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Abstract

Differential Galois Theory opens the door to a fairly recent field of study. Revisiting
the ideas behind Galois theory of algebraic equations in polynomials, we will learn
on the development of an analogous approach applied to differential equations. We
will provide links with Dynamical Systems in terms of integrability, in particular,
of Hamiltonian Systems. Finally, we will apply our results to a particular example
and design our own original strategy to apply the theory.
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1 Introduction

The project

Dynamical systems captured my attention since the very beginning because they
link apparently unrelated subjects. As a student of Physics and Mathematics, I ap-
preciate the beauty of connecting symmetries of Physical Dynamical Systems with
abstract group and algebraic theory of Galois. In this work, we use The Residue
Theorem for integral computations, we endow polynomials a Topology, we make
use of Algebraic Geometry and Commutative algebra, we reformulate Theory of
Differential Equations, we endow paths around singularities a matrix group using
Homotopy classes, we create numerical and symbolical computational routines and
we give criteria for Hamiltonian systems to be integrable. The concept of inte-
grability by quadratures, whether speaking of roots in polynomials or integrals in
differential equations, hides the essence of symmetries at its core in the transforma-
tions that preserve the roots of the equations describing the system.

Memory structure

This project aims to give criteria for the integrability of a dynamical system. To
achieve this, the project is structured in several blocks.

The first block is strongly influenced by the spirit of [6] about Differential Galois
Theory, with an approach from (Differential) Ring Theory and then extending to
quotient fields. We complement it with [5], which covers many relevant aspects.
The first sub-block reminds the most elementary concepts of Algebraic Structures,
with the aim of giving a consistent definition of the Zariski Topology on polynomial
ideals, a key concept in the approach to Differential Galois Theory. Then it builds
axiomatically a theory of differential rings in section 5, differential operators and
Picard-Vessiot theory in section 6. With notions of algebraic groups from section
4, we define the differential Galois Group in section 7.

The Hamiltonian formalism is reviewed in detail in chapter 8 towards defining
classical integrability. Then it is compared with new concepts of integrability from
Morales-Ramis-Simó Theory in section 10 using the notions of the monodromy
group and variational equations.

Finally, in section 11, an example of Hamiltonian dynamical system is proposed
containing an integrable case and a chaotic case. It is analysed with several tools
like invariant manifolds and Melnikov integrals to ensure the integrability or not of
each case. Then, we design symbolic and numerical tools to apply the theory in
search for obstructions to integrability reaching satisfactory results.
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2 Preliminary notions

2.1 Ideals

We shall start from the very beginning introducing some elementary algebraic struc-
tures the reader may skip to finally define the Zariski Topology and its use in
algebraic geometry.

Definition 2.1. We define a group as any set G equipped with any binary operator:
(G, ∗) satisfying the following properties:

1. closure: a ∗ b ∈ G ∀a, b ∈ G,

2. associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ G,

3. identity element existence: ∃e ∈ G so that a ∗ e = e ∗ a = a∀a ∈ G,

4. inverse: ∀a ∈ G∃a−1 ∈ G so that a ∗ a−1 = a−1 ∗ a = e

Definition 2.2. A commutative group is one that satisfies the property a ∗ b =
b ∗ a∀a, b ∈ G.

Definition 2.3. A ring is a set R equipped with two operators, (R,+, ∗), we’ll call
addition and product satisfying the following properties:

1. (R,+) is a group.

2. distributiveness: ∀a, b, c ∈ R:

left a ∗ (b+ c) = a ∗ b+ a ∗ c,
right (a+ b) ∗ c = a ∗ c+ b ∗ c,

3. (R, ∗) satisfies all the group properties except the inverse element existence.

If the multiplication is commutative, R is called Abelian or commutative.

Some references reserve the property of multiplicative identity element existence
for ’unitary rings’. Additionally, if non-zero elements have a multiplicative inverse,
the ring R is instead called a field.

Definition 2.4. An ideal I of a ring R is an additive group closed under product.

An ideal I is called prime if a ∗ b ∈ I ⇒ a ∈ I or b ∈ I, in other words, if no
element of I is the product of two elements outside it.

We say, however, an element a ∈ R to be prime when the condition a dividing
bc, a product of two elements of R implies that a divides one of them at least.

Not to be confused with the above, we say an non-zero, non-unit element a is
irreducible if it cannot be obtained as the product of two non-unit elements.

Definition 2.5. A proper ideal I of a ring R is any ideal other than the trivial
ones R and ∅.
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Definition 2.6. A commutative ring D is called an integral domain if no element
in D divides zero.

Definition 2.7. A finitely generated ideal I of R is generated by a (not generally
unique) list ai: I = {

∑
i

ciai, ci ∈ R}.

Definition 2.8. Principal ideals are those generated solely by one element.

Definition 2.9. A principal domain is an integral domain where every proper ideal
is a principal ideal. This hypothesis is sufficient for the following definition.

Definition 2.10. A unique factorization domain is one where every non-zero, non-
unit element has a unique decomposition in prime elements or irreducible elements.

Definition 2.11. A proper ideal I of R is called maximal if there is no ideal in R
containing I.

Observation 2.1. Maximal ideals are prime ideals. The converse fails.

Observation 2.2. In an integral domain, prime elements are irreducible.

Definition 2.12. We denote R[X] the ring of polynomials in the indeterminate X
and coefficients in R.

The next sections referring to theoretical aspects of the formalism of Differential
Galois Theory are extracted predominantly from [6]. This subject might pose some
difficulties for undergraduate students. We have strongly based the structure of
this part on the reference, developing the subject from a ring theory perspective
and extending to fields. Some “heavy” proofs have been skipped, and, in the other
hand, some more “tangible” aspects have been highlighted, expanding examples
in detail, complementing some checks for clarification and aiming for meaningful
conclusions.

2.2 Zariski topology

We denote by C an algebraically closed field. Also denote An = Cn = C × · · ·C
the affine n-space.

Definition 2.13. We define an affine variety as the common set of zeros in An of a
finite collection of polynomials. That is, an algebraic variety inside an affine space.

Definition 2.14. If F ⊆ C[X1, . . . Xn], let V(F ) ⊆ An be the common zeros of
elements in F :

V(F ) = {a ∈ A|f(a) = 0,∀f ∈ F}

By the Hilbert Basis Theorem, see [6], each ideal of C[X1, . . . , Xn] has a finite
set of generators, and thus, V(F ) is an affine variety.
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Definition 2.15. Analogously, to each set S ⊂ A we associate the ideal of polyno-
mials vanishing on S:

I(S) = {f ∈ C[X1, . . . Xn]|f(a) = 0,∀a ∈ S}

It is indeed an ideal since the sum and product of polynomials that vanish in S
also does. The identity elements are those of C.

Observation 2.3. We have the inclusions I ⊂ I(V(I)) and S ⊂ V(I(S)).

Proof. That is: the set of polynomials vanishing on the common zeros of an ideal
of polynomials I contains I, and the common zeros of all the vanishing polynomials
on a set S contains S. Indeed,

• Every polynomial from I vanishes on the common zeros of the polynomials of
I.

• Every element in S is a zero of the polynomials that vanish on all S. �

Definition 2.16. We define the radical
√
I of an ideal I as

√
I := {f ∈ C[X1, . . . Xn]|∃r ≥ 1|f(X)r ∈ I}

It is an ideal containing I (take r = 1). The famous Hilbert Nullstellensatz
Theorem states that it coincides with the above set

√
I = I(V(I))

The inclusion
√
I ⊂ I(V(I)) is relatively simple to check:

In fact, since set the of zeros of polynomials in
√
I is the same as that of I, then

V(
√
I)) = V(I)).

Since
√
I is an ideal, by observation 2.3,

√
I ⊂ I(V(

√
I)) = I(V(I)).

The other inclusion of the Theorem is not proved here, but can be found in any
book of elementary algebraic geometry. As an example, the radical ideal of mZ is
rZ, where r is the product of all distinct prime factors of m, as the radical ideal
consists of taking all the positive roots.

Corollary 2.2.1. V and I set a bijective correspondence between the collection of
all radical ideals of C[X1, . . . , Xn] and the collection of all affine varieties of An.

Proposition 2.1. The correspondence V satisfies the following equalities:

1. An = V(0) The zero polynomial ideal vanishes in all the affine space.

∅ = V(C[X1, . . . , Xn]) There is no common root to every possible polynomial
in C[X1, . . . , Xn].

2. If I and J are two ideals of C[X1, . . . , Xn], then V(I) ∪ V(J) = V(I ∩ J).
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3. If Iα is an arbitrary collection of ideals of C[X1, . . . , Xn], then
⋂
α

V(Iα) =

V(
∑
α

Iα)

satisfying the axioms of closed sets in a topology.

Definition 2.17. A ring R is called Noetherian if it satisfies the ascending chain
condition on ideals. That is

∀{Ik}k|I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · · ,∃n|In = Im

This definition is equivalent to R having a maximal ideal, and also equivalent to
the condition that every right ideal I in R is of the form I = a1R + · · ·+ anR.

Definition 2.18. A topological space is called Noetherian if open subsets satisfy
the ascending condition.

Hilbert’s basis theorem implies the descending chain condition on closed sets and,
therefore, the ascending chain condition on open sets. Hence, An is a Noetherian
topological space, implying too that it is compact: every open covering admits a
finite subcovering. Separability condition does not hold, however.

Definition 2.19. A topological space is said to be irreducible if it cannot be written
as the union of two proper, non empty, closed subsets.

A Noetherian topological space can be written in its finitely many irreducible
(maximal) components.

Proposition 2.2. A closed set V in An is irreducible if and only if its ideal I(V )
is prime. In particular, An is irreducible.

Proof. Take I = I(V ), with V irreducible and f1, f2 ∈ I ⊂ C[X1, . . . , Xn]. Then
∀x ∈ V , f1(x)f2(x) = f1f2(x) = 0, so x must be a zero of f1 or f2, that is,
x ∈ V((f1)∪ (f2)), equivalently, V ⊂ V((f1)∪ (f2)). But V is irreducible, so it must
be contained in one of both ideals generated by fi (Zarisky-closed), that is, f1 ∈ I
or f2 ∈ I. I contains no elements consisting of the product of two elements outside
I: it is prime.

Now we’ll prove V reducible implies I not prime. Suppose V is the union of
two sets closed in V , say V1, V2. If none covers V , V 6⊂ Vi, i = 1, 2 then I(Vi) 6⊂
I(V ) = I, since the correspondence inverts inclusion order. Thus, we can find two
fi ∈ I(Vi) \ I (no fi vanishing in V ). But their product does vanish in V : if x ∈ V
then x ∈ Vi, for i = 1 or i = 2, so fi(x) = 0 and f1(x)f2(x) = 0, that is, f1f2 ∈ I,
and I is not prime. �

Definition 2.20. A principal open set of An is the set where a certain polynomial
doesn’t vanish.

Op := {a ∈ An : p(a) 6= 0} = An \ V ((p))
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By arbitrary union and finite intersection combination of them we can obtain
any other Zariski-open set, forming thus a basis of the Zariski topology.

A subspace of a topological space is irreducible if and only if its closure is.

Since the only closed set containing Op is O0 = An, the closure of a principal
open set is the whole affine set An, which is irreducible, so principal open sets are
irreducible.

If V is closed in An, each polynomial defines a C-valued function on V allowing
different polynomials to define the same function. There is a one-to-one correspon-
dence between polynomial functions on V and the residue class ring

C[X1, . . . , Xn]/I(V ).

Recall that it means the set of equivalence classes respect to the relation [p] = [q]⇔
p− q ∈ I(V )⇔ (p− q)(a) = 0,∀a ∈ V .

Definition 2.21. We denote this ring with C[V ] and call it the coordinate ring of
V .

It is a finitely generated algebra over C (in the polynomial sense). The following
definitions will be used in section 6.

Definition 2.22. Let R be a fixed commutative ring. An (associative unital) R-
algebra is an additive abelian group A with the structure of both a ring and an
R-module in such a way that the scalar multiplication satisfies

r · (xy) = (r · x)y = x(r · y),∀r ∈ R, x, y ∈ A.

Definition 2.23. Suppose that R is a ring and 1R is its multiplicative identity. A
left R-module M consists of an abelian group (M,+) and an operation · : R×M →
M such that for all r, s ∈ R and x, y ∈M we have:

1. r · (x+ y) = r · x+ r · y,

2. (r + s) · x = r · x+ s · x,

3. (rs) · x = r · (s · x),

4. 1R · x = x

Observation 2.4. The coordinate ring C[V ] is reduced (without non-zero nilpotent
elements) because I(V ) is a radical ideal (equal to its radical).

Proof. If an ideal J in a ring R is radical then R/J is reduced.

Let x + J ∈ J/R such that (x + J)n = 0R/J , then as well xn + J = 0R/J and so
xn ∈ J and since J is radical, it is generated by its distinct prime roots, x ∈ J , and
so x+ J = 0R/J is not non-zero. �

6



If V is an affine variety and f ∈ C[V ], we define Of = {P ∈ V : f(P ) 6= 0}, an
open set of V .

Now, if V is irreducible, equivalently I(V ), C[V ] is also an integral domain (no
zero divisors) since it comes from taking quotient by the prime ideal I(V ).

We may then consider its field of fractions C(V ) called the function field of V .
Elements f of C(V ) are called rational functions of V , and can be written as the
quotient of two elements of C[V ], not uniquely in general. We have to take care the
the denominator doesn’t vanish at a point P to give f a well defined value at P , in
which case we say f is regular at P . We trivially define the domain of f as the set
of points where it is regular.

If f ∈ C[X1, . . . , Xn], the points of the principal open sets Of = {x ∈ An :
f(x) 6= 0} are in 1-1 correspondence with the closed sets of An+1 defined by
{(x1, . . . , xn, xn+1) : f(x1, . . . , xn)xn+1 − 1 = 0}. That is, the principal open sets
have an affine variety structure and its coordinate ring is C[Of ] = C[X1, . . . , Xn, 1/f ].

3 Tangent Space of an affine variety

Definition 3.1. If f(X1, . . . , Xn) ∈ C[X1, . . . , Xn] and x = (x1, . . . , xn) ∈ An, we
define the differential of f at x

dxf =
n∑
i=1

(∂f/∂Xi)(x)(Xi − xi)

Clearly from the definition, for f, g ∈ C[X1, . . . , Xn], we have

1. dx(f + g) = dxf + dxg, linearity,

2. dxf(f · g) = dxf · g + f · dxg , the Leibnitz rule.

Definition 3.2. If V is an affine variety in An
C and x ∈ V , we define the tangent

space to V at the point x as the linear variety

Tan(V )x = {x ∈ An
C |dxf = 0,∀f ∈ I(V )} = V(dxI(V ))

Example 3.1. A linear variety, that is, a variety given one-degree polynomials
I(V ), is equal to its tangent space at any point, since dx(I(V ) = I(V ) and in this
case V = V(I(V )).

For a finite set of generators {fi} of I(V ), dxf generate I(Tan(V )x), the ideal
of polynomials vanishing on the tangent space.

Next we give an intrinsic definition of the tangent space. For a variety V ⊂ An

and x ∈ V , take Mx = I(x), the maximal ideal of C[V ] vanishing at x.

For arbitrary f ∈ C[X1, . . . , Xn], dxf can be seen as a linear function on An

with origin x, hence on Tan(V )x ⊂ An. Since dTan(V )x(I(V )) = {0}, then dxf (f
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arbitrary), is determined on Tan(V )x by the image of taking f modulo I(V ); that
is, the image of f in C[V ] = C[X1, . . . , Xn]/I(V ).

dx can be seen as a C-linear map from C[V ] to the dual space of Tan(V )x. Since
C[V ] = C ⊕Mx as C-vector spaces and dx(C) = 0, we may restrict dx from Mx

to (Tan(V )x)
∗ the dual of the tangent space, or simply called the cotangent space.

Taking quotient by its kernel, M2
x , we obtain an isomorphism with the image:

Proposition 3.1. The map dx defines an isomorphism from Mx/M
2
x to the cotan-

gent space at x.

Proof. A linear function g on the tangent space at x (an element of the dual of
the tangent space) is just the restriction of a linear function on An with origin at
x given by a linear polynomial f(X1, . . . , Xn), so dxf = f = g. Thus the image is
”total” and the map is surjective.

Now, let us check that the Kernel of dx is M2
x . Indeed, if f ∈ Ker(dx), for

f ∈Mx, we consider a non constant polynomial representative f̃ of f before taking
the quotient π : C[X1, . . . , Xn]→Mx that maps f̃ 7→ f .

Since dTan(V )xf = 0, dxf equals some representative in terms of the generators of

I(Tan(V )x): dxf =
∑
aidxfi for some ai ∈ C, fi ∈ I(V ). If we set g = f̃ −

∑
aifi,

another representative of f , we see dxg = dxf −
∑
aidxfi = 0 in the whole An,

hence identically zero, but g being non constant. Its linear (and constant) part
in the Taylor expansion (the differential) is zero, so g is a product of polynomials
vanishing at x, telling us that it belongs to the square ideal of C[X1, . . . , Xn],
recalling π(C[X1, . . . , Xn] = Mx, so π(g) = f ∈M2

x . �

4 Algebraic Groups

Definition 4.1. Let C denote an algebraically closed field of zero characteristic.

An algebraic group over C is an algebraic variety G defined over C, endowed with
a group structure such that the maps of translation of two elements and element
inversion are (continuous) morphisms of varieties.

The general linear group GL(n,C) is the group of all invertible n × n matrices
with entries in C with matrix multiplication.

It corresponds to the principal open subset (of the whole affine space An2
)of

non-vanishing determinant matrices.

Viewed as an affine variety, its coordinate ring is generated by the restricted n2

coordinate functions Xij , and attaching 1/det(Xij).

Closed subgroups of GL(n,C) are algebraic groups. This will later apply to the
Galois Group of a differential extension, which we shall define later.

The direct product of two or more algebraic groups consists of the direct product
of groups endowed with the Zariski topology and it is an algebraic group. We use
this concept for the next observation.
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4.1 The identity component

Observation 4.1. Let G be an algebraic group, the only irreducible ( in which any
two non-empty open sets intersect) component of G contains the unit element e.

Proof. Let X1, . . . , Xm be the distinct irreducible components containing e. The
product X1 · · ·Xm is again an irreducible subset which must contain e and lie in
some Xi, while clearly every Xi lies in X1 · · ·Xn, so m = 1. �

Definition 4.2. We call this unique irreducible component containing e the identity
component of G, denoted G0.

We will prove one of the following three lemmas for G an algebraic group.

Lemma 4.1.0.1. G0 is a normal subgroup of G of finite index.

Proof. To prove that it is a subgroup we only need to check that it is closed under
its binary operation. For that we see that, for x ∈ G0, x−1G0, which is isomorphic
to G0, is then irreducible containing e: x−1G0 = G0, ie, G0G0 = G0.

To prove that it is normal, we check invariance under conjugation: xG0x−1 = G0

since it is also irreducible containing e. Since G is noetherian, it has finitely many
irreducible components, hence G0 is of finite index in G. �

Lemma 4.1.0.2. Every closed subgroup of finite index in G contains G0 .

Lemma 4.1.0.3. Every finite conjugacy class of G has at most as many elements
as [G : G0].

5 Differential rings

Definition 5.1. A derivation of a ring A is a map d : A→ A such that

1. d(a+ b) = d(a) + d(b)

2. d(ab) = d(a)b+ ad(b)

The second property induces the Leibniz rule.

Notation. We may denote a′ = d(a), d′′ = d2(a), . . . , a(n) = dn(a).

Proposition 5.1. If A is an integral domain, a derivation d of A extends to the
quotient field Qt(a) in a unique way.

Proof. Recall that A being an integral domain means it is commutative and having

no non-zero zero divisors allows us to divide by non-zero elements. So for
a

b
∈ Q(t

we define (
a

b
)′ =

a′b− ab′

b2
and check that is independent of the class representative:
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(ac
bc

)′
=

(ac)′bc− ac(bc)′

b2c2
=

(a′c+ ac′)bc− ac(b′c+ bc′)

b2c2

=
a′cbc+ ac′bc− acb′c− acbc′

b2c2
=
a′cbc− acb′c

b2c2
=
a′b− ab′

b2

Now we can check the proposed definition satisfies the definition of derivation:

1.
(a
b

+
c

d

)′
=

(
ad+ bc

bd

)′
=

(ad+ bc)′bd− (ad+ bc)(bd)′

b2d2

=
(ad)′bd+ (bc)′bd− ad(bd)′ − bc(bd)′

b2d2
=

(ad)′bd− ad(bd)′

b2d2
+

(bc)′bd− bc(bd)′

b2d2

=

(
ad

bd

)′
+

(
bc

bd

)′
=
(a
b

)′
+
( c
d

)′
2.
(a
b
· c
d

)′
=
(ac
bd

)′
=

(ac)′bd− ac(bd)′

b2d2
=

(a′c+ ac′)bd− ac(b′d+ bd′)

b2d2

=
a′b− ab′

b2d2
cd+

c′b− cd′

b2d2
ab =

(a
b

)′
· c
d

+
a

b
·
( c
d

)′
�

Definition 5.2. A differential ring is a commutative ring with identity endowed
with a derivation. Naturally, differential rings which are fields are called differential
fields.

It is our particular interest to understand the ring of analytic functions in the
complex plane with the usual derivative, which is a differential ring. Since it is
an integral domain, the derivation extends to its quotient field, called the field of
meromorphic functions.

If A is a ring, we can extend the derivation of A to A[X] by assigning to X ′ an
arbitrary value in A[X], or if A is a field, we can extend its derivation to the field
A(X) of rational functions.

We now have the differential ring A{X} of polynomials in X and its derivatives,
called the differential polynomials. Like before, if A is a differential field, A{X} is
an integral domain and we can extend its derivation uniquely to its quotient field
denoted A〈X〉 whose elements are differential rational functions of X.

Definition 5.3. The elements in a differential ring A with zero derivative form the
subring CA called the ring of constants.

Observation 5.1. For a field K, CK is also a field:

Proof. a ∈ CK ⇒ d(a) = 0⇒ 0 = d(1) = d(aa−1) = d(a)a−1 + ad(a−1) = ad(a−1)

⇒ d(a−1) = 0⇒ a−1 ∈ CK �

Definition 5.4. Let I be an ideal of a differential ring A. We say that I is a
differential ideal if it is closed under derivation: d(I) ⊂ I.
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Observation 5.2. If I is a differential ideal of the differential ring A, we can define
a derivation in the quotient ring A/I by d(ā) = d(a) independently on the choice
of the representative in the coset and indeed defines a derivation in A/I:

d(ā) = (d(a+ I) = d(a) + d(I) = d(a) = d(a)

Definition 5.5. A differential morphism between differential rings is a morphism
that commutes with the derivation.

If I is a differential ideal, the morphism A→ A/I is a differential morphism.

Proposition 5.2. If f : A → B is a differential morphism, then Ker f is a
differential ideal and the isomorphism f : A/Ker f :→ Im f is a differential one.

Proof. a ∈ Kerf ⇒ f(a′) = f(a)′ = 0′ = 0 ⇒ a′ ∈ Ker f so Kerf is a differential
ideal.

The isomorphism property of f comes directly from linear algebra. We now
check that f̄ commutes with derivation. For every a ∈ A

(f̄(ā))′ = (f(a))′

since f restricted to the quotient evaluates elements by f . Now, since f is a differ-
ential morphism, it commutes with derivation

f(a)′ = f(a′) = f̄(ā′) = f̄(ā′)

�

Definition 5.6. An inclusion A ⊂ B of differential rings is an extension of differ-
ential rings if the derivation of B restricts to the derivation of A.

Definition 5.7. For S ⊂ B, we denote by A{S} the differential A-subalgebra of B
generated by S over A, that is, the smallest subring of B containing A, S and d(S).

For differential field extensions K ⊂ L, and for a subset S of L, we define
analogously K〈S〉 the differential subfield of L generated by S over K.

From now on we will reserve notation K and L for differential fields forming an
extension.

Definition 5.8. An algebraic field extension L|K is said to be separable if it every
element θ ∈ L is separable, that is θ is the root of a polynomial in K[X] without
multiple roots, equivalently, if the irreducible polynomial of θ over K has no multiple
roots.

Observation 5.3. For characteristic zero constant fields, a root θ of P (X) ∈ C[X]
is multiple if, and only if, the derived polynomial vanishes in θ.

Proof. If P (θ) = 0, let P (X) = h(X)(X − θ)m, h(X) ∈ C[X], h(θ) 6= 0, then
P ′(X) = h′(X)(X−θ)m+h(X)m(X−θ)m−1 = (h′(X)(X−θ)+h(X)m)(X−θ)m−1
Now if m > 1, a multiple root, then P ′(θ) = 0, and if m = 1, P ′(θ) = h(X) 6= 0. �

11



Proposition 5.3. If K ⊂ L is a separable algebraic field extension, the derivation
of K extends uniquely to L. Additionally, K-automorphism of L are differential
K-automorphisms.

Proof. We will prove the first part for finite extensions and then extend the proof.

If K ⊂ L is a finite separable extension, by the Primitive Element Theorem, see
[7] we have L = K(α), for some α ∈ L.

Now let P (X) be the irreducible polynomial of α over K, P (α) = 0, and deriving

0 = d(P (α)) = P (d)(α) + P ′(α)α′ = 0,

where P (d) results from deriving only the coefficients of P . Isolating,

α′ = −P (d)(α)/P ′(α)

Remember that separability implies that the denominator doesn’t vanish, so the
derivation of α is unique. Elements of L are rational polynomial expressions of α.

L is isomorphic to the quotient of K[X] by the irreducible polynomial ideal
generated by P : L ∼= K[X]/(P ).

We will check now that defining a derivation in K[X] of X in a similar way as we
did for α makes (P ) a differential (irreducible) ideal and so the quotient K[X]/(P )
a differential ring. Indeed, we define

X ′ := −P (d)(X)h(X), with h ∈ K[X] : h(X)P ′(X) ≡ 1 mod P

But if, say h(X)P ′(X) = 1 + k(X)P (X), then 1− P ′(X)h(X) = k(X)P (X), and

d(P (X) = P (d)(X) + P ′(X)X ′,

which by definition is P (d)(X) + P ′(X)(−P (d)h(X)), and taking common factor,

P (d)(X)(1− P ′(X)h(X)) = −P (d)(X)k(X)P (X) ∈ (P )

By applying Zorn’s Lemma, see [7], the general algebraic case can be obtained.

Now, for the second part, let σ a K-automorphism of L, we will check that σ−1dσ
is also a derivation of L extending that of K, and by uniqueness, σ−1dσ = σ, so
dσ = σd and σ is a differential automorphism.

Indeed, if d is a derivation in L, for a, b ∈ L, the derivation axioms hold for
σ−1dσ:

1. dσ(a+ b) = d(σ(a) + dσ(b)) = d(σ(a)) + d(σ(b)) and applying σ−1 left,

σ−1dσ(a+ b) = σ−1dσ(a) + σ−1dσ(b)

2. dσ(a · b) = d(σ(a) · σ(b)) = d(σ(a)) · σ(b) + σ(a) · d(σ(b)) and like before,

σ−1dσ(a · b) = σ−1dσ(a) · (σ−1σ)(b) + (σ−1σ)(a) · σ−1dσ(b)

= σ−1dσ(a) · (b) + (a) · σ−1dσ(b)

Also, since σ fixes K, σ−1dσ|K = d so it extends d. �
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A remark is needed concerning the characteristic of K. If it is p > 0, like Fp(T )
endowed with T ′ = 1, and P (X) = Xp− a ∈ K[X], with a /∈ Kp and P (α) = 0, we
have P ′(X) = pXp−1 − a′ = −a′ and 0 = d(P (α)) = P (d) + P ′(α)α′ = −a′ − a′α′ =
−a′(1 + α)

If a′ = 0, a is a constant, this always holds for every value of α′. Otherwise, it is
not possible ot extend the derivation of K to L.

Definition 5.9. We say an element α ∈ L is

1. a primitve (or integral) element over K if α′ ∈ K.

Its name finds explanation in that, say α′ = a ∈ K, then α is a solution of
the differential equation over K: d(α)− a = 0

2. an exponential element over K if α′/α ∈ K
Its name finds explanation in that, say α′/α = d(log(α)) = z′ ∈ K, with
z = log(α) primitive, then α = ez.

Definition 5.10. A linear differential operator L with coefficients in K is a poly-
nomial in the derivation operator of K d:

L =
n∑
i=0

aid
i, with ai ∈ K

and d0 the identity operator. If an 6= 0, we say L has degree n, and if it is 1 we
say it is monic.

Linear differential operators over K form a (non-commutative) ring K[d], where
d satisfies da = a′ + ad for a ∈ K. As in usual ring polynomials, deg(L1L2) =
deg(L1) + deg(L2) implying that there are no non-trivial invertibles in K[d]:

if L1(X)L2(X) = 1, taking degrees degL1 + degL2 = 0 and since they are both
non-negative, the degrees are both bound to be zero.

To every operator L we associate the differential equation L = 0.

The Euclides algorithm provides us a division left or right, as in algebraic poly-
nomials.

6 Picard-Vessiot extensions

Consider a monic differential operator L over the differential field K ⊂ L. The set
of solutions of L(Y ) = 0 in L is a CL-vector space of dimension no bigger than
deg(L), as we shall see.

Definition 6.1. Let y1, . . . , yn ∈ K its wrońskian isW (y1, . . . , yn) = |d(i−1)yj|1≤i,j≤n

Proposition 6.1. W 6= 0⇔ y1, . . . , yn ∈ K are linearly independent over CK.
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Proof. ⇒) Assume y1, . . . , yn to be linearly dependent over CK , say

n∑
j=1

cjyj = 0, cj ∈ CK not all zero.

Applying d(i−1), we obtain for each i = 1, . . . , n that

n∑
j=1

cjy
(i−1)
j = 0

saying that the columns inside W are linearly dependent and thus W = 0.

⇐) If W = 0, we obtain
n∑
j=1

cjy
(i−1)
j = 0 with cj ∈ K not all zero for each

i = 1, . . . , n. We will assume c1 = 1 and W (y2, . . . , yn) 6= 0. Applying d(·) to
each equation (i) we obtain

n∑
j=1

cjy
(i)
j +

n∑
j=2

c′jy
(i−1)
j =

n∑
j=2

c′jy
(i−1)
j = 0

but from equation (i − 1) the first term vanishes, giving a homogoneous lin-
ear equations system in c′2, . . . , c

′
n with determinant W (y2, . . . , yn) 6= 0, with

unique solution c′2 = . . . , c′n = 0, that is, all Ci constants, that is, y1, . . . , yn
linearly dependent over CK .

�

We are now allowed to talk about linear independence over the constant field
without ambiguity (independently of the it).

Corollary 6.0.1. An equation will never admit a number greater than its order of
linearly independent solutions in L over its field of constants.

Definition 6.2. Such a set of solutions is called a fundamental set of solutions.

This set generates the space of solutions of the mentioned equation.

Definition 6.3. Keeping the above notation for a homogeneous linear differential
equation, we say K ⊂ L is a Picard-Vessiot extension if the following two conditions
are satisfied:

1. L = K〈y1, . . . , yn〉. The fundamental set of solutions of L(Y ) = 0 generates
L over K.

2. CK = CL. We incorporate no constants.

This definition is analogous to the notion of a splitting field of a polynomial:
the minimal field generated by its solutions. Condition 2 in the above definition
guarantees minimality, as we shall check in the following examples.
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Example 6.1. Let k be a differential field and consider z a solution of the differ-
ential equation L(Y ) = Y ′−Y = 0. If, instead of considering the natural extension
K = k〈z〉, we adjoin L = K〈y〉 a second indeterminate, also a solution of L, (not re-
specting minimality), condition 1 is respected. However, y/z ∈ L is a new constant
incorporated to L:(y

z

)′
=
y′z − yz′

z2
=
yz − yz
z2

= 0⇒
(y
z

)
∈ CL \ CK

Below we will only give the idea behind the proof that for a differential field K
with algebraically closed field of constants C, there exists a Picard-Vessiot extension
L of K for a given homogeneous linear differential equation L over K. The extension
is defined up to differential K-isomorphism.

The idea for existence is to construct a differential K-algebra ,R, containing a
full set of solutions of L, and then quotient R by a maximal (thus prime) ideal,
making it an integral domain with no new constants.

Now we adress its uniqueness. First, we prove that the image by differential mor-
phism σ from a Picard-Vessiot extension L of K onto another differential extension
with the same field of constants as K is unique with respect to σ and L.

Proposition 6.2. Let L1, L2 be Picard-Vessiot extensions of K for the aforemen-
tioned equation L(Y ) = 0, of order n. Let K ⊂ L be an extension with CK = CL.
Let σi : Li → L differential K-morphisms, for i = 1, 2. Then its images coincide
σ1(L1) = σ2(L2).

Proof. Let us define Vi = {y ∈ Li : L(Y ) = 0} and V = {y ∈ L : L(Y ) =
0}. Vi and V are CK-vector spaces (CK = CL) of dimensions n and at most n,
respectively. Since σi is a differential morphism (commutes with derivation), we
will check that σi(Vi) ⊂ V , and so we have equality σ1(V1) = σ2(V2) = V . But since
each Li = K〈Vi〉 and images by differential morphism are determined by differential
generators, we get σ1(L1) = σ2(L2).

Finally, we had to check that σi(Vi) ⊂ V . Indeed,

y ∈ Vi ⇒ L(y) = 0 and y ∈ Li ⇒ L(σi(y)) = σi(L(y)) = σi(0) = 0⇒ σi(y) ∈ V

�

We can use the proposition in the following way.

Corollary 6.0.2. Let K ⊂ L ⊂ M be differential fields with K ⊂ L Picard-
Vessiot and CM = CK, then any differential K-automorphism σ sends L onto itself:
σ(L) ⊂ L.

From algebraic field extension theory we know this is an equivalent definition of
normal extension, see [7], which is a remarkable fact.

Corollary 6.0.3. Algebraic Picard-Vessiot extensions are normal algebraic exten-
sions.
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7 Differential Galois Group

With the tow last corollaries in mind , we are ready to define the differential Galois
group, check analogous properties its polynomial counterpart, and see it as a linear
algebraic group.

Definition 7.1. For K ⊂ L a differential field extension, the group G(L|K) consist-
ing of differential morphisms from L onto itself fixing K is called differential Galois
group of the extension K ⊂ L. We can also denote it GalK(L) for Picard-Vessiot
extensions for equation L.

Now will merely state two important facts for our construction of the Galois group.

Proposition 7.1. 1. Given a non trivial Picard-Vessiot extension K ⊂ L and
an element x ∈ L \ K, there exists a differential K-automorphism of L not
fixing x. In other words, elements fixed by the all Gal(L|K) are no more than
those of K.

2. For any two consecutive Picard-Vessiot extensions K ⊂ L ⊂ M , every σ ∈
Gal(L|K) can be extended to a differential automorphism of M .

Corollary 7.0.1. Analogously to algebraic Galois theory, for a Picard-Vessiot ex-
tension K ⊂ L, LGal(L|K) = K. That is, the subfield of L fixed by the action of the
Galois group of L|K is exactly K.

Proof. It is clear K ⊂ LGal(L|K), since every element in K is fixed by the K-
automorphisms of L, by definition. From part 1., we see the other inclusion.

�

We shall see the Galois group now as a linear algebraic group.

Observation 7.1. With the above notation, GK(L) is isomorphic to a subgroup
of GL(n,C) over CK .

Indeed, for a a fundamental set of solutions of L y1, . . . , yn and a morphism σ ∈
Gal(L), the image of yj is again a solution of L: since σ commutes with derivation,
L(σ(yj)) = σ(L(y)) = σ(0), and thus a linear combination of the fundamental

solutions σ(yj) =
n∑
i=0

cijyi. This defines a map from the Galois group of L to the

space of matrices cij. Since the Galois group sends a fundamental set of solutions to
another one, their wronskian is non-zero and equal to the product of the previous
wronskian (non-zero) and the transformation cij determinant, so this matrices are
non singular, thus the second space being the General Linear Group over K. This
map is a morphism: The image of the sum σ1 + σ2 is cij,1 + cij,2 defined through

(σ1 + σ2)(yj) = σ1(yj) + σ2(yj) =
n∑
i=1

(cij,1 + cij,2)yi. Same for product and identity,

and it is injective since it is linear and sends non-zero elements to non-zero elements.

Later we shall also see that the Gal(L) is Zariski-closed in GL(n,C).
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Below we show the most important examples of Picard-Vessiot extensions: ad-
junction of an integral (or primitive element of K) and an exponential of an inte-
gral(or simply an exponential of K).

Example 7.1. Let L = K〈α〉 with α′ = a ∈ K, a not a derivative in K (not
a trivial extension). We proof that α is transcendent over K: if α was algebraic

over K then let P (X) = Xn +
n∑
i=1

biX
n−i the irreducible polynomial of L over K,

deriving P (α) = 0, every coefficient in α powers must vanish (otherwise giving
a polynomial vanishing on α over K of order less than the irreducible one). In
particular, the (n − 1) order term nαn−1α′ + b′1α

n−1 = αn−1(na + b′1) coefficient,

giving a = α′ = −b
′
1

n
=

(
−b1
n

)′
, a derivative in K!

If we had not chosen P monic, then we would have reached to a = α′ = − b′1
nb0

=(
− b1
nb0

)′
, so we have proven, in fact, that no polynomial of α in K can be constant.

Neither can a polynomial fraction, say
f

g
. Assume g monic, of minimal degree ≥ 1;

differentiating,
f ′(α)g(α)− f(α)g′(α)

g(α)2
= 0 ⇒ f(α)

g(α)
=
f(α)′

g(α)′
, obtaining g(α)′ non-

zero (recall that no polynomial in α can be constant), and of degree less than
g (a contradiction), since it is monic and so the highest coefficient is constant
d(1) = d(1 · 1) = 1d(1) + d(1)1 = 2d(1)⇒ d(1) = 0 making the highest order term
vanish, as we have done before.

Since the filed L = K〈α〉 consists of rational functions on α, we conclude that
CK = CL.

We take the {1, α} set of fundamental solutions of L(Y ) = Y ′′ − a′

a
Y ′ = 0, with

wronskian 1 · α′ − α · 0 = a 6= 0 (not a derivative). K ⊂ L is a Picard-Vessiot
extension for the equation L.

Let σ a differential K-automorphism of L. Since α′ = a ∈ K, we put σ(α)−α =
c ∈ L and

a = σ(a) = σ(α′) = (σ(α))′ = (α + c)′ = a+ c′ ⇒ c′ = 0⇒ c ∈ CL = CK .

Each mapping σ : α 7→ α + c, 1 7→ 1, induces a differential K-automorphism of

L, so the Galois group is G(L|K) ∼= CK ∼=
{(

1 c
0 1

)}
⊂ GL(2,C).

Example 7.2. Let L = K〈α〉, with α′/α = a ∈ K \ {0}.
We see that K〈α〉 = K(α): the smallest differential field containing K,α, α′

coincides with the smallest differential field containing K,α, in that order. The
inclusion K(α) ⊂ K〈α〉 is clear and also α ∈ K〈α〉 ⇒ α′ = α · a ∈ K(α) ⇒ α ∈
K(α) gives the other inclusion.

As well, α is a fundamental set of solutions of Y ′−aY = 0. We assume CK = CL.
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If α is algebraic over K and let P (X) = Xn +an−1X
n−1 + · · ·+a0 its irreducible

polynomial, differentiating,

0 = (P (α))′ = P (d)(α) + P ′(α)α′ = P (d)(α) + P ′(α)αa = anαn +
n−1∑
k=0

(akak)α
k,

a polynomial over K of degree n = deg(P ) vanishing on α, thus a multiple of

the irreducible P by a factor λ =
an

1
=

a′k + akak
ak

, thus a′k = a(n − 1)ak for

k = 0, . . . , n− 1. Now,(
αn−1

ak

)′
=

(n− k)αn−k−1α′ak − αn−ka′k
a2k

=
(n− k)αn−k−1αaak − αn−ka(n− k)ak

a2k
= 0.

In particular, for k = 0,

(
αn

a0

)
= c with c′ = 0, c ∈ CL = CK ⊂ K. αn = a0c =

b ∈ K. Then P (X) divides Xn − b (monic of deg = n) and so P (X) = Xn − b.
For σ ∈GalL|K), we have

σ(α)′ = σ(α′) = σ(αa) = σ(α)σ(a) = aσ(α)(
σ(α)

α

)′
=
σ(α)′α− σ(α)α′

α2
=
aσ(α)α− σ(α)aα

α2
= 0

Thus, σ(α) = cα for some c ∈ CK = CL. If αn = b ∈ K (α is algebraic), then

b = σ(b) = σ(αn) = (σ(α))n = (cα)n = cnαn = cnb⇒ cn = 1

c must be a unity root and Gal(L|K) a finite cyclic group.

If α is transcendent over K, the map σ(α) = cα is a differential K-automorphism
of L for each c ∈ CK and hence Gal(L|K) is isomorphic to the multiplicative group
of CK . �

Next we will see that G(L|K) is a Zariski-closed subgroup of GL(n,C), that is,
there exists an ideal polynomials all vanishing at it, more precisely, on the entries
of the matrices that give the linear relations between the images by Galois elements
of the generators and the generators.

The second part of the next proposition tells us that any non singular matrix
with entries roots of such polynomials corresponds to a Galois element generator
image matrix. That is, these polynomials vanish on no more than matrices defined
that way. More formally:

Proposition 7.2. Let L = K〈y1, . . . , yn〉 be a Picard-Vessiot extension of K. There
exists a set S of polynomials F (Xij) over CK ,with 1 ≤ i, j ≤ n such that

1. If σ is a differential K-automorphism of L and σ(yj) =
n∑
i=1

cijyi, then F (cij) =

0,∀F ∈ S.
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2. Given a matrix (cij) ∈ GL(n,C) with F (cij) = 0∀F ∈ S, there exists a

differential K-automorphism σ of L such that σ(yj) =
n∑
i=1

cijyi.

Proof. Let K{Z1, . . . , Zn} be the ring of differential polynomials in n indeterminates
over K. We define

φ : K{Z1, . . . , Zn} → L = K〈y1, . . . , yn〉
Zj 7→ yj

P (Z1, . . . , Zn) 7→ P (y1, . . . , yn)

the evaluating (differential) morphism, in fact a K-automorphism since it fixes
zero-degree polynomials.

Γ = Ker(φ) is a differential polynomial ideal ofK{Z1, . . . , Zn}. SinceK{Z1, . . . , Zn}/Γ ∼=
φ(K{Z1, . . . , Zn} is an integral domain, Γ is prime. Let L[Xij], with 1 ≤ i, j ≤ n be
the ring of polynomials in the indeterminates Xij and endowing the trivial deriva-
tion X ′ij = 0. We consider the following commutative diagram.

Γ 0

Zj yj

Γ Zj K{Z1, . . . , Zn} L

∆
∑
ij

yi L[Xij] L

Xij cij

φ

φ

f f f

φ

σ

φ∗

φ∗

Let ∆ be the image of Γ by the left vertical arrow f and let {wk} be a basis
of L as a CK vector space. ∆ = {

∑
akwk, ak ∈ S} for S ⊂ C[Xij] the set of

polynomial-type coefficients of {wk}.

1. Let σ be a differential K-automorphism of L, for each p ∈ ∆, φ∗(p) =∑
wkak(cij) coincides by the preimage of p in Γ sent to 0 by φ and again

to 0 by σ, so every coefficient ak ∈ S vanishes at cij.

2. Consider a matrix (cij) ∈GL(n,C) such that F (cij) = 0,∀F ∈ S.

We see Γ ⊂ Ker(φ∗ ◦ f):

P (Zj) ∈ Γ⇒ φ∗(f(P (Zj))) = σ(φ(P (Zj))) = σ(0) = 0⇒ P (Zj) ∈ Ker(φ∗◦f)
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, so we have a K-morphism

σ : K{y1, . . . , yn} → K{y1, . . . , yn}

yj 7→
∑
i

cijyi

It is injective: we will consider a non-zero element u in its kernel I and reach
contradiction, whether it is algebraic or transcendent.

If σ(u(y1, . . . , yn)) = 0, u algebraic with 0 = Irr(u,K) = b0+
m∑
i=1

bku
k, bk ∈ K,

then σ(Irr(u,K)) = b0 +
m∑
i=1

bkσ(u)k = σ(b0) = 0 ⇒ b0 ∈ I ⇒ K ⊂ I ⇒ I =

K{y1, . . . , yn}.
On the other hand, if u is transcendent, defining the transcendence degree
trdeg[L : K] as the largest cardinal of a subset of L algebraically independent
over K, for example trdeg[Q(

√
2, π) : Q] = 1, we have:

trdeg[K{y1, . . . , yn} : K] >trdeg[K{σy1, . . . , σyn} : K] ,

trdeg[K{yj, σyj} : K] =trdeg[K{yj, cij} : K]=trdeg[K{yj} : K] and

trdeg[K{yj, σyj} : K] =trdeg[K{σyj} : K], a contradiction.

σ is also surjective since the image contains y1, . . . , yn and the matrix (cij) is
invertible (every element has a preimage).

Hence, σ is bijective and can be extended to a K-automorphism of the field
L = K〈y1, . . . , yn〉

�

We give now a remarkable result for our comparison between polynomial and
differential Galois theory concerning dimensions: the dimensions of the algebraic
variety G is equal to the Krull dimension of its coordinate ring C[G].

The dimension of a topological space X is the supremum number of distinct
irreducible closed subsets of X in ascending inclusion order. Clearly, the dimension
of an affine variety is the maximum of dimensions of its irreducible components.
For a ring R, we define the Krull dimension of R as we did for X but now for
distinct prime ideals. But if V ⊂ An is an affine variety, irreducible closed susbsets
of V correspond to prime ideals of the ring C[X1, . . . , Xn] containing I(V ), and
taking quotient, to prime ideals of the coordinate ring C[V ]. And, by Noehter’s
Normalization Lemma, if V is irreducible, the Krull dimension of C[V ] is equal to
the transcendence degree trdeg[C(V ) : C].

We formulate then the next proposition.

Proposition 7.3. Let K ⊂ L be a Picard-Vessiot extension, then

dim G(L|K) = trdeg[L : K]
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Definition 7.2. A differential field extension K ⊂ L is called normal if

∀x ∈ F \K ∃σ ∈ G(L|K) | σ(x) 6= x

Next we will state the fundamental theory of Picard-Vessiot theory, which we
will not prove.

Theorem 7.0.1. Let K ⊂ L be a Picard-Vessiot extension with G(L|K) its differ-
ential Galois group.

1. The correspondences
H 7→ LH , F 7→ G(L|K)

between Zariski-closed subgroups H of G(L|K) and differential intermediate
fields K ⊂ F ⊂ L are mutually inverse, bijective, inclusion inverting maps.

2. F |K is a Picard-Vessiot extension of K if and only if the subgroup H :=
G(L|F ) is normal in G(L|K). In this case, the restricition morphism

G(L|K)→ G(F |K)

σ 7→ σ|F

induces an isomorphism G(L|K)/G(L|F ) ∼= G(F |K).
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8 Monodromy Group

Definition 8.1. For a linear differential equation

Y (n) + a1(z)Y (n−1) + · · ·+ an−1(z)Y ′ + an(z)Y = 0 (8.1)

with ai(z) ∈ C(z), a point is called regular if the functions ai have no pole in P ;
otherwise P is called singular. A point at infinity ∞ is regular only if 0 is regular
for the equation for x = z−1.

Definition 8.2. If P ∈ C (resp. P =∞) is a singular point for (8.1), we consider
the limit lim

z→P
(z − P )iai(z) (resp. lim

z→P
ziai(z)). If this limit exists and is fintite for

i = 1, . . . , n, the point P is a regular singular point for (8.1). The equation (8.1) is
called Fuchsian if all points in P1(C) are regular or regular singular points.

Any analytic solution of ( 8.1) in the neighborhood of a regular point can be
analytically continued along any path in C not passing through any singular point.
Let S be the set of singular points of ( 8.1) and z0 ∈ P1 \ S, let f1, . . . , fn linearly
independent analytic solutions in the neighborhood of z0, and let γ ∈ π1(P1 \S, z0),
the fundamental homotopy group.

By analytic continuation along γ, we obtain f̃1, . . . , f̃n, which are solutions of ( 8.1)
too. We then have a matrix M(γ) ∈ GL(n,C) such that f̃1

...

f̃n

 = M(γ)

 f1
...
fn

 .

The mapping

ρ : π1(P1 \ S)→ GL(n,C)

γ 7→M(γ)

is a group homomorphism. Its image M is called the monodromy group of ( 8.1)
and it is determined up to conjugation. Since an element of the differential Galois
group of the differential equation ( 8.1) is determined by the images of a fundamental
set of solutions, and analytic continuation preserves analytic relations, we can see
M as a subgroup of the differential Galois group of the differential equation. It can
be shown that the matrix M(γ) depends only on the homotopy class of the path γ.

For a Fuchsian differential equation, it is proved in [6] that the differential Galois
group is the Zariski closure of the monodromy group.

8.1 Matrix Differential Equations

Definition 8.3. Let K be a differential field, a matrix A ∈ gl(n,K) and R a
differential ring containing K. A matrix Z ∈ G(n,R) such that Z ′ = AZ is called
a fundamental solution matrix of Y ′ = AY .
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The same study of the evolution of the fundamental solution matrix A along
analytic continuation into Aγ may be done to obtain the monodromy group of
matrices M(γ) such that

Aγ = M(γ)A

Remark 8.1.1. From now on, we shall work with this object rather than the vector-
form monodromy. One can switch from vector to matrix differential equations with-
out loss of generality, as it is detailed in [5]. Matrix differential equations will arise
naturally from first order variational equations, after this parentheses of Hamilto-
nian Formalism introduction.

9 The Hamiltonian Formalism

9.1 Newton’s Equations

9.1.1 1 Degree of freedom

A system with one degree of freedom is a system described by the differential
equation in the real line

ẍ = f(x) (9.1)

The kinetic energy is the quadratic form

T =
1

2
ẋ2 (9.2)

The potential energy is the function

U(x) = −
∫ x

x0

f(ε) dε (9.3)

The total energy is the sum

E = T + U (9.4)

wisely chosen so that is a first integral, or a preserved magnitude of the system:

dE

dt
= ẋẍ+

dU

dx

dx

dt
= ẋf(x)− f(x)ẋ = 0 (9.5)

9.1.2 Phase Flow

Equation ( 9.1) is equivalent to the system of two equations

ẋ = y ẏ = f(x) (9.6)
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We can consider the plane with coordinates x, y and call it the phase plane, consist-
ing of phase points, which we can denote as z = (x, y)> satisfying the phase space
vector field field equation

ż =

(
y

f(x)

)
(9.7)

A solution to which is the motion ϕ : R→ R2, called the phase curve, such that

x = ϕ(t) y = ϕ̇(t) (9.8)

The phase curve lies entirely on a constant energy level E(x, y) = h, or equivalently,
(x, y) ∈ E−1(h).

This notion will motivate the definition of integrability for arbitrary dimensional
systems, where one can obtain the phase curve as the preimage of a set of well
behaving first integrals.

Back to our 1-dimensional problem, we isolate

dx

dt
= ẋ =

√
2(E − U(x))⇒

∫ t

t0

dt = t− t0 =

∫ x

x0

dx√
2(E − U(x))

(9.9)

9.1.3 Conservative Force Fields

Definition 9.1. A (force) vector field ~F is said to be conservative if it can be
written as the gradient of some (potential) scalar field U :

~F = −~∇xU (9.10)

Definition 9.2. The work of a field ~F along a path γ between two points M0,M
is defined as the integral

W (γ,M,M0) =

∫ M

M0

~F · d~l (9.11)

Theorem 9.1.1. A vector field ~F is conservative if and only if its work along a
path between two points depends only on the two endpoints.

Proof. If the work is well defined for the endpoint, then changing its sign we obtain
the potential energy of F . Conversely, taking U the potential energy of the con-
servative vector field ~F , its work results U(M0) − U(M), irrespective of the path.
�

9.1.4 Central fields

Definition 9.3. A vector field in the Euclidian plane is called central with center
at 0 if it is invariant with respect to a group of motions of the plane which fix 0.
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Theorem 9.1.2. Every central field is conservative, and its potential energy de-
pends only on the distance to the center of the field: U = U(r).

Proof. Set F (r) = φ(r)~r/r, then W =
r(M)∫
r(M0)

φ(r) dr , irrespective of the path. �

The first Newton law sets the acceleration ~̈x = f(~x) = ~F/m to be the force per
mass unit. For a unit mass particle in a central field, its motion is defined by the
radial equation

~̈r = ~φ(r)~er (9.12)

Definition 9.4. The angular momentum of a unit mass point relative to the origin
0 is the vector product

~M = ~r × ~̇r

Theorem 9.1.3. Under motions in a central field, the angular momentum ~M is
conserved

Proof. ~̇M = ~̇r × ~̇r + ~r × ~̈r. But central field equation imply ~r, ~̈r are collinear. �

Corollary 9.1.1. Every orbit in a central field motion is planar.

Proof. The equation of this plane is ~M · ~r = (~r × ~̇r) · ~r = 0, ~M constant. �

Theorem 9.1.4. For a conservative field with axial symmetry around the z axis,
the moment of velocity relative to this axis is conserved.

Proof. Mz = ~ez · (~r × ~̇r), then Ṁz = ~ez · (~̇r × ~̇r) + ~ez · (~r × ~̈r). Since r̈ = ~F , r, r̈ lie
in a plane containing the z axis, so the second term is also zero. �

9.2 Variational Principles

Remark 9.2.1. We will work with functionals restricting to those having image in
R and domain the infinite-dimensional space of curves.

Definition 9.5. A functional is called differentiable if φ(γ + h) − φ(γ) = F + R,
with F linear on h, and R(h, γ) = O(h2), in the sense that |h| < ε, |dh/dt| < ε ⇒
|R| < Cε2. The linear part F has already been introduced before as the differential,
while h is referred to as the variation of the curve.

Let γ = {(t, x) : x = x(t), t0 ≤ t ≤ t1} be a curve in the (t, x) plane; ẋ = dx/dt;
L = L(a, b, c) a differentiable function of three variables.

For example, if we chose L =
√

1 + b2, φ is the curve length.
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Theorem 9.2.1. The functional φ =
∫ t1
t0
L(x, ẋ, t) dt is differentiable and its deriva-

tive is

F (h) =

∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
h dt+

(
∂L

∂ẋ
h

)t1
t0

(9.13)

Proof.

φ(γ + h)− φ(γ) =

∫ t1

t0

(L(x+ h, ẋ+ ḣ, t)− L(x, ẋ, t)) dt

=

∫ t1

t0

(
∂L

∂x
h+

∂L

∂ẋ
ḣ

)
dt+O(h2) = F (h) +R

Integrating by parts the ḣ term, with u =
∂L

∂ẋ
, v = h,

∫ t1

t0

∂L

∂ẋ
ḣ dt = −

∫ t1

t0

h
d

dt

(
∂L

∂ẋ

)
dt+

(
h
∂L

∂ẋ

)t1
t0

And we can now group into the three terms of the proposed F (h). �

Definition 9.6. An extremal of a differentiable function φ(γ) is a curve γ such
that F (h) = 0, ∀h.

Theorem 9.2.2. The curve γ : x = x(t) is an extremal of the functional φ(γ) if
and only if, along γ, the Euler-Lagrange equation holds:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (9.14)

Proof. Firstly, the term of F consisting of

(
h
∂L

∂ẋ

)t1
t0

vanishes since h(t0) = h(t1).

Thus if F (h) = 0 for any continuous h with h(t0) = h(t1), and setting f(t) :=
d

dt

(
∂L

∂ẋ
− ∂L

∂x

)
, a lemma shows that if

∫ t1
t0
f(t)h(t) dt = 0, then f = 0.

To prove the lemma, assume ∃t∗ ∈ (t0, t1)|f(t∗) > 0, then, since f is continuous,
take a ball B(t∗, d) where f(t) > c, and construct h such that h = 0 outside B(t∗, d),
h > 0 inside B(t∗, d) and h = 1 inside B(t∗, d/2), giving the integral a lower bound
of the rectangle area dc > 0, a contradiction.

Conversely, if f = 0, clearly F = 0 too. �

One may compare the Newton’s equations

d

dt
(mi ~̇ri) +

∂U

∂ri
= 0 (9.15)

with the Euler-Lagrange equation above, to see that

26



Theorem 9.2.3. Motions of the Newton’s equation system coincide with extremals
of the functional

φ(γ) =

∫ t1

t0

Ldt, taking L = T − U,

the difference between kinetic and potential energy.

Proof. Applying the last theorem,simply taking L = T − U and write its Euler-
Lagrange partial derivatives equations: the kinetic term

d

dt

(
∂L

∂ṙi

)
=

d

dt

(
∂T

∂ṙi

)
=

d

dt
(miri)

goes to the left-hand side of Newton’s equation and the potential energy term

∂L

∂ri
= −∂U

∂ri

to the right-hand side. �

Let ~q = (q1, . . . , q3n) be any coordinates in the configuration space of a system of
n mass points. Then, the evolution of ~q with time is subject to the Euler-Lagrange
equations:

d

dt

(
∂L

∂~̇q

)
− ∂L

∂~q
= 0

We refer to qi as the generalized coordinates, q̇i the generalized velocities,
∂L

∂~̇q
as

the generalized momenta pi,
∂L

∂~q
as the generalized forces Qi, and to

∫ t1
t0
L(~q, ~̇q, t) dt

as the action.

Definition 9.7. A cyclic coordinate qi is one for which
∂L

∂qi
= 0

Theorem 9.2.4. The generalized moment pi to a cyclic coordinate qi is conserved.

Proof. By Lagrange equation, ṗi =
dpi
dt

=
d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
= 0 �

9.3 Hamilton’s equations

We consider the system of Lagrange equations ~̇p =
∂L

∂~q
, where ~p =

∂L

∂~̇q
with a given

Lagrangian function L : Rn×Rn×R→ R which we will assume to be convex with
respect to the second argument ~̇q.

For a convex function f(x), we define its Legendre transform

F (p) = pf ′−1(p)− f(f ′−1(p)) (9.16)
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Theorem 9.3.1. The system of Lagrange equations is equivalent to the system of
2n first order equations, called the Hamilton equations

~̇p = −∂H
∂~q

~̇q =
∂H

∂~p
,

where H(~p, ~q, t) = ~p · ~̇q − L(~q, ~̇q, t) is the Legendre transform of the Lagrangian
function viewed as a function of ~̇q.

Proof. First, we check that H is the Legendre transform of f(~x) := L(~̇q).

f ′(xi) =
∂L

q̇i
=

∂

∂qi

(
1

2
miq̇i

2

)
= miq̇i = mix⇒ f ′−1(pi) = pi/mi = q̇i = xi

f(f ′−1(pi)) = f(xi) = L(q̇i)

Reconstructing for all components and applying ( 9.16) results the proposed H.

Now we check the equivalence: differentiating both separately:

dL =
∑
i

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i

)
+
∂L

∂t
dt

reexpressing the term

∂L

∂q̇i
dq̇i = pidq̇i = d(piq̇i)− q̇idpi

so that

dH = d

(
−L+

∑
i

piq̇i

)
=
∑
i

(
−∂L
∂qi

dqi + q̇idpi

)
− ∂L

∂t
dt

=
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
+
∂H

∂t
dt

and simply identifying differential base coefficients, applying Lagrange equations

∂H

∂qi
= −∂L

∂qi
= − d

dt

(
∂L

∂q̇i

)
= −ṗi

∂H

∂pi
= q̇i

∂H

∂t
= −∂L

∂t

�
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Corollary 9.3.1. Expanding the differential of H and applying Hamilton’s equa-
tions

dH

dt
=
∂H

∂~p
~̇p+

∂H

∂~q
~̇q +

∂H

∂t
=
∂H

∂~p

(
−∂H
∂~q

)
+
∂H

∂~q

(
∂H

∂~p

)
+
∂H

∂t
=
∂H

∂t

and so for an autonomous system H is constant.

We can introduce again for hamiltonian systems the symmetries point of view, a
particular case of the Noether’s Theorem: for every cyclic coordinate qi of H, there
is a correspondent constant coordinate pi:

Corollary 9.3.2.
∂H

∂qi
= 0 cyclic ⇒ ṗi =

∂H

∂qi
= 0 constant.

9.4 Liouville Theorem

Definition 9.8. The 2n-dimensional space with coordinates p1, . . . , pn; q1, . . . , qn is
called the phase space.

Definition 9.9. The phase flow is the one-parameter group of transformations of
phase space

gt : (~p(0), ~q(0))→ (~p(t), ~q(t))

for (~p(t), ~q(t)) the solution to Hamilton equation’s system.

The phase flow is clearly a group for the composition operation, corresponding
to the additive group of time (R,+): eg = g0, (gt)−1 = g−t and gt1 ◦ gt2 = gt1+t2 .

Theorem 9.4.1. The phase flow is volume preserving:

vol(gtD) = vol(D).

More generally, given a system of ordinary differential equations

~̇x = ~f(~x)

whose solution may be extended to the whole time axis. Let {gt} be its group of
transformations:

gt(~x) = ~x+ ~f(~x)t+O(t2), as t→ 0

Denote D(t) = gtD(0) the region, initially D(0), transformed by the phase flow gt,
and v(t) the volume of D(t).

We also introduce the divergence of a vector field ~f defined as

div(~f) = ~∇ · ~f =
∑
i

∂fi
∂xi

= Tr

(
∂fi
∂xj

)
ij

= Tr

(
∂ ~f

∂~x

)
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Theorem 9.4.2. If div(~f) = 0, then gt preserves volume: v(t) = v(0).

Proof.

Lemma 9.4.0.1. The rate of change of volume at time 0 is the integral of the
divergence along the initial region D(0).

(dv/dt)|t=0 =

∫
D(0)

div ~f d~x

Proof. By the Jacobian formula

v(t) =

∫
D(0)

∣∣∣∣∂gt(~x)

∂~x

∣∣∣∣ d~x
and

∂gt(~x)

∂~x
= I +

∂ ~f

∂~x
t+O(t2), as t→ 0

so

(dv/dt)|t=0 =

∫
D(0)

d~x
d

dt

∣∣∣∣∣I +

(
∂ ~f

∂~x
t

)∣∣∣∣∣ =(∗)

∫
D(0)

d~x

(∑
i

∂fi
xi

)
=

∫
D(0)

div(~f) d~x

, where for (∗) we have used the following lemma. �

Lemma 9.4.0.2. For a square matrix A we have det(I+ tA) = 1+ tT r(A)t+O(t2)

Proof. This is is left as an exercise in [8], here we use the characteristic polynomial
expansion

det(B − tI) = (−1)ntn + (−1)n−1Tr(B)tn−1 + . . .+ det(B), for B = −t2A
det(B − tI) = tndet(B/t− I) = tndet(−At− I) = (−t)ndet(I + tA)

det(I + tA) = (−1)nt−n((−t)n + (−t)n−1Tr(−t2A) + . . . + det(−t2A) = 1 +
tT r(A) + . . .+O(t2) �

Now that lemmas are proven, if the divergence vanishes, so does its integral. �

This is precisely the sufficient condition we shall check for hamiltonian systems:

We construct the vector ~z of 2n generalized coordinates concatenating ~q and ~p
satisfying the equation

~̇z = J ~∇~zH =: f(~z), for J =

(
0 I
−I 0

)
Now we can express the divergence from Hamilton’s equations

Proof.

div(~f) =
∂

∂~p

(
−∂H
∂~q

)
+

∂

∂~q

(
−∂H
∂~p

)
= 0

�
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9.5 Integrability

Definition 9.10. A function F is said to be a first integral of a system if its value
is preserved along the solutions of the system.

Definition 9.11. The Poisson bracket {F,H} of functions F and H given on a
symplectic manifold (M2n, ω2) [8] is the derivative of the function F in the direction
of the phase flow with Hamiltonian function H:

{F,H} =
d

dt

∣∣∣∣
t=0

F (gtH(x))

We use now the isomorphism between 1-forms and vector fields on a symplectic
manifold defined by

ω2(~u, Jω1) = ω1(~u)

which gives us that the velocity of the phase flow gtH is JdH. Consequently, the
Poisson bracket of the functions F,H is equal to the following

{F,H} = dF (JdH) = w2(JdH, JdF )

Now, in the canonical space R2n of coordinates (~p, ~q) endowed with the form
w2(~u,~v) = (J~u,~v) the Poisson bracket takes the form

{F,H} =
n∑
i=1

∂H

∂qi

∂F

∂pi
− ∂H

∂pi

∂F

∂qi
= ~FzJ ~Hz

Proposition 9.1. A function F is a first integral of a system with hamiltonian func-
tion H if and only if it commutes via Poisson Bracket with H. That is, {F,H} = 0
is identically equal to zero.

Proof. Expanding the differential and applying Hamilton equations

dF =
n∑
i=1

∂F

∂qi
q̇i +

∂F

∂pi
ṗi =

n∑
i=1

∂F

∂qi

∂H

∂pi
+
∂F

∂pi

(
−∂H
∂qi

)
= {F,H}

or in a more compact notation dF = ~Fz · ~̇z = ~FzJ ~Hz = {F,H} �

This motivates the following definition.

Definition 9.12. Two functions f1, f2 on a symplectic manifold are in involution if
their Poisson bracket is equal to zero. A set of functions {f1, . . . , fn} is in involution
if every pair in this set is in involution.

Theorem 9.5.1 (Liouville-Arnold Theorem). Consider a system of 2n-dimensional
phase space M , consider a set of functions F1 = H, . . . , Fn in involution. Consider
a level set of these functions

Mf = {x : Fi(x) = fi, i = 1, . . . , n}

Assume that the functions Fi are functionally independent on Mf , ie, the 1-forms
dfi, i = 1, 2, . . . , n, are linearly independent at each point of Mf . Then
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• Mf is a smooth manifold which is invariant under the phase flow with Hamil-
tonian H = F1.

• If the manifold Mf is compact and connected, then it is diffeomorphic to the
n-dimensional torus T n = S1 × . . .× S1 = {~ϕ = (ϕ1, . . . , ϕn) mod 2π}

• The phase flow with Hamiltonian H is

d~ϕ

dt
= ~ω

• Most importantly, the canonical equations with Hamiltonian H can be inte-
grated by quadratures.

10 Morales-Ramis-Simó Theorem

Next we will give the notion of integrability from Morales-Ramis-Simó theory. We
will assume the first integrals to be rational functions and the space M to be a
Zariski-open set of a complex projective space.

Definition 10.1. A system of linear ordinary differential equations

ξ̇ = Aξ (10.1)

with A ∈Mat(m,K) a matrix with coefficients on a differential field K, is said to be
integrable if its general solution can be obtained combining quadratures (integrals),
exponential of quadratures and algebraic functions.

Equivalently, if the Picard-Vessiot extension of K, L := K〈uij〉, differentially
generated by the coefficients uij of the fundamental solution matrix of ( 10.1), is
what is known as a Liouville extension.

Theorem 10.0.1. A linear differential equation is integrable if, and only if, the
identity component G0 of its Galois group G is a solvable group. In particular, if
the identity component is commutative, the equation is integrable.

Theorem 10.0.2. If the Hamiltonian system

ẋ = XH(x) (10.2)

is completely integrable with meromorphic first integrals in a neighbourhood of Γ,
the Riemann surface immersed in M defined by a particular solution that is not an
equilibrium point, then the identity component G0 of the Galois group of the first
order variational equation of ( 10.2) is commutative. In particular, its monodromy
group is virtually commutative.
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10.1 Variational Equations

For the sake of easing comparison, we stated the Morales-Ramis-Simó Theorem
next to the Liouville-Arnold Theorem. We will now define some necessary notions
concerning the variational equations and the idea behind the Morales-Ramis-Simó
Theorem.

Variational equations arise naturally from ordinary equations when studying the
behaviour of a flow on the tangent space around a point. Consider a system of
dimension n in its Cauchy standard form:{

ẋ = f(x)

x(0) = x0
(10.3)

After a time lapse t the initial point x0 will be transported in a motion tangent to
the flow f at each point. Now we ask about the evolution of a point close to x only
differing by a small vector ξ:

ẋ+ ξ̇ = (x+ ξ)̇ = f(x+ ξ) =(∗) f(x) +Df(x)ξ +O(‖ξ‖2), (10.4)

where at (∗) we used Taylor expansion. Cancelling terms from (10.3), we get the
first order variational vector equations :{

ξ̇ = Df(x)ξ

ξ(0) = ξ0
(10.5)

It is well known that the flow tangent vector is always a solution of equation (10.5):

˙f(x) =
f(x)

dt
= Df(x)

dx

dt
= Df(x)f(x)

For this reason, Poincaré sections are taken transversal to the flow and sometimes
only the normal part of the variational equations is considered.

To effectively analyse the motion of the vector ξ we can write it as a linear trans-
formation from its initial value

ξ(t) = A(t)ξ0 .

From (10.5) {
Ȧξ0 = ξ̇ = Df(x)ξ = Df(x)Aξ0

A(0)ξ0 = ξ(0) = ξ0 = Inξ0

since the definition of ξ0 is general, we can cancel it to obtain the first order varia-
tional matrix equations : {

Ȧ = Df(x)A

A(0) = In
(10.6)
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A(t) gives information about the evolution of any vector ξ0 into ξ(t) by flow f in
time t, that is the whole tangent space on x0. In algebraic terms, the columns
of A are the n linearly independent solutions of the first order variational vector
equations; starting at distinct canonical coordinates : the columns of the identity.

The same procedure of varying the initial conditions may be done at any order in
the following form: for a solution x of (10.3), we take{

x(t) = x0(t) + εx1(t) + ε2x2(t) + ε3x3(t) + . . .

x0 = x
(0)
0 + εx

(0)
1 + ε2x

(0)
2 + ε3x

(0)
3 + . . .

deriving,

∑
j≥0

ẋj(t)ε
j = ẋ(t) = f(x) = f

(∑
j≥0

xj(t)ε
j

)
= f

(
x0(t) + ε

∑
j≥0

xj(t)ε
j

)
=(∗)

= f(x0)

+Df(x0)(εx1 + ε2x2 + ε3x3 + . . .)

+
1

2!
D2f(x0)(ε

2(x1, x1) + 2ε3(x1, x2) + . . .)

+
1

3!
D3f(x0)(ε

3(x1, x1, x1) + . . .)

+ . . .

and identifying powers of ε leads to equations

ε0 : ẋ0 = f(x0) (10.7)

ε1 : ẋ1 = Df(x0)x1 (10.8)

ε2 : ẋ2 = Df(x0)x2 +
1

2
D2f(x0)(x1, x1) (10.9)

ε3 : ẋ3 = Df(x0)x3 +D2f(x0)(x1, x2) +
1

3
D3f(x0)(x1, x1, x1) (10.10)

Note that the successive objects Djf(x0) : (Rn)j → Rn are differential j-forms.

10.1.1 Idea behind Morales-Ramis-Simó Theorem

Consider two consecutive motions of the form

(1) ẋ = Ax, x ∈ Rn, A ∈Mn×n(R)

(2) ẏ = By, y ∈ Rn, A ∈Mn×n(R).

We integrate for (1) with time t: x(t) = eAtx0, and then (2) too:

y(t) = eBtx(t) = eBteAtx0 =? e(A+B)tx0,

which is correct only when [A,B] = AB −BA = 0.
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First integrals F,G induce flows of the motion of a point in a system with Hamil-
tonians F,G in time t, τ : ϕF (t), ϕG(τ), which commute if their Poisson Brackets do
0 = {F,G} := (∇F )TJn(∇G)T , see [8], page 211 about involution.

If we now take paths γi in complex time t ∈ γi ⊆ C between four points with
identical image by a solution z(t) of our system around some regular singularity of
z(t), the monodromy matrices Mγi obtained by integrating the variational equations
(at first order Ȧ = DFA,A(0) = I, or the group obtained at any order) form a
group describing the behaviour of flows along the image solutions z(γi) that return
to the same point z(γi(0)) modifying its neighbourhood structure. It is natural
to think that this subgroup of the Galois group of the equation, containing the
identity, shall be commutative: Mγ1Mγ2M

−1
γ1
M−1

γ2
= I.
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11 Example of Hamiltonian System

11.1 Integrable System

Consider a Hamiltonian in the canonical couples (xi, yi), i = 1, 2

H0(x1, x2, x3, x4) = F1 + νF2, F1 = x1y2− x2y1, F2 = (R2
1 −R2

2)/2 +R4
2/4 , with

ν > 0 a parameter and R2
1 = x21 + x22 , R2

2 = y21 + y22.

a) The Poisson bracket is {F1, F2} =
n∑
i=1

∂F1

∂xi

∂F2

∂yi
− ∂F1

∂yi

∂F2

∂xi
, where n = 2. We check

∂F1

∂x1
= y2,

∂F1

∂x2
= −y1, ∂F1

∂y1
= −x2, ∂F1

∂y2
= x1

∂F2

∂x1
= x1,

∂F2

∂x2
= x2,

∂F2

∂y1
= −y1 + y31 + y1y

2
2,

∂F2

∂y2
= −y2 + y32 + y2y

2
1

⇒ {F1, F2} = y2y1(R
2
2 − 1) + x2x1 + (−y1)y2(R2

2 − 1)− x1x2 = 0

We check integrability: the existance of a maximal set of first integrals that
commute with each other via the Poisson bracket and are functionally inde-
pendent almost everywhere.

The gradients of F1 and F2 are linearly independent vectors except for the set
{R2

2 − 1 = (x2
y1

)2 = (x1
y2

)2} of zero measure.

F1, F2 are indeed first integrals since {H,F2} = {F1 + νF2, F2} = {F1, F2} +
ν{F2, F2} = 0 + 0, and same for {H,F1} = 0.

b) The origin is a fixed point of complex saddle-type. We write the Hamilton-
Jacobi equations q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
ẋ1 = −x2 + νy1(R

2
2 − 1)

ẋ2 = x1 + νy2(R
2
2 − 1)

ẏ1 = −y2 − νx1
ẏ2 = y1 − νx2

Obviously, if all coordinates are zero, the flow is zero. The origin is a fixed
point. To examine its behaviour around the origin we’ll find the linear part
and study its matrix M . Let ~r = (q1, q2, p1, p2), we have a flow, independent of

the time, like ~̇r = ~f(~r) ≈ ~f(~0) +D~f(~r)|~0(~r −~0) = M~r, where Mi,j =
∂ṙi
∂rj
|~0 =

J4D
2H, with J2n =

(
0 In
−In 0

)
. Then M =


0 −1 −ν 0
1 0 0 −ν
−ν 0 0 −1
0 −ν 1 0

 =

−
(

J2 νI2
νI2 J2

)
To calculate its eigenvalues, by blocks, det(M − λI4) = det((−J2 − λI2)2 −

ν2I2) = det(

(
−λ −1
1 −λ

)2

− ν2I2) = det(

(
λ2 − (ν2 + 1) 2λ
−2λ λ2 − (ν2 + 1)

)
)
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= (λ2 − (ν + 1))2 + 4λ2 = 0⇔ λ2 = ±2λi+ ν2 + 1⇔ λ =
±2i±
√
−4+4(ν2+1)

2
=

±ν ± i
, a complex saddle. The corresponding eigenvectors form a base:
λ1 = +i+ ν → v1 = (−i,−1,+i,+1)

λ2 = +i− ν → v2 = (+i,+1,+i,+1)

λ3 = −i− ν → v3 = (−i,+1,−i,+1)

λ4 = −i+ ν → v4 = (+i,−1,−i,+1)

Those with eigenvalue positive real part correspond to the unstable manifold
W u: v1, v4, and those with negative real part, to the stable one W s: v2, v3.
However, in this case, the point doesn’t have an open neighbourhood homeo-
morphic to an open in R4 ( a manifold).

c) We see first that Fi(vj) = 0 for i = 1, 2 andj = 1, 2, 3, 4.
F1(v1) = (−i)1− (−1)i = 0

F1(v2) = i(−1)− 1i = 0

F1(v3) = −i1− 1(−i) = 0

F1(v4) = i1− (−1)(−i) = 0

,

F2 =
x21 + x22 − (y21 + y22)

2
+

(y1)
4 + (y2)

4 + 2y21y
2
2

4

F2(v1) =
(−i)2 + (−1)2 − i2 − 12

2
+

(−i)4 + (−1)4 + 2i212

4
= 0

Since vi = (±i,±1,±i,±1) and F2 depends on the square of its components,
it is zero for the rest of eigenvectors.

Since F1, F2 are first integrals, they will be constantly zero along the orbits
containing the origin, which form the unstable manifold and stable manifold
(backwards in time). Thus, both manifolds will be contained in the preimages
F−11 (0) ∩ F−12 (0). Next, we will see that they coincide.

Making a suitable change of coordinates,
x1 = R1 cos(θ1)

x2 = R1 sin(θ1)

y1 = R2 cos(θ2)

y2 = R2 sin(θ2)

, imposing F1 = 0, F2 = 0, for points not in the origin,

F1 = x1y2 − x2y1 = R1R2(cos(θ1) sin(θ2) − cos(θ2) sin(θ1)) = R1R2 sin(θ2 −
θ1) = 0⇔ θ2 = θ1 or θ2 = θ1 + π, a line in the angle plane.

F2 =
R2

1 −R2
2

2
+
R4

2

4
= 0⇔ R1 = ±

√
R2

2 −R4
2/2. This curve is the separatrix

of F2 in the radius plane of F1 = 0. We observe the typical structure of
Liouville-integrable problems on levels of F2 = c. For c < 0 we obtain two
center circles around (R2, R1) = (±1, 0), for c = 0, the separatrix, and for
c > 0 a larger ellipse containing it.
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Figure 1: Curves in the radius plane of unperturbed motion
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Figure 2: Orbit for F2 < 0

The orbits in (x1, x2, y1, y2) of the curves of the above figure lie on an Arnold
torus in R4. For example, for the curve of F2 < 0, we plot the points (x1, x2, y2)
and observe they form the intersection of a torus of R4 into R3. We also project
it into the plane (x1, x2) to observe its quadruple symmetry.

It is a common fact about the orbits of F1 = 0, F2 6= 0 plotted in the position
space that they traverse the region R1 = 0, but, unlike the separatrix, never
the origin R1 = R2 = 0, that is, they return to the positions origin with
non-zero velocity. This fact as well as the bounded range of R1, R2 gives rise
to these symmetries observed.

An orbit of F2 < 0 exhibits a triple symmetry (see figure below).
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Figure 4: Orbit for F2 = 0

Finally, we plot an orbit F1 = F2 = 0 lying on the separatrix: it starts at
origin position with R2 =

√
2 modulus velocity, goes all the way up to Rmax

1

through the stable manifold and back to R1 = 0, this time with modulus
velocity R2 = 0, a fixed point.

We proceed to show that there is no fixed point inside the separatrix apart
from the origin, so the orbits do not get ”stuck” along it, but they follow it
back to the origin, concatenating the unstable with the unstable manifolds.

We will check this fact seeing that radial velocities are never zero except for
the origin.

2R2dR2 = 2y1dy1 + 2y2dy2 ⇒ ∂R2

∂yi
= yi/R2 ⇒ ~∇~yR2 = ~y/R2

Ṙ2 = ∂R2

∂y1
ẏ1 + ∂R2

∂y2
ẏ2 = ~∇~yR2 · ~̇y = 1

R2
(y1(−y2 − νx1) + y2(y1 − νx2))

= −ν
R2

(x1y1 + x2y2) = −νR1 cos(θ2 − θ1) = ∓νR1 = 0⇔ R1 = 0

By the same procedure, Ṙ1 = ν(R2
2 − 1)R2 cos(θ2 − θ1) = ±ν(R2

2 − 1)R2 =
0⇔ R2 = ±1, 0 but (R1, R2) = (0,±1) doesn’t belong to the curve. The only
solution for Ṙ1 = Ṙ2 = 0 is the origin.
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Next, we give an explicit solution for the separatrix solution. We already
know the curves in the angle plane and radius plane, but now we will give it
in terms of time. Using

ẏ1 = −∂H
∂x1

= −(y2 + νx1)

ẏ2 = −∂H
∂x2

= −(−y1 + νx2)

θ2 = arctan(
y2
y1

)

, we have

θ̇2 =
ẏ2y1 − y2ẏ1
y21 + y22

=
(y1 − νx2)y1 − (y2 + νx1)y2

y21 + y22
=
νF1 +R2

2

R2
2

= 1

So simply θ2(t) = t+ β, with β an initial phase, and θ1(t) = ±θ2(t).
For the radius, we recoverṘ2 = ∓R1

R1 = R2

√
1− R2

2

2

⇒ dR2

R2

√
1− R2

2

2

= dt

and so

R2(t) =

√
2

cosh(νt)
, R1(t) =

√
2

cosh(νt)

√
1− 1

cosh2(νt)
=

√
2 sinh(νt)

cosh2(νt)

choosing necessarily positive radius sign and so θ1(t) = −θ2(t)
If we use a Poincaré section defined by the maximum of R2, which is

√
2,

then the intersection with the manifolds is at the single point of the curve
(R1, R2) = (0,

√
2), that is, x1 = x2 = 0, R2

2 = y21 + y22 = 2.

11.2 Small Perturbation

Now we introduce a perturbation to H = H0 + εy51, which will only affect the

field of ẋ1 =
∂H

∂y1
=
∂H0

∂y1
+ 5εy41.

We compute the image of the circle around the origin (y1, y2) = ρ(cos(θ), sinh(θ))
by the Poincaré map in the unstable manifold , with xi = −yi, i = 1, 2, and
stable manifold with xi = yi, i = 1, 2.

For the unperturbed case, the circle shape would be preserved. However,
the perturbation modifies the image from a circle into a twisted circle in the
positions x1, x2. Velocities y1, y2 stay in a circle of radius

√
2.
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-Π -
Π

2

Π

2

Π
Θ

-0.004

-0.002

0.002

0.004

R1

U HΘ =Θ 1 L-R1

S HΘ =Θ 2 L

Figure 6: Radius difference along angle

There is an evident symmetry between them, which we can visualize with the
curve of the radius R2 =

√
y21 + y22 difference between stable and unstable

along the angle θ2 = arctan(y2/y1).

11.3 Energy Splitting via Melnikov Integral

Let us now give a measure of the splitting from the perturbation H = H0 + εy51.
We know that for the unperturbed case the unstable and stable manifolds coincide
WU = W S and that they intersect the Poincaré section (R1, R2) = (0,

√
2) in

a circle each. With the perturbation, these circles break. However, the energy
H0 = F1 + νF2 is still constant so the variations of F1 and F2 are related via

∆H = ∆F1 + ν∆F2 + ∆(εy51) = 0⇒ ∆F2 = −∆F1

ν
− ε

ν
∆(y51)

Now, since the perturbation only affects the variable ẋ1 by a new term 5εy41

ẋ1 =
∂H

∂y1
=
∂H0

∂y1
+ 5εy41

then it will cause a variation to the quantity F1 = x1y2 − x2y1 by a term 5εy41y2:

Ḟ1 = ẋ1y2 + x1ẏ2 − ẋ2y1 − x2ẏ1 = 0 + 5εy41y2

Let z = (x1, x2, x3, x4)
T and let z0 the solution of H0, then the solution to H0 + εH1

will be of the form z0(t) + εz1(t) + ε2z2(t) + . . .
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We now integrate the variation of F1 along the stable manifold, that is, going
back in time from (R1, R2, θ1, θ2) ≈ (0,

√
2,−β, β):

∆F
(
1W

S) =

∫ −∞
t=0

5εy41y2|z0+εz1 dt = 5ε

∫ −∞
t=0

y41y2|z0 dt+O(ε2)

For the unstable,

∆F
(
1W

U) = 5ε

∫ ∞
t=0

y41y2|z0 dt ,

so the total variation, or splitting, is

∆F
(
1W

U)−∆F
(
1W

S) = 5ε

∫ ∞
−∞

√
2 cos4(t+ β) sin(t+ β)

cosh5(νt)
dt = Γ(ε, ν, β) ,

known as a Melnikov integral. It has a singularity at cosh(νt) = 0⇔ cos(−iνt) = 0

⇔ −iνt =
π

2
+ kπ, giving tk =

iπ

2ν
+
ikπ

ν
the first of which is t0 =

iπ

2ν
.

To compute Γ, we proceed by breaking the power, ignoring ν,

cos4(t) =

(
eit + e−it

2

)4

= (e4it + 4e2it + 6 + 4e−2it + e−4it)
1

24

=
2 cos(4t) + 8 cos(2t) + 6

16
=

cos(4t) + 4 cos(2t) + 3

8

We also observe that lim
t→∞

cosh(νt) = ∞ making the integral vanish on its bound-

aries.

Γ is an integral along the real line, but it can be seen as a term of the integral
along the closed curve γ around the singularity t0 reaching a sufficiently large (take
limits after) segment around 0 of R, say [−a, a], vertical segments [±a,±a + 2t0]
and another horizontal segment [−a+ 2t0, a+ 2t0].

We can apply the residue theorem for a closed rectifiable curve γ avoiding the
singularities a1, . . . , an with index Ind(γ, ak) if ak lies inside γ:∮

γ

f(z) dz = 2πi
n∑
k=1

Ind(γ, ak) Res(f, ak)

for our case, the only singularity being t0 of trivial index one. Once we know the
residue,
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Figure 8: Melnikov integral Γ

− i sin(β+ iπ
2ν )((ν2+25)(9ν2+25) cos(4β+ 2iπ

ν )+4(9ν4+130ν2+217) cos(2β+ iπ
ν )+3(9ν4+90ν2+145))

192ν5

one finds the relation between the integrals along both horizontal segments by
noting that

cos

(
t+

iπ

ν

)
= cos (t) cosh

(π
ν

)
− sin(t) sinh

(π
ν

)
where the first term compensates by symmetry when integrating, so there is some

proportionality relation by factor sinh
(π
ν

)
→ e−

c
ν → 0 rapidly as ν → 0. This

behaviour is known as practical stability: the system doesn’t notice perturbations
for relatively small values of the parameter ν. See [10] for details on the subject.

Back to our calculations, the F1 variation gives a Melnikov integral of exact value

Γ =
π(2(ν2+1)(9ν2+1) sin(β)sech( π

2ν )+27(ν2+1)(ν2+9) sin(3β)sech( 3π
2ν )+(ν2+25)(9ν2+25) sin(5β)sech( 5π

2ν ))
384ν5

In the following graphic we can see its behaviour with β ∈ [0, 2π] and ν ∈
[0.01, 0.5]. It is clear now that it vanishes for ν = 0 or β = kπ, it is antisymmetric
around β = π and symmetric between β ∈ [0, π] around β = π/2. It is also ex-
tremely small for ν < 0.2, because it behaves negative-denominator-exponentially:
Γ ∝ e−

π
ν due to the previously mentioned factor sinh(π/ν).

43



11.4 Variational Equations

11.4.1 Setting of the problem

We consider the solution z(t) of ẋ = F (x) in the separatrix F1 = F2 = 0 for the
unperturbed case, and its first variational equation Ȧ = Df |z(t)A, A(0) = I4 where

Df =


0 −1 ν(3y21 + y22 − 1) + 20εy31 ν(2y1y2)
1 0 ν(2y1y2) ν(y21 + 3y22 − 1)
−ν 0 0 −1
0 −ν 1 0


The unperturbed case, ε = 0, allows us to greatly simplify Df :

Df = −
(

J2 ν(I2 −M)
νI2 J2

)
, with M =

(
y21 + y22 2y1y2
2y1y2 y21 + y22

)
+ 2

(
y21 0
0 y22

)
Polar coordinates (R, θ) = (R2, θ2) = (

√
y21 + y22, arctan(y2/y1) substitution leads

to

M = R2

(
1 sin(2θ)

sin(2θ) 1

)
+ 2R2

(
cos2(θ) 0

0 sin2(θ)

)
Using

{
1 + 2 cos2(θ) = 2 + cos(2θ)

1 + 2 sin2(θ) = 2− cos(2θ)
we obtainM = R2

(
2 + cos(2θ) sin(2θ)

sin(2θ) 2− cos(2θ)

)
Starting at A = I4 and integrating Ȧ according to the variational equation along
closed paths γi : [0, 2π] → C on complex time avoiding (around) the singularities

of the solution z(t) located at the imaginary time points ±t0 = ±πi
2ν

should give

us the monodromy group of matrices Mγi =
∮
γi
dA =

∮
γi
Ȧdt =

∮
γi
Df(t)A(t)dt

defined up to homotopy class of γi.

If this evolution of A from the identity matrix at γi(0) to Mγi according to the
matrix (vector) field defined by Df is not commutative with respect to paths γi, γj
of different homotopy class, we will conclude that we found an obstruction to inte-
grability.
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Figure 9: Monodromy skecth

11.4.2 Monodromy group commutativity

For our case, we choose a circular path γ1 with center t0, starting at the origin in
counter clockwise direction. The parametrization is

t(τ) = γ1(τ) = t0+‖t0‖eiτ−π/2 =
πi

2ν
−i π

2ν
eiτ =

πi

2ν
(1−eiτ ) = t0(1−eiτ ), τ ∈ [0, 2π]

so the variational equation transforms into

dA

dτ
=
dA

dt

dt

dτ
= t0ie

iτ Ȧ =
π

2ν
eiτDf(z(t(τ)))A(t(τ)).

We compute the integral numerically with a Runge-Kutta method with indepen-
dent variably τ using step size 10−6. The submatrix M of the matrix Df(z(t(τ))) is

proportional R2
2 ∼ sech2(νt), which takes large values quickly in the vicinities of

πi

2ν
,

making our numerical calculations impossible. For this reason, we have chosen the

path circles to be the largest possible: of radius ‖to‖ =
π

2ν
. We choose ν = 1/2 to

make F1 visible enough, so now ‖t0‖ = π and the differential equation to integrate
is just

dA

dτ
= πeiτDf (z(t(τ)))A(t(τ)) .

Note that we should also consider the terms of M cos(2θ2(t(τ))) and sin(2θ2(t(τ)))
at τ = π → t = 2πi reaching cosh(4π) ∼ sinh(4π) ∼ 105.

For ε = 0, we obtain a norm
∥∥Aγ1(2π) − I4∥∥ = 5.1 · 10−8

and a determinant det(Aγ1(2π)) = 1 + 4.1× 10−9 + 3.7 · 10−9i,
sufficiently close to the identity, thus commuting with anything, since the inverse
path is γ−11 (t(τ)) = γ1(t(−τ)) and will have the inverse monodromy matrix A−1γ1 =

I−14 = I4. Surely, at τ = 2π, Aγ1Aγ2A
−1
γ1
A−1γ2 = I4Aγ2I4A

−1
γ2

= I4, irrespective of Aγ2 .
No obstructions to integrability were found, as we expected.

We plot the evolution of the real and imaginary part of the entries of A:
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Figure 10: Evolution along τ of A(γ1(τ)) with ε = 0
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Figure 11: A(γ1(τ)) as complex curves with ε = 0

Now, we shall proceed identically for the perturbed case with parameter ε = 10−10.

Reducing the notation Mi = Aγi(2π), we obtain a norm ‖M1 − I4‖ = 144 and a
determinant det(M1) = 1+2.6×10−6+2.1 ·10−5i, indicating that M1 went far from
the identity but the transformation was volume-preserving as expected, discarding
suspicions on big numerical errors.

We plot the evolution of Aγ1 , only curves in C with complicated patterns.
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Figure 12: A(γ1(τ)) as complex curves with ε = 10−10

M1 =

 0.998826 − 46.8898i 24.6789 + 0.622651i 110.411 − 0.00285502i −0.786424 + 30.6693i
13.0177 − 0.332734i 0.998622 + 5.18694i 0.784054 + 30.6692i −6.54117− 0.000924993i

19.9134 − 0.00042518i −0.264263 + 10.4751i 1.00104 + 46.8898i −13.0177− 0.333772i
0.264092 + 10.4751i −4.11271− 0.000259718i −24.6789 + 0.622305i 0.999689 − 5.18695i


For the second path, γ2(t(τ)) = γ2(−t(τ)), we obtain a matrix M2 with the same
determinant and difference with identity norm as M1. In fact,

M2 =

 0.998826 − 46.8898i −24.6789− 0.622651i −110.411 + 0.00285502i −0.786424 + 30.6693i
−13.0177 + 0.332734i 0.998622 + 5.18694i 0.784054 + 30.6692i 6.54117 + 0.000924993i
−19.9134 + 0.00042518i −0.264263 + 10.4751i 1.00104 + 46.8898i 13.0177 + 0.333772i

0.264092 + 10.4751i 4.11271 + 0.000259718i 24.6789 − 0.622305i 0.999689 − 5.18695i


We compute M−1

2 M−1
1 M2M1 6= I4 with norm ∼ 108, very far from commuting.

However, many observations can be made at the sight of these matrices, which
satisfy a number of symmetries, reflecting the monodromy group structure. If we

define C =


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 and denote ◦ the entry-wise matrix product,

then the following rules hold:

1. M2 = M1 ◦ C. That is, M2 is M1 switching sign out of the two diagonals.
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2. Furthermore, each Mi satisfies itself

{
Re(M−1

i ) = Re(Mi) ◦ C
Im(M−1

i ) = −Im(Mi) ◦ C
, i = 1, 2.

3. From the two above rules,

{
M−1

1 = M̄2

M−1
2 = M̄1

. Since matrix inversion and com-

plex conjugation commute, M−1
2 M−1

1 M2M1 = M̄1M̄2M2M1.

4. The pair of matrices B1 = M1M2 and B2 = M2M1 satisfy the same rules as
the pair (M1,M2)

5. The two matrices
M1 ±M2

2
are disjoint projections of M1, orthogonal by

matrix product.

This set of rules provides information about the monodromy group structure, which
is itself interesting, although our main goal is to observe that it is not Abelian and
poses an obstruction to integrability.

12 Conclusions

Along with this project, we have successfully connected concepts like Galois Theory
and physical symmetries, all through the scope of Dynamical Systems. There is
much more we can learn at a theoretical level of both mathematical and physical
parts of this recent field of study. However, this tools have proven useful to shed
light on the historically unanswered problem of integrability by quadratures. We
have investigated a dynamical system Hamiltonian problem and designed our own
original strategy to apply the theory with satisfactory results.

48



References

[1] Juan J. Morales-Ruiz, “Differential Galois Theory and Non integrability of
Hamiltonian Systems”, July 11, 2002.
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