-
porization heat measurements being available only at zero
pressure.

It is interesting, if perhaps not significant, that the Aziz
GFMC results for the kinetic energy are also well fitted by
a straight line,

pP=Po

tOFMC(p) (K) =(14.49 K) + (28.15K) an

The linear correlation coefficient is 0.999995 and the
slope is larger than that for the lower bound. As three
points are not enough to draw any firm conclusion, and
there is not apparent theoretical reason to expect a linear
behavior, this approximate linearity should be viewed with
caution.

The fact that the density expansion of the potential en-
ergy around the equilibrium density has no linear term
(zero-pressure condition) implies that the density expan-
sion of the potential energy has a linear term with a
coefficient opposite to that of the linear term in the kinetic
energy. The other terms of the expansion bend up the po-
tential energy slightly, defining the minimum for the
total-energy curve.

To summarize briefly, we have derived model-
independent bounds for the potential and kinetic energy
per particle of liquid “He. These bounds have been used
to test the basic interactions used in microscopic theory.
Evidence is obtained for the inadequacy of the Lennard-
Jones potential for quantitative prediction of observables
other than the total energy.
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