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Abstract

This work is an overview on n-person cooperative games in Game Theory, the mathemat-
ical theory of interactive decision situations characterized by a group of agents, each of
whom has to make a decision based on their own preferences on the set of outcomes. These
situations are called games, agents are players and decisions are strategies. By focusing on
Cooperative Game Theory, we analyze concepts such as coalition formation, equilibrium,
stability, fairness and the most important proposed solution concepts.

Keywords: Cooperative Game Theory, Cooperative game, Shapley value, nucleolus, core,
bankruptcy problem, airport problem, indices of power, voting games.

Resum

Aquest treball tracta sobre els jocs n-personals cooperatius en Teoria de Jocs, la branca de
les matemàtiques que estudia i analitza les interaccions entre una sèrie d’agents que han
de prendre una decisió, segons les seves preferències sobre el conjunt de possibles resultats
dels jocs. En centrar-nos en la Teoria de Jocs Cooperatius, analitzarem conceptes com la
formació de coalicions, l’equilibri, la just́ıcia i les propostes de conceptes de solucions més
importants.
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Chapter 1

Introduction

Game Theory is the mathematical theory of interactive decision situations characterized by
a group of agents —each of whom has to make a decision—, the set of possible outcomes
and the preferences that each agent has on that set of outcomes. These situations are
called games, agents are players and decisions are strategies.

In Robert J. Aumann’s —one of the most active Game Theory researchers— words, “Game
Theory is optimal decision making in the presence of others with different objectives”. One
can argue that does not sound too far away from our everyday lives or that such a generic
definition will have a broad range of applications.

Game Theory is concerned with both cooperative and noncooperative models, with the
latter being the most studied of the two branches. Although Noncooperative Game Theory
is able to include cooperation within its reach, the complexity of the description of some
situations with a mathematical model has led game theorists to regard the necessity of
building cooperative models as an imperative one.

Both of these fields study strategic aspects of cooperation and competition among the
players. In Noncooperative Game Theory, players are assumed to choose their actions
individually, selfishly seeking to realize their own goals and to maximize their own profit.
While this does not mean that players are necessarily adversarial to other players, they are
not interested in other players’ welfare either. In contrast, in Cooperative Game Theory
we deal with coalitions and allocations, since groups of players will be willing to join forces
and to allocate the benefits derived from their cooperation.
Analytically, the real distinction between the two branches of Game Theory is that the first
one specifies various actions that are available to the players while the second describes
the outcomes that result when the players come together in different combinations.

This is what Aumann himself had to say about the idea hidden behind Game Theory:
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CHAPTER 1. INTRODUCTION 4

“Cooperative theory starts with a formalization of games that abstracts away altogether
from procedures and [...] concentrates, instead, on the possibilities for agreement. [...]
There are several reasons that explain why cooperative games came to be treated sepa-
rately. One is that when one does build negotiation and enforcement procedures explicitly
into the model, then the results of a non-cooperative analysis depend very strongly on the
precise form of the procedures, on the order of making offers and counter-offers and so on.
This may be appropriate in voting situations in which precise rules of parliamentary order
prevail, where a good strategist can indeed carry the day. But problems of negotiation are
usually more amorphous; it is difficult to pin down just what the procedures are. More
fundamentally, there is a feeling that procedures are not really all that relevant; that it is
the possibilities for coalition forming, promising and threatening that are decisive, rather
than whose turn it is to speak. [...] Detail distracts attention from essentials. Some things
are seen better from a distance; the Roman camps around Metzada are indiscernible when
one is in them, but easily visible from the top of the mountain.”

Thus, following this line of thought, this work starts from the basics and gradually gains
some perspective in order to observe the whole picture.

1.1 Motivation: a glance at the cooperative side of Game
Theory

Although Game Theory often provides us with problems concerning conflict, there are
plenty of situations in which cooperating is way more beneficial than fighting among
ourselves. Besides, even in a me-first capitalist society like the one we live in nowadays,
the objective of every interaction is not always to get the most money, and even when
that would be the case, we may have social behaviour rules that prevent us from being
completely selfish. Indeed, concepts like fairness or equality may arise when we have
to decide how to divide the benefits obtained from cooperation. Those benefits are not
always as obvious as when we are making coalitions while bargaining: evolution can also
show us that cooperation within an individual’s family to secure the survival of one’s
genetic particularities is what determines the sex ratios in some populations of insect
species.

The question throughout this work is not why to cooperate as much as how to do so, i.e.
we will ask ourselves questions such as: what are the agreements that rational players will
reach to divide the benefits obtained from cooperation? How should we divide the costs
of building a road or an airport between the agents that will use it? What are the stable
solutions for those problems? We are talking about games known as general-sum games,
since it is natural that for one to gain in utility in a zero-sum game, someone must be
losing and that could never reinforce cooperation between rational players.
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As we mentioned, in Game Theory, a game is a tool to model any situation in which there
are players that interact (be it people, animals or computers), by taking decisions in order
to attain a certain goal. This mathematical description of conflict began in the twentieth
century thanks to the work of John Von Neumann, Oskar Morgenstern and John Nash
and one of its first motivations was to help military officers design optimal war strategies.
This first motivation clearly falls under Noncooperative Game Theory, therefore being the
primary focus of Game Theory. In Noncooperative Game Theory, each player wants to
maximize his own payoff and does not consider cooperating with other players. Nowadays,
however, Game Theory is applied to a wide range of disciplines, like Biology or Political
Science, but above all, to Economy. Many of those applications regard cooperation and
therefore fall in the category of Cooperative Game Theory. We will see some of those
applications throughout this thesis.

Nash argued that Cooperative and Noncooperative Game Theory are complementary ways
of approaching the same problem. Furthermore, Nash defended that if a cooperative so-
lution concept predicts the result of a rational agreement on how to play the game, then
a noncooperative analysis of the enlarged negotiation game should yield the same an-
swer. That is to say, noncooperative Game Theory provides a way of testing the predic-
tions which Cooperative Game Theory produces —as easily applied predictions of rational
agreements—.

Game Theory assumes that players have a completely rational behaviour. By rational,
we mean that players know what is best for them, want to obtain it and think ahead
of the game. Therefore, players will prefer some outcomes rather others and have to
choose the strategies from their set of strategies that will lead to them. We can represent
this by defining utility functions for each player, which could be obtained, according to
the Theory of revealed preference —which relies on the assumption that players want to
maximize utility—, by assuming that preferences are revealed by the players’ habits.

1.2 What is utility?

1.2.1 A first example

Example 1.2.1. A couple decide to go to a new shop in town to buy some goods they
need for the family Christmas dinner they are hosting that evening. When it is time for
them to pay, both players (the seller and the couple) have to decide whether to trust each
other or not: if the seller gives the couple the goods without having been paid, he faces the
risk of them leaving without paying; and the same goes for the couple if they pay before
having been handed the goods. To make matters worse, as the owner of the shop is new
in town, the players cannot know if they can trust each other.
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Although it may look like we drove ourselves into a dead end, we can work our way out of
it. Naturally, both players want to get (or save) as much money as they can, but if they
are not too short-sighted, they will know better than to swindle the other player, for if
they do, they will face bigger losses than what they may win in this little game:

• If the owner does not give them the goods after being paid, he may earn a reputation
as an dishonest shopkeeper and, hence, he will not make any profit of his business.

• If the couple do not pay for the goods they are given, they risk the owner telling the
rest of the town shopkeepers not to trust them in the future, forcing them to go out
of town to buy anything they need.

Then, in this example it is clear that money is not, in general, the only concept that comes
into play to determine each player’s utility in a game. 4

1.2.2 Ordinal and linear utility

Since utility is not necessarily representing the monetary gain in every situation, we can
characterize players’ preferences by two relations between the events of the set of alterna-
tives S: strict preference � and indifference ∼.

We will find these two relations by defining the weak preference relation < ⊂ S×S, which
is a transitive, reflexive, antisymmetric and complete binary relation.1

Since A < B ⇐⇒ A � B or A ∼ B, we can equivalently say that, for each A, B ∈ S,
A � B or B � A or A ∼ B.

Definition 1.2.1. In particular, we define the indifference relation ∼ ⊂ S × S by:
A ∼ B ⇐⇒ A < B and B < A. We can see then that ∼ is a reflexive, symmetric and
transitive binary relation.

Definition 1.2.2. On the other hand, we define � by: A � B ⇐⇒ B 6< A and see that
it is an asymmetric and transitive binary relation.

Definition 1.2.3. A pair of a set of alternatives A and a weak preference � is called a
decision problem.

Definition 1.2.4. Given a decision problem (A, �), where A is a countable set of alter-
natives, we can define a utility function u representing �, u : A −→ R s.t., for each pair
a, b ∈ A, a � b ⇐⇒ u(a) ≥ u(b).

1By complete, we mean that for each A, B ∈ S, either A < B or B < A.
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Remark 1.2.1. In particular, a ∼ b ⇐⇒ u(a) = u(b); and a � b ⇐⇒ u(a) > u(b).

This is called ordinal utility, since it only depicts which outcome a player prefers over
another one. However, when possible, we can also define a linear utility function ū : X → R
representing � in (X,�) which tells us not only which are the preferred outcomes for each
player but how much each player wants them.

If � is independent2 and continuous3 , there exists a utility function representing � in
(X,�). Besides, it is unique up to positive affine transformation.

As we said, we can see in the following example that a player’s utility may not equal the
monetary value of his outcome:

Example 1.2.2. In a situation in which someone is asked to choose between getting 1¤
with a probability of 100% or getting 2¤ with 50% probability,

• a risk averse player (for example, with u(x) =
√
x) would choose the first option.

• a risk neutral player (for example, with u(x) = x) would be indifferent between both
options.

• a risk prone player (for example, with u(x) = x2) would choose the second option.

4

We generally assume that players are risk neutral, but one could change this in order to
model some situations in a more detailed manner.

1.3 Two is company, three is a crowd

Example 1.3.1. Imagine there are two people (players 1 and 2) who have been given 1$
to share if, and only if, they can reach an agreement on how to split them.

When bargaining, for example in this game (named the 2-player Divide-the-Dollar game,
which we will see more of in the coming chapters, see Example 3.4.2), there is a set of all
the outcomes of the possible agreements: in this case, it is

{(x, y) ∈ R2 : x, y ≥ 0, and x+ y ≤ 1},

where x and y are the payoffs for players 1 and 2, respectively.
Without getting into too much detail here, the Coarse Theorem states that a rational

2Given a convex decision problem (X,�), � is such that, for each x, y, z ∈ X and each λ ∈ (0, 1],
x � y ⇐⇒ λx+ (1− λ)z � λy + (1− λ)z.

3Given a convex decision problem (X,�), � is such that, for each x, y, z ∈ X such that � y � z, there
is λ ∈ (0, 1) satisfying y ∼ λx+ (1− λ)z.
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agreement will be a pair (x∗, y∗) on the frontier of the set —i.e. a pair (x∗, y∗) such that
x∗ + y∗ = 1, naturally, since for every other point (x′, y′) not in the frontier (that is to
say, x′ + y′ < 1) there is δ > 0 such that x′ + y′ = 1− δ and, thus, (x′ + δ/2, y′ + δ/2) is a
deal from the set that both players would prefer—.

The way negotiation is built —and each player’s ability to negotiate— will determine in
which way the 1$ will be split, but it is quite obvious that the most fair division would be
for each player to get 0.5$. It is also quite clear that once the two players have agreed on
that division, they will not move from it. Thus, (0.5, 0.5) is stable.

Now, a third player —named Charles— saw the previous two players —Alice and Bob—
already playing Divide-the-Dollar and decided to join them. If we ask the three of them
to reach an agreement, the only fair and stable outcome is (1/3, 1/3, 1/3) —let’s forget
dollars can only be divided into cents here—.

But, what if we ask them to reach a majority of players that agree on a division? Here,
the whole functioning of the game changes —as we will see in the following sections, the
characteristic function that defines each game are different—. For a start, not all the
players are needed for the dollar to be awarded, which puts them all in a very precarious
situation. If a (1/3, 1/3, 1/3) division was proposed by player 1, player 2 could offer him
a (1/2, 1/2, 0) which both would prefer. However, player 3 could then offer a preferable
(3/5, 0, 2/5) to player 1, which could be followed by (4/5, 1/5, 0) and then players 2 and 3
could agree on a (0, 1/2, 1/2) division, which would take us back to the beginning of the
game —or an equivalent situation—, from where we could go on endlessly.

Thus, we can see that although there is, indeed, a fair solution to this game either two
or three players are playing it, not always such a solution —or any other— is stable for
n = 3. 4

Remark 1.3.1. Following that logic, we will dedicate Chapter 2 to two-player games
before addressing n-player games in which n ≥ 3 in Chapter 3.



Chapter 2

A particular case of N-player
games: two players

2.1 What are games in Game Theory?

First things first, we need to take our first step by defining games before we can start
walking down this avenue. One can quickly see that we are all quite familiar with the
idea of games —even if we never heard of them in a mathematical environment—, since
they are not all that different from the parlor games we are used to play: there is a set of
players who have to make choices (following some rules) which, together with the chance
moves 1, determine the outcome. At the end of the game, a payoff is given to each player
depending on the outcome.

Strategic games, or games in normal form, are characterized by the set of available strate-
gies to the players and the corresponding payoff functions. In general, as we have discussed,
players’ payoffs need not be money but more general preferences according to personal in-
clinations, solidarity or even unselfishness. Whatever the origin from a player preferences
may be, once they start playing, players are assumed to be totally rational —meaning
that they try to maximize their own payoff and can think in advance of the game—.

Definition 2.1.1. An n-player strategic game with set of players N := {1, 2, ..., n} is
a pair G := (A, u) where A and u are the sets of strategies and the payoff functions,
respectively. In particular:

1A chance move is one which is not made by any of the players of the game. One clear example are the
dealer’s moves when dealing the cards in the games of Poker or Blackjack.

9
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• A :=

n∏
i=1

Ai, with Ai being the nonempty set of strategies for each player i ∈ N .

• For each i ∈ N , ui : A→ R is the payoff function for player i.

Then, u :=
n∏
i=1

ui is the function that assigns, to each player, the payoff that they

get for a given strategy profile a ∈ A.

Remark 2.1.1. The number of players in the set N , |N |, is denoted by a lower case n.
In this chapter, |N | = n = 2.

We must also take into account that players are assumed to make their decisions simulta-
neously.

In practical terms, we can define a game in normal form by the n-dimensional array of
n-vectors (a matrix with pairs of real numbers, in the case n = 2) representing the payoffs
each player obtains depending on their strategies.

Remark 2.1.2. On the other side, it is quite useful to represent some games in extensive
form, which consists in a game tree in which the players’ decisions take the game to a ter-
minal vertex and the payoff function assigns a payoff to each player depending on which
terminal vertex the game ends in.
This representation of games is particularly helpful when players are not making their de-
cisions simultaneously or when the information they have at the moment of making them
is not complete.

Example 2.1.1. The game of matching pennies:
In this basic game, two players have a coin and decide to pick either heads or tails. In
fact, it would not make a difference whether it is players themselves or chance who decides
which side of the coin to show, but let’s assume it is the players’ decision so that we can
consider heads or tails as their strategies. Then, if both players’ coins show the same side
(the pennies match), Player 1 wins. If, on the contrary, the pennies do not match, it is
Player 2 who wins.

There are many alternative versions of this game —which we will refer to again—, such
as Odds and evens.

4
Remark 2.1.3. Example 2.1.1 is a constant-sum game, since the payoffs of both players
always add up to the same. Moreover, since that constant value of the sum of both players
is zero, we say that it is a zero-sum game.

Definition 2.1.2. Given an n-player game Γ, we say that a strategy n-tuple (σ∗1, σ
∗
2, ..., σ

∗
n)
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is in equilibrium if, for any player i ∈ N = {1, ..., n} and any strategy σ̂i belonging to the
set of available strategies to player i, Si, the payoff function satisfies:

πi(σ
∗
1, ..., σ

∗
i−1, σ

∗
i , σ
∗
i+1, ..., σ

∗
n) ≥ πi(σ∗1, ..., σ∗i−1, σ̂i, σ

∗
i+1, ..., σ

∗
n)

Therefore, given such a strategy, no player has any motivation to change his strategy since
no change in his strategy will lead to a better payoff for him. In this case we say that such
a strategy profile is a Nash equilibrium.

Remark 2.1.4. One must be conscious that this situation is not possible in every game,
although they always exist in finite games of perfect information, in which nothing that
has happened in the game so far is hidden from the players when they make a move (and
there are no chance moves).

Example 2.1.2. In the game of matching pennies, no strategy is a Nash equilibrium.
4

2.2 Antagonistic games

Having laid the very foundations of the building, we can have a look at the simplest of
games: two-person zero-sum games, also called antagonistic games.

Zero-sum games receive that name because the sum of the payoffs of all the players is
always zero. In particular, when the number of players n is 2, one gains the same payoff as
the other loses. Then, this is the last type of games that could foment cooperation —that
is, unless one player wants the other to win, which would have to result in a change of the
utilities and therefore, into a different game which would most likely not be zero-sum—.
Thus, we will only use them to define a couple of essential concepts such as mixed strate-
gies and maximin strategies.

Definition 2.2.1. We talk about mixed strategies when each player i can choose each
strategy aik ∈ Ai with a probability pk, for k = 1, . . . ,m = |A|. This probabilities must
satisfy

∑m
k=1 pk = 1.

In this case, the payoff is the expectation of the resulting outcome.

Although it is one of the most important theorems in Game Theory, The Minimax The-
orem is not a central part of our work here. Thus, we are not going to prove it.

Theorem 2.2.1. Every bimatrix game is strictly determined.

For its proof, see Owen (1968) [4].
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2.3 2-person general-sum games

Example 2.3.1. Battle of the sexes
A couple want to spend some leisure time together on the evening, but on the morning,
when trying to decide where to go, they cannot reach an agreement and both leave home
without having decided whether they are going to the theater or to the cinema and with no
options to communicate with each other. Both of them want to meet each other, but each
has different preferences over where they would rather be. The game is then represented
by the following matrix:

Cinema Theatre
Cinema (2, 4) (0, 0)
Theatre (0, 0) (4,2)

Table 2.1: Values of the payoffs in the Battle of the Sexes game.

where (Cinema, Cinema) and (Theatre, Theatre) are the two equilibrium pairs. However,
each player prefers a different equilibrium situation.

If player 1 plays a mixed strategy X = (x, 1− x) and player 2 plays Y = (y, 1− y), their
expected payoffs will be:

P1 = 2xy + 4(1− x)(1− y) = 6xy − 4x− 4y + 4

P2 = 4xy + 2(1− x)(1− y) = 6xy − 2x− 2y + 2

However, if player 1 goes to the theatre twice as often as to the cinema (i.e. plays X ′ =
(1/3, 2/3), resulting in x = 1/3), the expected payoff for player 2 is independent of his
strategy, making him indifferent between chossing one or the other:

x = 1/3 =⇒ P2 = 2− 2/3 = 4/3

The same happens if player 2 plays Y ′ = (2/3, 1/3)

y = 2/3 =⇒ P1 = 4− 8/3 = 4/3

Thus, we have found an equilibrium situation.
4

As we have just seen, a finite two-person general-sum game can be expressed as an m× n
matrix (aij , bij), where aij and bij are the payoffs to players A and B, respectively, when
they choose strategies i and j, respectively. In the case of two players, these are called
bimatrix games.

If the game was zero-sum, the matrix for player 1 would already characterize the game
since the payoffs for player 2 are always the opposite to those of player 1.
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2.3.1 The prisoners dilemma

The prisoners dilemma (PD) is a landmark example of a game in Game Theory because
of the seemingly contradictory payoffs obtained from its solution.

Example 2.3.2. Two criminals who are caught by the police while commiting a crime are
immediately put into separate rooms so that they cannot communicate with each other.
The police cannot convict them for all their crimes with the evidence they have at their
disposal at the time, so they need some help from the criminals themselves. Then, this is
what the police tells the criminals:

• If one of them confesses and the other does not, the one who confessed will be set
free and the other will serve 10 years in prison.

• If none of them confesses, they will both serve 1 year in prison.

• If both of them confess, they will both serve 6 years in prison.

The matrix with the players’ payoffs depending on their decisions looks like this:

coop defect
coop (-1,-1) (-10, 0)

defect (0, -10) (-6,-6)

Table 2.2: Values of the payoffs in the Prisoners Dilemma.

where the pairs represent each player’s utility (the number of years each one will spend
in prison) in every situation and we have labelled the strategies as coop (with your parter
by not confessing) or defect (your partner by confessing).

Let’s look at the game from the point of view of each player. Since the game is symmetric
for both players, let’s assume we are player 1 without loss of generality.
One should reason as follows:

• In case Player 2 plays coop, I should play defect, since 0 is a better payoff than -1.

• In case Player 2 plays defect, I should also play defect, because -6 is a better payoff
than -10.

Then, it is clear that I should always play defect, because it is the best strategy in every
situation —it is the best reply to any of my opponent’s strategies. Therefore, a rational
player will always play defect because defect dominates coop in this game.

This —which is perfectly fine from an individual perspective— is a recipe for disaster,
because since both of them are going to make a decision independently and Player 2
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is also rational, he will analogously find that defect is also his best reply to any of the
strategies available to Player 1 and, therefore, he will always play defect. It becomes clear
that (defect, defect) is an equilibrium situation, one none of the players has any incentive
to unilaterally deviate from. But what is equally obvious that if they both defect, their
utilities are much worse that if they both cooperated, as we can see in the matrix below.


coop defect

coop -1,-1 −10, 0

defect 0,−10 -6,-6


The question then is: would not the players be better off by cooperating between them?
And the answer is —naturally— yes, indeed. This game is one of the most common
sources of misinterpretations, in part because of the story used to introduce it and its
moral implications. Nevertheless, it is a clear example that cooperation can be the best
response from a selfish point of view. The problem in this case, however, is that we cannot
argue that they would prefer the other to spend as least time in prison as possible, that
they would be punished for betraying their partner or that both of them would choose
the same strategy without changing the game, etc. because the two players make their
decisions simultaneously and independently —or else we are talking about a different game
like the twins game, in which both players are actually the same one, or a PD with different
payoffs—.

Naturally, if both players could agree on a strategy before getting into those rooms —and
stick to it no matter what— the result would have been much better for them. This would
be an obvious example in which cooperation is the rational answer, but unfortunately for
the players this game does not allow such a thing.

Remark 2.3.1. Although our goal in this essay is not about focusing on this issues, it is
worth noting that there are other aspects of the game to take into account, such as:

• The particular values of each players’ payoffs.

Namely, the number of years in prison each player will have to serve in each situation:

coop defect
coop (R,R) (S, T)

defect (T, S) (P, P)

Table 2.3: General values of the payoffs in the Prisoners Dilemma, with T > R > P > S.

• The number of times N that the players will play the game if this is iterated.
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The iteration of a game like PD could enforce the urgency for players to cooperate, since
they know that it is way more beneficial to find themselves in a (coop, coop)
Despite that, if N is finite and known by the players, in the last iteration of the game it is
rational for both players to play defect since their actions cannot be punished any further.
Therefore, since both players will know that, they will also play defect in the previous
iteration and, repeating this argument, they will play defect in every iteration from the
very first one.

This game is also applicable to many other situations, like:

• In sports, two athletes have to make a decision whether taking a performance-booster
drug, which gives them an advantage A over athletes not taking the drug but also
has legal and medical dangers D, or not.


not take take

not take 0, 0 −A, A−D

take A−D, −A −D, −D


Unfortunately, their rival goes through exactly the same rational analysis. As a re-
sult, if the advantages are greater than the dangers, both of them take performance-
enhancing drugs and neither gains an advantage over the other. Instead, they will
only face the dangers.
If they could just trust each other, they could refrain from taking the drugs and
maintain the same non-advantage status, without any legal or physical danger.

• Another classic example, the nuclear weapons race, :


disarm arm

disarm 0, 0 −I, S − C

arm S − C,−I −C,−C


where S stands for superiority, I for inferiority and C are the costs of maintaining
the weapons.

S > C, and I > C > 0

In this case, both countries would end up building their weapons just in fear of facing
an inferiority situation if the other decides to arm.

4
Theorem 2.3.2. Every bimatrix game has at least one equilibrium point.

Proof. The interested reader is referred to Owen [4] for its proof.
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2.4 Allowing players to cooperate: The Bargaining Prob-
lem

In case the two players of a game are allowed to cooperate between them, meaning that they
can make agreements before choosing their strategies, correlate their mixed strategies or
transfer utility between them (although not necessarily linearly), we are facing a Bargaing
Problem (BP), one in which the two players need to agree on which point from the set of
obtainable outcomes satisfies both of them.

Since the case for n = 2 is a critical step to the BP in its general form, we will address
this matter on Section 3.3.1.



Chapter 3

N-person games: cooperation and
solutions

So far, we have studied games with only two players. However, in our general study of
cooperative games, we will need to address the general n-person games, so it is time to
shift our focus into n-person games, with n ≥ 3.

We need to distinguish between n-person noncooperative games and n-person cooperative
games, which are the type of games we will concentrate on.

3.1 N-person noncooperative games

Theorem 3.1.1. Every finite n-person noncooperative game has at least one equilibrium
n-tuple of mixed strategies.

Proof. Proof can be extended from the proof of Theorem 2.3.2 to this case.

Although the computation of equilibrium n-tuples is much more complex than the one for
equilibrium pairs, there is no great difference, in general, between the theory of noncoop-
erative n-person games and noncooperative two-personal general-sum games.

Hence, we will quickly move on to their cooperative counterparts.

17
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3.2 N-person cooperative games

Definition 3.2.1. In an n-person game, we define the set of players N := {1, 2, . . . , n}.

Opposite to what we have just seen about noncooperative games, n-person cooperative
games are not a generalization of the two-person case. Here, we find the concept of coali-
tions, which are basically the subsets of N . The essence of n-person games is not the
randomization of the players’ choices but the formation and stability of these aforemen-
tioned coalitions.

Definition 3.2.2. Coalitions are the nonempty subsets S ⊂ N , with |S| the number of
players in it.

Thus, the approach in cooperative games is different, since players can commit to behave
in a socially optimal way. The question is then how to form coalitions and how to share
the benefits obtained from this cooperation. Therefore, solutions are now rules to choose
how to allocate utility according to some concepts like fairness or equity that we have not
introduced thus far. However, stability will still be of vital importance to choose these
allocations —vectors x ∈ Rn, where n = |N | is the number of players of the game—.

Depending on whether transferences of utility between players are restricted or not, we
need to distinguish between nontransferable utility games (NTU-games) and transferable
utility games (TU-games), respectively.

3.3 Nontransferable Utility games

As we mentioned, side payments are forbidden in this type of games, meaning that players
cannot freely split the gains by means of their cooperation. However, this does by no
means imply that players cannot reach an agreement.

Definition 3.3.1. We say that a set A ⊂ R|S| is comprehensive if it satisfies that, for
each pair x, y ∈ R|S|, if x ∈ A and y ≤ x, then we have y ∈ A.1

The comprehensive hull of a given set is the smallest comprehensive set that contains it.

Definition 3.3.2. An n-player nontransferable utility game with set of players N is defined
as a pair (N,V ), where V is a function that assigns a set V (S) ⊂ R|S| to each coalition
S ⊂ N . We assume that V (Ø) = {0}, by convention.2

1In some occasions (e.g. Def. 3.3.1, 3.3.7, 3.3.9), for the sake of brevity, we will write expressions such
as y ≤ x for x, y ∈ Rm —which is an abuse of notation— to avoid writing yi ≤ xi, for each i = 1, 2, . . . ,m.

2In the same sense as in the previous footnote, we denote the point (0, 0, ..., 0) by {0} to simplify
notation.
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Remark 3.3.1. For any S ⊂ N such that S 6= Ø, the set V (S) ⊂ R|S| is nonempty, closed
and comprehensive. Besides, there is vi ∈ R s.t. V ({i}) = (−∞, vi], for each i ∈ N .
Moreover, the set V (S) ∪ {x ∈ R|S| : for each i ∈ S, xi ≥ vi} is bounded.

It is now time to formally define one of the most basic concepts of n-player games: allo-
cations.

Definition 3.3.3. An allocation is the vector x = (x1, . . . , xn) ∈ Rn of the payoffs xj for
every player j ∈ N .

Note that R|S| is the set of outcomes that the players in coalitions S can obtain by them-
selves.

Definition 3.3.4. We say that an allocation x = (x1, . . . , xn) is feasible —and, therefore,
that it belongs to the set of feasible allocations F— if there is a partition {S1, . . . , Sk} of
N such that, for each j ∈ {1, . . . , k}, there is y ∈ V (Sj) satisfying that, for each i ∈ Sj ,
yi = xi.

3.3.1 Bargaining problems

In general, as we saw in Example 1.3.1, there is a set of outcomes available when the
two players act together. Choosing a utility function for each player, this set of outcomes
can be mapped into a subset of the Eulidian space R2. The image of this set under the
mapping will be closed, bounded above and convex. The problem then becomes a question
of how to choose a point from this set S that will satisfy both players.

Definition 3.3.5. A set S ⊂ R2 is convex if, for any a, b ∈ S and λ, µ any real numbers
in [0, 1], we have λa+ µb ∈ S.

Remark 3.3.2. The set of all feasible allocations —the feasible set, denoted by F—, is
the comprehensive hull of a compact and convex subset of Rn.

Allocations in F represent the utilities players get from the outcomes of the available
agreements. Then, for any (u, v) ∈ F , as we said, it is possible for players 1 and 2 to
obtain utilities u and v, respectively.
In these games, players have to reach some type agreement on which allocation to choose.
If the players do not reach an agreement, the allocation that will be obtained is the dis-
agreement point d.
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Definition 3.3.6. Thus, we define an n-player bargaining problem, with set of players N ,
by (F, d) for the F , d aforementioned above. We must note that the disagreement point d
is an allocation in F and that (it is assumed) there exists x ∈ F s.t. x > d.

Definition 3.3.7. Given two allocations x, y ∈ F , we say that x is Pareto dominated by
y (or that y Pareto dominates x) if x ≤ y and x 6= y.
Equivalently, y Pareto dominates x if, for each i ∈ N , xi ≤ yi and at least one of these
inequalities is strict.

This allows us to define efficient allocations:

Definition 3.3.8. We say that an allocation x ∈ F is efficient or Pareto efficient if there
is no allocation in F that Pareto dominates x.

Having defined this idea of efficiency, we may now define rules to find solutions for n-player
bargaining problems.

Remark 3.3.3. The set of n-player bargaining problems is noted by BN .

Definition 3.3.9. Given a game (F, d) ∈ BN , we define the set Fd := {x ∈ F : x ≥ d}.

Definition 3.3.10. Allocation rules are maps ϕ : BN → RN s.t., for each (F, d) ∈ BN ,
ϕ(F, d) ∈ Fd.

One can also define some appropriate properties that an allocation rule must satisfy.
An important example is the Nash solution —which can be generalized to the n-player
case—, the only allocation rule that satisfies Pareto Efficiency (EFF), Symmetry (SYM),
Covariance with positive affine transformations (CAT) and Independence of irrelevant
alternatives (IIA).
Let’s take a look at these properties:

• Pareto Efficiency (EFF):
An allocation rule ϕ satisfies EFF if, for each (F, d) ∈ BN , ϕ(F, d) is a Pareto
efficient allocation.

• Symmetry (SYM):
An allocation rule ϕ satisfies SYM if, for each symmetric3 bargaining problem
(F, d) ∈ BN and each pair of players i, j ∈ N , we have ϕi(F, d) = ϕj(F, d).

3A bargaining problem (F, d) ∈ BN is said to be symmetric if, for each permutation π of the elements
of N, dπ = d and, for each x ∈ F , xπ ∈ F .
Note that, given x ∈ Rn and a permutation π, xπi := xπ(i), for each i ∈ N .
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• Covariance with positive affine transformations (CAT): the choice of utility
should not affect the allocation rule.
An allocation rule ϕ satisfies CAT if, for each (F, d) ∈ BN and each positive affine
transformation g 4, we have ϕ(g(F ), g(d)) = g(ϕ(F, d)).

• Independence of irrelevant alternatives (IIA):
An allocation rule ϕ satisfies IIA if, for each pair of bargaining problems (F, d), (F ∗, d) ∈
BN such that F ∗ ⊂ F , if ϕ(F, d) ∈ F ∗, then ϕ(F ∗, d) = ϕ(F, d).

Proposition 3.3.4. Given (F, d) ∈ BN , there is a unique z ∈ Fd that maximizes the
function gd representing the product of the gains of all the players at x with respect to the
disagreement point, if x > d,

gd(x) :=
∏
i∈N

(xi − di)

Proof. There is a maximum of gd in Fd for gd is a continuous function and Fd is compact.
The fact that it is unique can be proved by the convexity of Fd.

Definition 3.3.11. The Nash solution (NA) selects the unique allocation in Fd that
maximizes the product of the gains of the players with respect to the disagreement point.
This means that, given a bargaining problem (F, d) such that gd(z) = maxx∈Fd g

d(x) =
maxx∈Fd

∏
i∈N (xi − di), the Nash solution is NA(F, d) := z.

Theorem 3.3.5. The Nash solution is the only allocation rule for n-player bargaining
problems that satisfies EFF, SYM, CAT and IIA.

Proof. Checking that NA satisfies the four axioms is simple. Proof that it is the unique
can be found on [5].

Remark 3.3.6. None of the axioms used to characterize NA were unnecessary.

Another interesting solution is the Kalai-Smorodinsky solution (KS), which is inspired by
the definition of the utopia point:

Definition 3.3.12. Given a bargaining problem (F, d) ∈ BN , the utopia point is the
vector b(F, d) ∈ RN , which is defined by bi(F, d) = maxx∈Fd xi. Therefore, the utopia
point represents the aspirations of the players, the largest utility each player can get in
Fd.

4g : Rn −→ Rn s.t., for each i ∈ N , there are ai, bi ∈ R with ai > 0 such that gi(x) = aixi + bi, for each
x ∈ Rn.
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Definition 3.3.13. Given a bargaining problem (F, d) ∈ BN , we define the Kalai-
Smorodinsky solution, KS, by:

KS(F, d) := d+ t̄(b(F, d)− d)

where t̄ := max{t ∈ R : d+ t(b(F, d)− d) ∈ Fd}.

Remark 3.3.7. t̄ is well defined by the compactness of Fd.

Besides the previous properties, we now also need to consider:

• Individual Monotonicity (IM):
An allocation rule ϕ satisfies IM if, for each pairlie of bargaining problems (F, d), (F ∗, d) ∈
BN such that F ∗d ⊂ Fd and bj(F, d) = bj(F

∗, d) for each j different from a given
i ∈ N , then ϕ(F ∗, d) ≤ ϕ(F, d).

Proposition 3.3.8. KS is the only allocation rule for 2-player bargaining problems that
satisfies EFF, SYM, CAT and IM.

Remark 3.3.9. For n ≥ 3, there is no solution for n-player bargaining problems that
satisfies EFF, SYM and IM at the same time.

Example 3.3.1. Let’s consider the 3-player bargaining problem (F, d) where d = (0, 0, 0)
and F is the comprehensive hull of {(x1, x2, x3) ∈ R3 : x2

1 +x2
2 +x2

3 ≤ 1} —the bargaining
problem version of the Divide-a-Dollar game with 3 players. Here, since both NA and KS
satisfy EFF and SYM, the obtained allocation will be (1/3, 1/3, 1/3) in both cases. 4

Example 3.3.2. What if one of the players was told he could keep 1/2 if the three of
them cannot reach an agreement —in which case, d′ = (0, 0, 1/2)—?
We obtain NA(F, d′) = (1/6, 1/6, 2/3) = KS(F, d′). 4

Example 3.3.3. What if one of the players decided that under no circumstances did he
want to get more than 0.3?
Now, F is the comprehensive hull of {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 ≤ 1} ∩ {x3 ≤ 0.3}.
Thus, we obtain: NA(F ′, d) = (7/20, 7/20, 6/20) and KS(F ′, d) = (10/23, 10/23, 3/23).

4

From where we observe that the main difference between the two is that KS is more
sensible to players’ aspirations.
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3.4 Transferable Utility games

All cooperation, such as correlated strategies and side payments, is permitted, which makes
this type of games less general, but easier to analyze and, therefore, much more widely
studied. This is due to the main difference between NTU and TU-games, which is the fact
that in TU-games, given a coalition S and an allocation x ∈ V (S) ⊂ R|S| enforced by the
players in S, any allocation that can be obtained from x by transferring utility among the
players in S is also in V (S). Thus, we can characterize v(S) simply by a single number,
the worth of coalition S, v(S). For each possible coalition S, we define the value of a
coalition v(S) as the largest payoff guaranteed to be available to be shared amongst the
players that form the coalition.

Definition 3.4.1. The worth of a coalition S, v(S), is defined as v(S) := maxx∈V (S)

∑
i∈S xi.

By convention, v(Ø) = 0.

Definition 3.4.2. The characteristic function of an n-person game with set of players N
is a function v : 2N −→ R which assigns, to each S ⊂ N , a real value corresponding to
the maximin value for S of the 2-player game played by S and N\S. Thus, v is a function
that assigns, to each coalition S ⊂ N , its worth v(S).

Therefore, we shall study the characteristic function of games instead of their normal form.
Besides, we will identify the game with their characteristic functions. Then, an n-person
TU-game with set of players N is given by (N, v), being v the characteristic function of
the game. We often refer to the game (N, v) simply by v.5

Once we assume —or choose— a utility such that it can be transferred with a 1:1 ratio,
what is interesting to find is the utility that each coalition can obtain. However, let’s see
some properties which can characterize TU-games first.

3.4.1 Classifying games

Definition 3.4.3. If the characteristic function of an n-person game v is such that, for any
S, T ⊂ N with S∩T = Ø, we have v(S∪T ) ≥ v(S) +v(T ), we say that v is superadditive.

Remark 3.4.1. We denote the set of n-player games by GN and the set of superadditive
TU-games by SGN .

5Note that a TU-game (N, v) can be seen as an NTU-game (N, v) if we define, for each coalition S ⊂ N
s.t. S 6= Ø, V (S) := {y ∈ R|S| :

∑
i∈S

yi ≤ v(S)}.
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Games whose characteristic function is superadditive are called proper games, opposite to
improper games —whose characteristic function does not satisfy superadditivity—. This
superadditivity property is what gives players a real incentive to cooperate. 6

Example 3.4.1. Let a game (N, v) with N = {1, 2, 3} and v such that v(1) = v(2) = 0.1,
v(3) = 0.2, v(1, 2) = 0.2, v(1, 3) = v(2, 3) = v(1, 2, 3) = 1.
Since v(1, 2, 3) < v(1, 3) + v(2), v is not superadditive. 4

In proper games, it is then natural to assume that the grand coalition N will form, which
makes us shift our focus from looking at which coalitions will form to finding out how to
allocate v(N) between the players. We must wait a little longer still, since we need to take
a look at some more properties that define games before that:

Definition 3.4.4. If v ∈ GN is s.t., for each player i ∈ N and each coalition S ⊂ N \ {i},
v(S ∪ {i}) ≥ v(S) + v({i}), we say that v is weakly superadditive.

Definition 3.4.5. Let v ∈ GN s.t., for each player i ∈ N and each coalition S ⊂ N \ {i},
v(S ∪ {i}) = v(S) + v({i}). In this case, we say that v is additive.

In particular, for each S ⊂ N , v(S) =
∑
i∈S

v({i}).

Definition 3.4.6. We say that a game v ∈ GN is monotonic if, for each pair S, T ⊂ N
s.t. S ⊂ T , we have that v(S) ≤ v(T ).

Definition 3.4.7. A game v ∈ GN is zero-normalized if v({i}) = 0, for each i ∈ N .

Definition 3.4.8. If a game v ∈ GN is zero-normalized and monotonic, we say that it is
zero-monotonic.

Theorem 3.4.2. A game v ∈ GN is weakly superadditive if and only if it is zero-
monotonic.

Proof. (i) v zero-monotonic =⇒ v weakly superadditive.
Let S ⊂ N and i ∈ N such that i 6∈ S. Then, since v is zero-monotonic, v(i) = 0,
then:

v(S) + v(i) = v(S) ≤ v(S ∪ {i})

Thus, v is weakly superadditive.

(ii) v weakly superadditive =⇒ v zero-monotonic.

6That is the reason for us basically studying proper games in this work.
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Let S, T ⊂ N such that S ⊂ T . Then, there is k ∈ N such that k ∈ T \ S. Thus,

v(T ) ≥ v(T \ {j}) + v(j)

Then, if T \ {j} = S, v(S) ≤ v(T ) and if S ⊂ T \ {j}, in which case, by induction
v(S) ≤ v(T \ {i}) ≤ v(T ). Whatever the case, we would already have that v is
monotonic.
However, by iteration, given S ⊂ T ⊂ N and {j1, ..., jm} the set of players in T \ S,
we obtain

v(T ) ≥ v(S) +
k=m∑
k=1

v({ik})

which is equivalent to the definiton of zero-monotonicity in this situation.

Definition 3.4.9. Let v ∈ GN be a game such that, for any coalition S ⊂ N , v(S) +
v(N \ S) = v(N). Then, we say that v is a constant-sum game.

Definition 3.4.10. Given an n-person TU-game v ∈ GN , an imputation is a vector
x = (x1, x2, . . . , xn) such that:

• it is efficient :
∑
i∈N

xi = v(N)

• it is individually rational : xi ≥ v({i}), for all i ∈ N .

Remark 3.4.3. We denote the set of all imputations of a game v by I(v). As we have
seen, this is the set of all the efficient and individually rational allocations.

Since for any imputation x, the grand coalition is formed, the question then becomes:
which of all imputations from I(v) will be obtained?

Proposition 3.4.4. The set of imputations of any superadditive game is nonempty.

Proof. Let v be a superadditive game and x an allocation such that xi = v({i}). It is
obvious then that x satisfies the second condition from Definition 3.4.10. Then, since v is
superadditive:

v(N) ≥ v(N \ {i}) + v({i}) ≥ ... ≥
∑
i∈N

v({i})

Hence,
v(N)∑

i∈N
v({i})

≥ 1
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Let y be an allocation such that yi = v(N)∑
i∈N v({i})xi = v(N)∑

i∈N v({i})v({i}). Then,

(i) yi = v(N)∑
i∈N v({i})xi ≥ xi = v({i}), for all i ∈ N .

(ii)
∑
i∈N

yi =
∑
i∈N

v(N)∑
i∈N

v({i})
xi =

v(N)∑
i∈N

v({i})

∑
i∈N

xi =
v(N)∑

i∈N
v({i})

∑
i∈N

v({i}) = v(N).

For games v with more than one allocation in I(v), an allocation will need to be stable in
order to be obtained as a solution of the game. Since allocations are already individually
rational, no player will individually block an allocation in I(v). But with players being
capable of forming coalitions, stability requires an analogous concept regarding coalitions.

Definition 3.4.11. Given a game v ∈ GN , we say that an imputation x ∈ RN is coali-

tionally rational if, for each S ⊂ N ,
∑
i∈S

xi ≥ v(S).

Remark 3.4.5. It was already obvious that no player would accept any payoff lower than
the minimum each of them could obtain without cooperating. Now, also, we can see that
stability also requires that no coalition can enforce a different imputation to the one ob-
tained.
This leads us to look for those imputations that are also coalitionally rational and, hence,
to the concept of the core, which we will study in the following section.

Definition 3.4.12. Now, we say that a game is essential if it satisfies: v(N) >
∑
i∈N

v({i}).

Otherwise, v(N) =
∑
i∈N

v({i}), since by superadditivity we had v(N) ≥
∑
i∈N

v({i}). In this

case, we say the game is inessential and becomes of no interest to us here because there
would only be one allocation in I(v): x ∈ Rn s.t. xi = v({i}).

Definition 3.4.13. Two games u, v are isomorphic if there exists a 1-1 map f from I(u)
onto I(v) such that, for x, y ∈ I(u), x dominates y if, and only if, f(x) dominates f(y).

Since this is not a simple way of observing whether two games are isomorphic, we have
an auxiliary result.

Definition 3.4.14. We say that two games v, v̄ are S-equivalent if there are k > 0 and

a1, . . . , an ∈ R s.t., for each S ⊂ N , v̄(S) = k · v(S) +
∑
i∈S

ai.
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Theorem 3.4.6. Let u, v be two S-equivalent games. Then, u and v are isomorphic.

Proof. See Von Neunmann & Morgenstern (1964).

Remark 3.4.7. The converse of this theorem, while true, is not quite as interesting and
is lengthy to prove, see Kuhn (1970).

Definition 3.4.15. We say that a TU-game v ∈ GN is in (0, 1)–normalization if it satis-
fies that v({i}) = 0, for all i ∈ N , and v(N) = 1.

Theorem 3.4.8. For any essential game v ∈ GN , there is only one (0,1)–normalized
game v∗ that is S-equivalent to v.

Proof. Let v be a game such that v(N) >
∑

i∈N v({i}). First, let’s prove its unicity.
We are going to do so by assuming its existance: then, let v∗ be a game such that
v∗(S) = kv(S) +

∑
i∈S ai.

Then, for each i ∈ N , 0 = v∗({i}) = kv(S) +
∑

j∈{i} aj = kv({i}) + ai.
Thus, αi = −kv({i}). Hence, the values for ai are unique. Besides,

1 = v∗(N) = kv(N) +
∑
j∈N

aj = kv(N)−
∑
j∈N

kv({j}) = kv(N)− k
∑
j∈N

v({j}) 6= 0

Therefore, k = v(N)∑
j∈N v({j}) .

Therefore, we have proved the uniqueness and found the corresponding values. Thus, we
have finished.

Remark 3.4.9. Thus, we can choose a game in (0,1) normalization to represent the cor-
responding equivalence class of games. This way, the value v(S) of a coalition tells us its
strength (what the players inside it gain by forming it).

Definition 3.4.16. We say that a game v is symmetric if v(S) only depends on the num-
ber of elements in S.

Example 3.4.2. Divide a million:
Three brothers are left one million dollars as inheritance from a distant relative, provided
that the majority of them can agree on how to share them.
Thus, this situation can be described as a TU-game (N, v) with N = {1, 2, 3} and v such
that v(S) = 0 if S has only one player and v(S) = 1 if S has at least two players.

This is an example of a symmetric TU-game. Later on, we will be able to see in which
ways can they divide the money. 4
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3.4.2 Simple games

Definition 3.4.17. We say that an n-player TU-game v ∈ GN is a simple game if

• v is monotonic

• v(S) ∈ {0, 1}, for all S ⊂ N

• v(N) = 1

Remark 3.4.10. We denote the set of n-player simple games by SN .

Definition 3.4.18. The set W := {S ⊂ N : v(S) = 1} contains the winning coalitions of
a simple game v.

Definition 3.4.19. The minimal winning coalitions of a simple game v, Wm := {S ∈W :
for each T ∈W , if T ⊂ S then T = S}.

Definition 3.4.20. Given a simple game v ∈ SN , we say that j is a veto player in v if
we have v(N \ {j}) = 0.

Example 3.4.3. The Glove Game:
In this situation, we have 3 players who have one glove out of the same pair: two of them
have the left glove (let’s say they are Player 2 and Player 3) and one of them has the right
one (Player 1). They can only sell the gloves as a pair.
Thus, v(1) = v(2) = v(3) = v(2, 3) = 0 and v(1, 3) = v(2, 3) = 1, meaning that Player 3 is
a veto player in this game.

4
Definition 3.4.21. A game v in (0, 1) normalization is a simple game if, for each coalition
S ⊂ N , v(S) is either 0 or 1.

Definition 3.4.22. A weighted majority game is a simple game v in which each player

has a nonnegative weight pi and there is a quota q such that
∑
i∈N

pi ≥ q.

In such a game,

v(S) =

1 if
∑
i∈S

pi ≥ q

0 otherwise.

We will analyze a couple of examples (4.1.2 and 4.1.3) of real-life weighted majority games
in politics when we study voting games in subsection 4.1.1.
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Now it is time to introduce one of the most important concepts of Cooperative Game
Theory: the core of a game, which presents high requirements regarding stability.

3.5 The Core

Definition 3.5.1. The core of a game v, C(v), is the set of all n-vectors x ∈ RN satisfying:

(i)
∑
i∈S

xi ≥ v(S), for all S ⊂ N .

(ii)
∑
i∈N

xi = v(N)

Equivalently, C(v) :=
{
x ∈ I(v) : for each S ⊂ N,

∑
i∈S

xi ≥ v(S)
}
⊂ I(v).

That is to say, the core is the set of all efficient (ii) and coalitionally rational (i) allocations
—known as core allocations—.
Now, we define a concept of unstability that will have a lot to do with the idea behind the
core.

Definition 3.5.2. Given a game v ∈ GN , a nonempty coalition S ⊂ N and two imputa-
tions x, y ∈ I(v), we say that y dominates x through S if:

• for each i ∈ S, yi > xi

•
∑
i∈S

yi ≤ v(S)

This is, an allocation y dominates another allocation x through a certain coalition S if y
is better than x for every member of S and those assigned payoffs are attainable for the
members of S.

Definition 3.5.3. We say that x dominates y if there is a coalition S 6= Ø such that x
dominates y through S.

Definition 3.5.4. We call x an undominated imputation of v if there is no y ∈ I(v) that
dominates it.

Since a dominated imputation can be blocked by some coalition (and will be, in fact), a
stable coalition should be undominated. As we are going to see, this is the case for core
allocations.
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The set of all payoff profiles of a game to which no objections can be made (i.e. the set of
all payoff profiles for which there is no coalition that can enforce an alternative payoff that
all its members prefer) is, as we are immediately going to see, the set of all undominated
imputations of the game and is called the core of the game.

Proposition 3.5.1. Given a game v ∈ GN , any x ∈ C(v) is undominated.

Proof. Given any x ∈ I(v), let’s suppose there is an allocation y ∈ I(v) that dominates x.
This is, we are supposing there is a nonempty coalition S ⊂ N such that y dominates x
through S, satisfying the conditions we just saw in 3.5.2.
Then, we have:

v(S) ≥
∑
i∈S

yi >
∑
i∈S

xi ≥ v(S),

which is a contradiction. Thus, we have finished.

Remark 3.5.2. What’s more, if v is superadditive, C(v) is the set of undominated im-
putations of v.

Proposition 3.5.3. Let v ∈ SGN , then C(v) = {x ∈ I(v) : x is undominated} ⊂ I(v).

Proof. We want to prove that any imputation outside the core is dominated: for any
imputation x ∈ I(v) \ C(v), there is S ⊂ N such that

∑
i∈S xi < v(S). Let y ∈ RN s.t.

for each i ∈ N, yi =


xi +

v(S)−
∑

j∈S xj

|S|
if i ∈ S

v(i) +
v(N)− v(S)−

∑
j∈N\S xj

|N \ S|
if i 6∈ S

We have that v(S) −
∑

j∈S xj > 0, for v is superadditive. Hence, y belongs to the set of
imputations I(v) and dominates x through S.

Remark 3.5.4. The previous proposition states that C(v) = I(v) ∩ U(v), where U(v) is
the set of undominated imputations of the game.

Example 3.5.1. Three players together can obtain 1$ to share, any two players can
obtain 0.8$, and one player by herself can obtain zero.
Then, N = {1, 2, 3} and v(1) = v(2) = v(3) = 0, v(1, 2) = v(2, 3) = v(3, 1) = 0.8,
v(1, 2, 3) = 1. Which allocations form the core of this game?
From what we have just seen, in order for a coalition x to be in the core of v, the payoffs
xi of each player i ∈ N need to satisfy:
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• x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

• x1 + x2 ≥ 0.8

• x1 + x3 ≥ 0.8

• x2 + x3 ≥ 0.8,

• x1 + x2 + x3 = 1

Which is not feasible, since combining the last three equations, we would obtain that
x1 ≤ 0.2, x2 ≤ 0.2 and then x1 + x2 ≥ 0.8 would not be satisfied. Thus, the core of this
game is empty. 4

Example 3.5.2. A similar case can be made for Example 3.4.2, where one would find the
core of the Divide a million game to be empty as well. 4

This comes to show that any situation the players may reach as an agreement in those
games is highly unstable, which makes one wonder the question we ask ourselves in the
next subsection.

3.5.1 When is the core nonempty?

In the case of the aforementioned simple games, the following result holds.

Theorem 3.5.5. Given a simple game v ∈ SN , C(v) 6= Ø if, and only if, there is at least
one veto player in v.

Proof. Suppose there is no veto player for a game v ∈ SN . Then, we would have that
v(N \ {i}) = 1 for each i ∈ N . Thus, v(N) = v(N \ {i}) and, for any core allocation
x ∈ C(v),

0 = v(N)− v(N \ {i}) ≥
∑
j∈N

xj −
∑
j∈N\i

xj = xi ≥ 0,

which leads to xi = 0 for each i ∈ N and, therefore, contradicts the efficiency of the
allocation x.

Corollary 3.5.6. If the core of a simple game v ∈ SN is such that C(v) 6= Ø, then

C(v) = {x ∈ I(v) : for each nonveto player j ∈ N, xj = 0}.
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Example 3.5.3. The Glove Game:
In this situation, we have 3 players who have one glove out of the same pair: two of them
have the left glove (let’s say they are Player 2 and Player 3) and one of them has the right
one (Player 1). They can only sell the gloves as a pair, so they need to agree on how to
split the amount they will obtain (which we can normalize to 1 for the sake of simplicity)
beforehand.
Since for every allocation (1−δ, δ, 0) with δ > 0 that Player 1 offers to Player 2, there is an
allocation that dominates it —namely (1−δ/2, 0, δ/2)—, the only undominated allocation
of this game (and thus, the only core allocation, for this is a simple game indeed) is (1, 0, 0),
which comes to tell us that the excess of one type of good completely depreciated it.

C(v) = (0, 0, 1)

This is also the result that we would obtain, by Corollary 3.5.6, if we observed that the
player with the only right glove is also the only veto player of the simple 3-person game v
characterized by N = {1, 2, 3} and

v(S) =

{
1 if S ∈ {N, (1, 2), (1, 3)}
0 otherwise.

4

In order to answer this question for games in general, we need to define the concept of
balanced games, which requires a previous definition.

Definition 3.5.5. A nonempty family of coalitions F ⊂ 2n is balanced if there are {αs ∈
R, αs > 0 : S ∈ F} such that

for each i ∈ N,
∑
S∈F
i∈S

αS = 1

Definition 3.5.6. Given a TU-game v ∈ GN , we say that it is balanced if it satisfies that,
for each balanced family F with balancing coefficients {αs ∈ R, αs > 0 : S ∈ F},∑

S∈F
αSv(S) ≤ v(N)

Theorem 3.5.7. Let v ∈ GN . Then, C(v) 6= Ø if, and only if, v is balanced. 7

The proof for this theorem requires some linear programming results, which are not a
subject of study in this thesis. Thus, we refer the reader to [5] for its proof.

7This is the Bondareva-Shapley theorem.
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Proposition 3.5.8. Let v1, v2 be S-equivalent games such that vi(N) >
∑

j∈N vj(i),
i = 1, 2. Then, v1 is balanced if and only if v2 is balanced.

Proof. Let k and a = (a1, ..., an) be such that they satisfy the conditions from the defini-
tion of S-equivalence, Def. (3.4.14).
Let’s assume that v2(S) = kv1(S) +

∑
i∈S ai.

Therefore, if v1 is balanced, with F its balanced family of coalitions and balancing coeffi-
cients {βS : S ∈ F}, we obtain:∑

S∈F
βS v2(S) =

∑
S∈F

βS

(
kv1(S) +

∑
i∈S

ai

)
= k

∑
S∈F

βSv1(S) +
∑
S∈F

βS

(∑
i∈S

ai

)
= k

∑
S∈F

βSv1(S) +
∑
i∈S

(
ai
∑
S∈F
i∈S

βS

)
= k

∑
S∈F

βSv1(S) +
∑
i∈S

ai ≤ kv(N) +
∑
j∈N

aj = v2(N)

Where we have used that v1 is balanced and k > 0. Thus, we have that v2 is also balanced.
Note that the argument we used is completely analogous to the one we would need were
we to prove the only if part of the theorem.

Proposition 3.5.9. Let v1, v2 be S-equivalent games such that vi(N) >
∑

j∈N vj(i),
i = 1, 2. Then, C(v1) is nonempty if and only if C(v2) is nonempty.

Proof. The proof is quite immediate from the definition of core and S-equivalence.

3.6 Alternative solution concepts

Despite these results, the core of a game is often empty and, therefore, although the core
has a lot of importance as a solution of TU-games, it is of interest to study alternative types
of stability such as those that arise when players can negotiate, threat and counterthreat
each other or when we look for the allocation that would leave players as least dissatisfied
as possible. First of all, however, we will study a less demanding concept.

3.6.1 Stable sets

Thus, we are interested in demanding less strong types of stability than the one required
by the core, expecting to obtain less precise yet more general results.
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Definition 3.6.1. Here, we say that a set V ⊂ I(v) is a stable set for v if it satisfies:

(i) For any x, y ∈ V , There are no imputations x, y inside V such that dominates the
other.8

(ii) For any y 6∈ V , there is x ∈ V such that x dominates y. 9

Remark 3.6.1. Neither the existence nor the uniqueness of stable sets is guaranteed. On
the other hand, most games have a large number of stable sets and the stable set of some
games are their cores.

In order to illustrate such uncertainty, we will use an example from Owen (1982) [4]. Due
to this uncertainty of stable sets, we will quickly move on to the next proposed solution
concept (the nucleolus) afterwards.

Example 3.6.1. Let v be the (0,1)-normalization of the constant-sum 3-person game
given by

v(S) =


−2 if |S| = 1

2 if |S| = 2

0 if |S| = 3

Thus, V = {(1
2 ,

1
2 , 0), (1

2 , 0,
1
2), (0, 1

2 ,
1
2)} is a stable set, but so are the family of sets

Vc = {(x1, 1− c− x1, c) : 0 ≤ x1 ≤ 1− c}

For further detail into this example —to see the proof that Vc is indeed a stable set—, see
[4]. 4

3.6.2 The nucleolus

The nucleolus is, like the core of a game, another essential allocation rule for TU-games
based on a fairness idea, which we have to define first.

Definition 3.6.2. Given a game v ∈ GN , let x ∈ RN be an allocation. First, as a measure
of the dissatisfaction of a coalition S with regards to an allocation x, we define the excess
of coalition S ⊂ N with respect to x as:

e(S, x) := v(S)−
∑
i∈S

xi

8Internal stability.
9External stability.
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Remark 3.6.2. Note that, for any x ∈ I(v), the excess of the grand coalition N with
respect to x is e(N, x) = 0.

Remark 3.6.3. Besides, for any x ∈ C(v) and each S ⊂ N , e(S, x) ≤ 0.

Definition 3.6.3. Let us also define the 2n-vector θ(x) called vector of ordered excesses,
whose components are the excesses of the 2n subsets S ⊂ N in decreasing order.
That is to say, the elements θi(x) of the vector θ(x) are such that θi(x) ≥ θi+1(x).

Definition 3.6.4. In addition, given two vectors x, y ∈ RN , we say that y is larger than
x in the lexicographic order if there is k ∈ N, 1 ≤ k ≤ 2n such that,

for each j ∈ N with j < k, θj(y) = θj(x) and θk(y) > θk(x).

Remark 3.6.4. In this case, we write θ(y) �L θ(x).
We write θ(y) �L θ(x) if either θ(y) �L θ(x) or θ(y) = θ(x).

Example 3.6.2. Let’s observe the Glove Game in Example 3.4.3 from this point of view.
We had N = {1, 2, 3} and v such that v(1) = v(2) = v(3) = v(1, 2) = 0 and v(1, 3) =
v(2, 3) = v(1, 2, 3) = 1.

If we propose the following allocations:

x = (1/3, 1/3, 1/3), y = (1/6, 1/6, 2/6), z = (0, 0, 1), x′ = (1/3, 0, 2/3), x′′ = (0, 1/3, 2/3),

we obtain:

Ø {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 0 0 1 1 1

e(S, x) 0 -1/3 -1/3 -1/3 -2/3 1/3 1/3 0

e(S, y) 0 -1/6 -1/6 -2/6 -2/6 3/6 3/6 0

e(S, z) 0 0 0 -1 0 0 0 0

e(S, x′) 0 -1/3 0 -2/3 -1/3 1/3 0 0

e(S, x′′) 0 0 -1/3 -2/3 -1/3 0 1/3 0

Table 3.1: Values of the payoffs and the excess of all the possible coalitions with regards
to each proposed allocation for the Glove Game.

Therefore, we get:

θ(x) = (1/3, 1/3, 0, 0,−1/3,−1/3,−1/3,−2/3)

θ(y) = (1/2, 1/2, 0, 0,−1/6,−1/6,−1/3,−1/3)
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θ(z) = (0, 0, 0, 0, 0, 0, 0,−1)

and
θ(x′) = θ(x′′) = (1/3, 0, 0, 0, 0,−1/3,−1/3,−2/3)

Thus,
θ(y) �L θ(x) �L θ(x′) = θ(x′′) �L θ(z)

4

Definition 3.6.5. Let v ∈ GN be a game such that I(v) 6= Ø. The nucleolus of v, η(v),
is the set:

η(v) := {x ∈ I(v) : for each y ∈ I(v), θ(y) �L θ(x)}

Remark 3.6.5. It is obvious, then, that the nucleolus of a game v, η(v), is a subset of
the set of imputations of v, I(v). Thus, it can only be defined if I(v) is nonempty.
The idea behind the nucleolus is to minimize the vector of decreasingly ordered excesses,
therefore seeking the allocations that generate the least dissatisfaction among the coali-
tions.

Let’s see an important result on the nature of the nucleolus before looking back at the
previous example. In order to prove it, we will use a lemma whose proof can be found in [5].

Lemma 3.6.6. Let v ∈ GN , x, y ∈ RN be such that x 6= y and θ(x) = θ(y) and let
α ∈ (0, 1). Then,

θ(x) �L θ(αx+ (1− α)y)

Theorem 3.6.7. Let v ∈ GN be such that I(v) 6= Ø. Then, η(v) contains only one
allocation.

Proof. First, let’s see that η(v) 6= Ø. Let us define I0 := I(v) and, recursively, the sets

Ik :=
{
x ∈ Ik−1 : for each y ∈ Ik−1, θk(y) ≥ θk(x)

}
,

for each k ∈ {1, 2, . . . , 2n}. Since θk(x) is a continuous function of x, for each k ∈
{1, 2, . . . , 2n}, and I0 = I(v) is a nonempty and compact set, so is I1. By induction,
all the Ik sets are compact and nonempty. So is, in particular, I2n , which we claim to be
η(v).

By reductio ad absurdum, let’s suppose the opposite, that I2n 6= η(v). Then, there are
x ∈ I2n and y ∈ I(v)\I2n such that θ(y) ≤ θ(x).
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Let k be the lowest integer such that y 6∈ Ik. Then, θk(y) > θk(x). However, since for any
j ≤ k − 1, we have x, y ∈ Ij , then θj(y) = θj(x) and, consequently, θ(y) �L θ(x). Thus,
η(v) is nonempty.

Now, we want to see that the nucleolus is a set with only one element. We will prove so,
again by reductio ad absurdum, by supposing there are different elements x, y that belong
to η(v).
Since we have assumed that they both belong to the nucleolus, by definition, θ(y) �L θ(x)
and θ(x) �L θ(y), which leads to θ(x) = θ(y).
Hence, for I(v) is a convex set, αx + (1 − α)y ∈ I(v), for each α ∈ (0, 1). However, from
the previous lemma, we have that θ(x) �L θ

(
αx + (1 − α)y

)
and, therefore, x does not

belong to η(v), contradicting our hypothesis.

Remark 3.6.8. As a consequence of this result, we refer to the unique element of the set
η(v) as the nucleolus itself.

Example 3.6.3. Following from the previous example, we can propose z = (0, 0, 1) as a
nucleolus allocation —as the nucleolus, from what we have just learnt—.

4
Remark 3.6.9. Note that, given a TU-game v with a nonempty core C(v):

(i) As have seen in Remark 3.6.3, the maximum excess for a core allocation is never
positive.

(ii) By the definition of the core, for any allocation x outside the core, either

•
∑
i∈S

xi ≤ v(S), for some S ⊂ N .

•
∑
i∈N

xi 6= v(N)

But we saw that η(v) ⊂ I(v), and imputations are efficient and individually rational.
Then, this means that, for any allocation x outside the core, at least one coalition
has a positive excess.

Then, the vector of ordered excesses cannot be lexicographically minimized outside the
core. Hence, we have just proved the following result.

Theorem 3.6.10. If a TU-game v has a nonempty core, the nucleolus is necessarily an
element of the core.

Proof. See the reasoning above.
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Example 3.6.4. Looking back for the last time at Example 3.6.2, for which z = (0, 0, 1)
was proposed as the nucleolus, we can now observe, from what we know on the core of a
simple game —as is the case the example we are referring to—, the only core allocation
of this game is (0, 0, 1), which coincides with the one we proposed as the nucleolus. 4

3.6.3 The kernel

Like the nucleolus, the kernel is a concept which is very related to the idea of excess. Now,
additionally, we need to define the concept of surplus.

Definition 3.6.6. Given two players i 6= j of an n-person game v and an allocation
x = (x1, . . . , xn), the surplus of player i against player j is

sij(x) := max{e(S, x) : i ∈ S, j 6∈ S}

This way, sij(x) represents the most player i could hope to obtain without the help from
player j.

Definition 3.6.7. Let 〈x, T 〉 an individually rational payoff configuration 10 and i, j dif-
ferent members of some Tk ∈ T . We say that i outweighs j (and denote it by i � j) if,
and only if, sij(x) > sji(x) and xj > v({j}).

Remark 3.6.11. Thus, if i� j there is a certain instability, since i can make a demand
on j that the latter cannot contest. The definition of the kernel is such that such insta-
bilities do not occur inside it.

Definition 3.6.8. The kernel of a game is the set K of all the individually rational payoff
configurations 〈x, T 〉 such that

for Tk ∈ T , there are no i, j ∈ Tk with i� j.

Let’s observe the solutions proposed by the kernel of some games we have already covered.

Example 3.6.5. For the 3-person Divide the Dollar game (the 3-person simple majority
game in which any coalition containing at least two player wins), we get 〈x,N〉 ∈ K only
when x = (1

3 ,
1
3 ,

1
3). 4

10A payoff configuration is a pair 〈x, T 〉 = (x1, ..., xn;T1, ..., Tn) such that T is a partition of N and x is
a vector satisfying

∑
i∈Tk

xi = v(Tk).
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Example 3.6.6. In the 3-person Glove game (the 3-person simple game in which any
coalition containing Player 3 and any other player wins), we get 〈x,N〉 ∈ K only when
x = (0, 0, 1), which coincides with the only core allocation and the the nucleolus of this
game.

4
Theorem 3.6.12. For any game v, K(v) 6= Ø.

Since its proof relies on the analogous one for the bargaining set, which we have not
defined in this work, we refer the reader to Owen (1982) [4].

3.7 The Shapley Value

Opposite to the core or the nucleolus, the Shapley Value is an allocation rule for n-player
Transferable Utility Games which approaches its value axiomatically.

Definition 3.7.1. We say that i ∈ N is a null player in a game v ∈ GN if, for each
S ⊂ N ,

v(S) = v(S ∪ {i})

Definition 3.7.2. We say that i, j ∈ N are symmetric players in a game v ∈ GN if, for
each S ⊂ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}).

Shapley proposed a set of assumptions (axioms) that define a unique prediction for the
outcome of not only bargaining 2-player games but any TU cooperative game that has
become the most important allocation rule for TU-games:

• Efficiency (EFF): the sum of every player’s payoff equals v(N).

For each v ∈ GN ,
∑
i∈N

ϕi(v) = v(N)

• Null player (NPP): players who do not contribute should receive nothing.
An allocation rule ψ satisfies NPP if, for each v ∈ GN and each null player i ∈
N, ϕi(v) = 0.

• Symmetry (SYM): symmetric players should receive the same (i.e. treat equal
players equally).
An allocation rule ψ satisfies SYM if, for each pair of symmetric players i, j ∈
N, ϕi(v) = ϕj(v)

• Additivity (ADD): players receive the same payoff no matter if two games are
played simultaneously or separately.
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An allocation rule ψ satisfies ADD if, for each pair of games v, w ∈ GN , ϕ(v+w) =
ϕ(v) + ϕ(w).

This last property is the only one that does not have a fairness idea to sustain it, but it
is a natural requirement. The Shapley value is the only allocation rule in GN satisfying
these four properties.

Theorem 3.7.1. The Shapley value is the only allocation rule in GN satisfying EFF,
NPP, SYM and ADD.

Proof. The fact that Φ satisfies all four properties is quite straightforward. The proof for
the uniqueness can be found in [5].

What’s more, all four axioms used to characterize it are unexpendable, since removing
any of them leaves room for other allocation rules such as

• the equal division rule ψi(v) = v(N)/n, which satisfies all axioms but NPP.

• or ψi(v) = λΦ(v), with λ 6= 1, which satisfies all axioms but EFF.

Averaging the marginal contributions for each player over all the ways in which the grand
coalition N can be formed, starting from the empty coalitions and adding players until we
obtain the grand coalition, we obtain the expected payoff for each player and, thus, the
Shapley value.

Definition 3.7.3. For each game v ∈ GN , the Shapley value assigns a payoff Φj to each
player j equal to the average of their marginal contributions when the player j is added
to each possible coalition S ⊂ N\{j}.
In particular,

Φi(v) :=
∑

S⊂N\{i}

|S|!(n− |S| − 1)!

n!

(
v(S ∪ {i} − v(S)

)
Definition 3.7.4. We define the marginal contribution of a player j to a coalition S as

M(j, S) := v(S ∪ {j})− v(S)

Remark 3.7.2. We denote the set of all permutations of the elements in N by Π(N) and,
by P π(j) the set of all predecessors of j given the order determined by the permutation
π ∈ Π(N). That is to say, k ∈ P π(j) if, and only if, π(k) < π(j).

Definition 3.7.5. Given an n-person game v ∈ GN and a permutation π ∈ Π(N), the
vector of marginal contributions associated with π is mπ(v) ∈ Rn, defined, for each i ∈ N ,
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as:
mπ
i (v) := v(P π(i) ∪ {i})− v(P π(i))

Then, equivalently to its previous expression, the Shapley value can also be computed
as:

Φi(v) :=
1

n!

∑
π∈Π(N)

mπ
i (v)

Remark 3.7.3. The Weber set is the convex hull of the set of vectors of marginal contri-
butions.

Example 3.7.1. Going back to the previously mentioned Divide a million game (Example
3.4.2), which is also known as the Odd-Man-Out, in which at least 2 of the 3 players have to
agree on how to divide a dollar —or a million dollars, what difference does that make?—,
the value of any coalition S is 1$ if the coalition S has at least 2 players and is 0 if S has
1 player or is empty.
For the sake of clarity, we will now identify players with names instead of numbers: players
1, 2 and 3 will now be Alice, Bob and Charles, respectively —A, B and C for brevity—.
Now, we can find out what Alice’s marginal value in each form of coalition would be:

• ABC → 0

• ACB → 0

• BAC → 1

• BCA→ 0

• CAB → 1

• CBA→ 0

Therefore, Alice (or any other player, since the game is symmetric) is assigned a payoff

0 + 0 + 1 + 0 + 1 + 0

6
=

1

3

by the Shapley value. Thus,

Φ(v) =
(1

3
,
1

3
,
1

3

)
As we saw in Example 3.5.2, the core of this game was empty. 4

Therefore, we can observe that the Shapley value of a game does not necessarily belong to
its core —this can happen even when the core is nonempty—. However, we will see that
the Shapley value of a convex game always v falls inside the core.
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Theorem 3.7.4. The Shapley value of a superadditive game belongs to the set of impu-
tations.

Proof. For each player i ∈ N of a superadditive game v ∈ SGN ,

Φi(v) =
1

n!

∑
π∈Π(N)

mi
π(v) ≥ 1

n!

∑
π∈Π(N)

v(i) = v(i)

since we have that mi
π(v) ≥ v(i) for each i ∈ N and each π ∈ Π(N).

3.8 Convex games

Definition 3.8.1. We say that a TU-game v ∈ GN is convex if, for each i ∈ N , and each
pair S, T ⊂ N \ {i} with S ⊂ T ,

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

As we will see in this section, for any convex game v, the Shapley value Φ(v) is an element
of the core C(v), which is nonempty. This property is indeed important enough for us to
study this type of games, but it is not the only one.

From their definition, we can see that any convex game is superadditive. Therefore, the
core of any convex game is nonempty.

Theorem 3.8.1. Let v ∈ GN . Then:

(i) v is a convex game

(ii) For each π ∈ Π(N), mπ(v) ∈ C(v)

(iii) Its core and Weber set coincide.

Proof. The first implication
(
(i) =⇒ (ii)

)
was proved by Shapley (1971), the second one(

(ii) =⇒ (iii)
)

by Weber (1988) and the last one
(
(iii) =⇒ (i)

)
, by Ichiisi (1981).

Corollary 3.8.2. The core C(v) of any convex game v ∈ GN contains its Shapley value
Φ(v).



Chapter 4

Applications of Cooperative Game
Theory

4.1 Indices of power

Simple games often model voting situations and are useful to determine the power each
player has in each game —by power, we refer to the strength each player has in the sense
of being able to change the outcome of the game—. That is the reason why allocation
rules are usually called power indices in simple games, when changing from the outcome
for your own coalition from 0 to 1 is critical.
In fact, we have already seen one of these indices of power, the Shapley value in section
3.7. These are the definition of the most common power indices:

Definition 4.1.1. The Shapley-Shubik power index (S.S.P.Y) is just the restriction of the
Shapley value to the case of simple games. Thus, the power index it assigns to each player
is also noted by Φi.

Another important example is the Banzhaf power index, of which there are two important
versions. We need to define the concept of swings first:

Definition 4.1.2. Given a game v ∈ GN , a swing for a player i ∈ N is a coalition
S ⊂ N \ {i} such that S 6∈W and S ∪ {i} ∈W . We say that i is a pivot for S.

Remark 4.1.1. We denote the number of swings for player i by µi(v).

43
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Definition 4.1.3. The “raw” Banzhaf index (R.B.I.), or Banzhaf-Coleman index, is de-
fined as:

βi(v) :=
µi(v)∑

i∈N
µi(v)

Definition 4.1.4. Last but not least, we define the Banzhaf index for player i as:

Bzi(v) :=
µi(v)

2n−1

For each player i of a game v, this last index represents the probability that, if we choose
a random coalition S ⊂ N \ {i}, the player i is a pivot for S. Hence, it is often given as a
percentage.

One well-known game in which we can easily see who is the most powerful player is the
Glove Game, so let’s see how the players would do in this scenario:

Example 4.1.1. Remember that v(S) = 1 if and only if S = {1, 3}, {2, 3}, {1, 2, 3}.
Otherwise, v(S) = 0.

Player Hand Φi µi βi Bzi

1 Right 1/6 1 0.2 0.25

2 Right 1/6 1 0.2 0.25

3 Left 4/6 3 0.6 0.75

Table 4.1: Values each division rule proposes for the Glove Game.

4

4.1.1 Voting games

As we have just seen, allocation rules for simple games are commonly known as power
indices and measure the power each player has in a game. Thus, they become very useful
when it comes to political situations we may want to analyze. Now, as we mentioned in
section 3.4.2, we will see a couple of examples of real-life weighted majority games.

Example 4.1.2. After the recent 2015 Spanish general elections, in the current state of
the Congress of Deputies of Spain, the 350 total deputies are distributed among 10 parties
in the following way: PP (123), PSOE (90), Podemos (69), Cs (40), ERC (9), DiL (8),
PNV (6), IU (2), EHB (2), CC (1).
There are two types of games being played by these parties, the first one being the approval
of laws or the decision of who will be the next president which follows the simple majority
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rule. For the sake of simplicity, we assume that each player has to vote either in favour or
against each proposed candidate. Hence, a winning coalition needs more than half of the
votes (at least 176) in their favor.
Then, the minimal winning coalitions are: {PP, PSOE}, {PP, Podemos}, {PP, Cs, ERC,
DiL}, {PP, Cs, ERC, PNV}, {PP, Cs, ERC, IU, EHB}, {PP, Cs, DiL, PNV}, {PP, Cs, DiL,
IU, EHB, CC}, {PSOE, Podemos, Cs}, {PSOE, Podemos, ERC, DiL}, {PSOE, Podemos,
ERC, PNV, IU}, {PSOE, Podemos, ERC, PNV, EHB}, {PSOE, Podemos, DiL, PNV,
IU}, {PSOE, Podemos, DiL, PNV, EHB}.
Since {PP, PSOE} is a winning coalition and both PP and PSOE can also form winning
coalitions in which the other is not included, one can see that there is no veto player in
this game. Thus, by the result we saw in 3.5.5, the core of this game is empty.

Computing the number of swings for each party, we get:

Party % of votes Seats % of seats Φi µi βi Bzi

PP 28.72% 123 35.14% 40.24 % 329 37.73 % 64.26 %

PSOE 22.01% 90 25.71% 21.98 % 183 20.99 % 35.74 %

Podemos 20.66% 69 19.71% 21.98 % 183 20.99 % 35.74 %

Cs 13.93% 40 11.43% 6.90 % 73 8.37 % 14.26 %

ERC 2.39% 9 2.57% 3.02 % 35 4.01 % 6.84 %

DiL 2.25% 8 2.29% 2.54 % 29 3.33 % 5.66 %

PNV 1.20% 6 1.71% 1.98 % 23 2.64 % 4.49 %

IU 3.67% 2 0.57% 0.56 % 7 0.80 % 1.37 %

EHB 0.87% 2 0.57% 0.56 % 7 0.80 % 1.37 %

CC 0.33% 1 0.29% 0.24 % 3 0.34 % 0.59 %

Table 4.2: Values each division rule proposes for the first example (real) of the Spanish
Congress of Deputies Game.

Barring the obvious biases that the electoral system presents —which tend to benefit
bigger parties— one can see that:

• As is natural, the power indices are monotonic with weight. However, such monotony
is not strict: quite interestingly, the second and third parties are exactly equally
powerful according to all power indices although their weights are not nearly as
close as the ones between smaller parties.

• Since the smaller parties are needed by very few coalitions to become winning coali-
tions, their power is, as expected, very small.

• However, there are no null players (dummies).

• The computation checks that all of them satisfy SYM.
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4
Example 4.1.3. In the same situation, in order to change some fundamental laws like the
Spanish Constitution, two thirds of the Congress need to vote in favor of those changes.
In this case, that number of votes is 234, representing the quota of this game. As in the
previous example, the weights are also the number of seats each party has.
Thus, any coalition not containing PP cannot win. This means that PP is a veto player,
a fact that —besides the obvious political consequences for their political rivals asking for
major changes— implies that the core of this game is nonempty and that the only core
allocation is such that v(PP) = v(N) = 1 and the rest are 0. 4

Remark 4.1.2. Even if we diverge slightly from the point of the rest of this thesis, let’s see
what would happen if we modified Example 4.1.2. Here, instead of the current provinced-
based D’Hont system, we took apart the 3 autonomous communities in which regional
parties got seats and we applied the D’Hont system to a unique circumscription which
contained the rest of the voters:

Party % of votes Seats % of seats Φi µi βi Bzi

PP 28.72 % 105 30.00 % 38.45 % 309 35.44 % 60.35 %

PSOE 22.01 % 83 23.71 % 23.77 % 203 23.28 % 39.65 %

Podemos 20.66 % 75 21.43 % 23.77 % 203 23.28 % 39.65 %

Cs 13.93 % 49 14.00 % 5.12 % 53 6.08 % 10.35 %

ERC 2.39 % 9 2.57 % 2.14 % 25 2.87 % 4.88 %

DiL 2.25 % 8 2.23 % 1.79 % 21 2.41 % 4.10 %

PNV 1.20 % 6 1.71 % 1.11 % 13 1.49 % 2.54 %

IU 3.67 % 12 3.43 % 3.21 % 37 4.24 % 7.23 %

EHB 0.87 % 2 0.57 % 0.40 % 5 0.57 % 0.98 %

CC 0.33 % 1 0.29 % 0.24 % 3 0.34 % 0.59 %

Table 4.3: Values each division rule proposes for the second example (not real) of the
Spanish Congress of Deputies Game.

This system seems to express in a much more fair way what the voters want without
having to change the D’Hont rule —which, traditionally, big parties are quite fond of—.
However, leaving aside the obvious changes that take place, this is a good way for us to
see that power indices for a given player are not necessarily higher when the weight of
the player in question grows —observe what happened for Cs, who went from 40 to 49
deputees yet lost power according to all power indices—.
Although the power indices have shifted quite significantly, PSOE and Podemos would
still be equally powerful according to all power indices.
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4.2 Bankruptcy problems

A company with important debts with various creditors goes bankrupt. Each of those
creditors claims a share of what is left, adding up to an amount larger than what is
available. How should those creditors share the amount of money that was left or obtained
by selling the estate? It seems natural that, since the estate left is not enough to cover
every creditor’s claim, they should reach some type of agreement on how to divide it.
We are now going to see how does Cooperative Game Theory handle this type of problems.

Definition 4.2.1. A bankruptcy problem with a set of claimants N is a pair (E, d), where

E ∈ R and d ∈ RN are such that di ≥ 0, for each i ∈ N ; and 0 ≤ E ≤
n∑
i=1

di.

We define the associated bankruptcy game as the TU-game (N, v) defined, for each S ⊂ N ,
by

v(S) := max
{

0, E −
∑
i 6∈S

di

}
which looks at the game from a pessimistic perspective, since it determines the worth of
a coalition as the amount that is left once the rest of the players have received their own
claims.

Remark 4.2.1. Since bankruptcy games are convex —by definition—, from the results
we saw in section 3.8, their core is nonempty and contains both the Shapley value and the
nucleolus of the game in question.

Definition 4.2.2. Let f be a function that assigns a division f(E, d) to each bankruptcy

problem (E,d) such that
∑
i∈N

fi(E, d) = E and, for each i ∈ N , 0 ≤ fi(E, d) ≤ di. Then,

we say that f is a division rule.

Obviously, there are many alternative proposals for division rules, although not all of them
seem equally fair. Thus, before getting into these possible division rules, one could argue
that it would be optimal if a division rule satisfies some stability properties such as:

• Consistency (CONS):

Given two bankruptcy problems (E, d), with set of claimants N ; and (ES , dS), with set

of claimants S ⊂ N ; with ES = E −
∑
j 6∈S

fj(E, d) and dS = d, we say that a division rule

satisfies CONS if, for each i ∈ S, we have that fi(ES , dS) = fi(E, d).
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The idea behind it is that the order in which agents make their claims should not determine
the final divison.

• No advantegeous merging or splitting (NAMS):

Let (E, d), with set of claimants N, and (E′, d′), with set of claimants S ⊂ N , be two

bankruptcy problems such that E′ = E and with d′ such that ∃i ∈ S s.t. d′i = di +
∑
k 6∈S

dk

and, for each j 6= i, d′j = dj . Then, we say that a division rule satisfies NAMS if:

for each k ∈ S, fk(E
′, d′) = fk(E, d) +

∑
j 6∈S

fj(E, d)

This second property guarantees that no agent can gain by splitting or joining forces with
others.

Let’s take a look at some of these division rules:

Definition 4.2.3. Given a bankrupcy problem (E, d), the constrained equal awards
(CEA) rule is defined as the division rule that assigns

fCEAi (E, d) := min{di, λ}

to each player i ∈ N , with λ chosen so that
∑
i∈N

min{di, λ} = E. This ensures that every

player gets the same —as long as that amount is not greater than their claim—.

Definition 4.2.4. Similarly, for a given a bankrupcy problem (E, d), the constrained
equal losses (CEL) rule, which is defined as

fCELi (E, d) := max{0, di − λ}

with λ s.t.
∑
i∈N

max{0, di − λ} = E, provides a division such that every player is equally

far from obtaining his claim—as long as that does not make them get less than 0—.

Definition 4.2.5. Given a bankrupcy problem (E, d), the random arrival rule assigns

fRAi (E, d) =
1

n!

∑
π∈Π(N)

min
{
di,max{0, E −

∑
j∈Pπ(i)

dj}
}

to each claimant i ∈ N . 1

1 As we saw in the previous chapter, Π(N) represents the set of all the permutations of the elements in
N , while Pπ(i) is the set of all the predecessors of the element i under the permutation π.
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The random arrival rule assigns, to each claimant, their expected share of the division if
each player arrives at a different time and receives the minimum between his or her claim
and what is left —assuming that all the orders in which the players can make their claims
are equally likely—.

Remark 4.2.2. The random arrival rule of a bankruptcy problem (E, d) coincides with
the Shapley value of the associated bankruptcy game v.

Definition 4.2.6. The Talmud rule, proposed to match with the proposed divisions from
the Talmud 2, is defined as

fi
TR(E, d) :=


min

{di
2
, λ
}

when E ≤
∑
i∈N

di
2

di
2

+ max
{

0,
di
2
− λ

}
when E ≥

∑
i∈N

di
2

with λ s.t.
∑
i∈N

fi
TR(E, d) = E.

Remark 4.2.3. The Talmud rule of a bankruptcy problem (E, d) coincides with the nu-
cleolus of the associated bankruptcy game v.

Definition 4.2.7. The proportional rule is defined as

fPRi (E, d) :=
di∑

j∈N
dj
E

unless di = 0 for each i ∈ N , in which case fPRi (E, d) = 0 for all players i ∈ N .

Example 4.2.1. Let v be a bankruptcy problem characterized by E = 500 and claims
d1 = 250, d2 = 200, d3 = 100.

Player 1 Player 2 Player 3

Constrained equal awards rule 200,00 200,00 100,00

Constrained equal losses rule 233,33 183,33 83,33

Random arrival rule 233,33 183,33 83,33

Talmud rule 233,33 183,33 83,33

Proportional Rule 227,27 181,82 90,91

Table 4.4: Values each division rule proposes for the bankruptcy problem in Ex. 4.2.1.
4

2The Talmud is a central text of Rabbinic Judaism which consisting on a record of discussions on Jewish
law, ethics, tradition, etc.
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Remark 4.2.4. From this example, it is easy to find that the only division rule of these
5 that satisfies both properties is the proportional rule, since the neither the Talmud rule,
the CEA nor the CEL satisfy NAMS and the random arrival rule satisfies none.

Remark 4.2.5. Since Aumann and Maschler (1985) showed that when the bankruptcy
problem is represented by a TU-game, it is impossible to obtain either the proportional
or the constrained equal award rules out of any symmetric, Pareto efficient, and invariant
to strategic equivalence solution concept we may apply to it, the bankruptcy problem
was also studied as an NTU-game by Dagan and Volij (1992), when they associated each
bankruptcy problem with a bargaining problem to which they applied well known bar-
gaining solutions —instead of associating it to a TU-game and observing how it relates to
known solutions, as done here—.

Remark 4.2.6. This type of problems can also be applied to the allocation of finite
resources moving towards sustainability. One example of such problems is to establish
fishing quotas to each of the countries with access to such resource —each of whom has a
claim of their own— to guarantee its sustainability.

4.3 Airport problems

Example 4.3.1. A group of neighbours who live on the outskirts of a town are hosting a
meeting to decide how to divide the costs of restoring the road to their houses. Since the
cost of the work depends on the length of the road, we group them according to which of
the four exits leads to their houses. Thus, we have 4 players for this cost-sharing game.

The cost of restoring the section of the road needed by Player 1 is the lowest: 7 (i.e.
v({1}) = −7). The cost of the works needed by players 2 and 3 are 11 and 16, respectively,
while it costs 25 to restore the whole road, which is what player 4 needs.

v(S) :=


−7 if S = {1}
−11 if 2 ∈ S and 3, 4 6∈ S
−16 if 3 ∈ S and 4 6∈ S
−25 if 4 ∈ S

Now, if each player pays only for the cost of restoring the part of the road that he needs
—which seems pretty fair— and each excess is divided only between the players that need
it:

• Player 1 only needs to pay for the first section, whose cost is divided between the
four players. Thus, x1 = −7

4 .
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• Player 2 has to pay his quarter of the cost of the first section plus a third of the cost
of the second one. Then, x2 = −7

4 −
4
3 = −37

12 .

• Similarly, for player 3, x3 = −7
4 −

4
3 −

5
2 = −67

12 .

• Last, player 4 has to pay his share of all sections. Thus, x4 = −7
4−

4
3−

5
2−9 = −175

12 .

4

The situation from the previous example is very similar to the one we could face in
an airport, in which we have m different types of players (different types of airplanes)
i ∈ {1, 2, . . . ,m} who make a number of movements ni > 0. Each of these movements
has a cost ci, which are assumed —without loss of generality— to be already placed in
increasing order, i.e. 0 < c1 < . . . < cm.

Remark 4.3.1. Let n =
∑m

i=1 ni and N =
⋃m
i=1Ni.

Remark 4.3.2. The elements described so far characterize the cost allocation problems
known as airport problems.

It was Littlechild and Owen (1973) [6] who came up with this simple yet important ap-
plication of the Shapley value “whenever the characteristic function is a “cost” function
with the property that the cost of any subset of players is equal to the cost of the “largest”
player in that subset”, prompted by some previous work from Baker (1965) and Thomp-
son (1971). The calculation of the Shapley value matched precisely with the previously
proposed rule for calculating airport landing —or building— charges.
The cost function of the airport problem is defined as

c(S) = max{ci , i : Ni ∩ S 6= Ø}, for each nonempty S ⊂ N.

Remark 4.3.3. The cost function is not superadditive but its negative clearly is so.

Remark 4.3.4. The Shapley value of a game based on the negative of a cost function is
exactly minus the Shapley value of the game based on the cost function itself.

Definition 4.3.1. The airport game associated with the airport problem described above
is the TU-game (N, v), characterized by v(S) := −c(S).

Remark 4.3.5. Not only are airport games (N, v) superadditive, but also convex. Then,
as we saw in section 3.8, their core is nonempty and contains both the Shapley value and
the nucleolus of the game in question.
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Theorem 4.3.6. Given an airport game (N, v) such that c0 := 0,

Φi(v) = −
ki∑
k=1

ck − ck−1

rk

where rk :=

m∑
j=k

nj is the total number of movements of aircrafts equal or bigger than

Player i’s type.

Proof. Since the Shapley value satisfies ADD, the Shapley value for the sum of two (or
more) games is equal to the sum of the Shapley values of the games. In this case, as
we will see, the game —its characteristic function— can be represented as the sum of m
games v1, ..., vm. Hence, we will have: Φi(v) =

∑m
k=1 Φi(vk).

Let Rk =
⋃m
i=kNi, k ∈ {1, 2, ..., m} and S ⊂ N such that max{j : Nj ∩ S 6= Ø} = k.

Then, Rj ∩ S = Ø if j > k and Rj ∩ S 6= Ø if j ≤ k. Now, if for each k = 1, 2, ...,m, we
define the characteristic function —the TU-game— vk on N as:

vk(S) :=

{
0 if S ∩Rk = Ø

−(ck − ck−1) if S ∩Rk 6= Ø

we get that
∑m

j=1 vk(S) =
∑k

j=1−(cj − cj−1) +
∑m

j=k+1 0 = −(ck − c0) = v(S). Thus,
v(S) =

∑m
j=1 vk(S), for each S ⊂ N .

It is quite obvious that, for any k ∈ {1, 2, ...,m}, vk is a symmetric game for the rk players
in Rk. Since the Shapley value satisfies SYM, they will all get the same. The rest —the
n− rk players that do not belong to Rk— are null players. Hence, since the Shapley value
satisfies NPP, none of them will pay anything. Besides, as the Shapley value also satisfies
EFF, this means that the rk symmetric players get to share the whole cost. Hence, we
have:

Φj(vk) =

{
0 if j 6∈ Rk
− (ck−ck−1)

rk
if j ∈ Rk

for each j ∈ N .

For each j ∈ N , then, let ki = max{j : Rj 3 i}. Then, Φi(v) = −
∑ki

k=1
ck−ck−1

rk
.

Remark 4.3.7. (i) Let Φi(v) be the proposed ,Φi(v) = Φi−1(v)− ci−ci−1

ri
.

(ii) If ni = 1 for all i ∈ {1, 2, . . . ,m}, Φi(v) = Φi−1(v)− ci−ci−1

n−i+1 .

Remark 4.3.8. Littlechild (1974) also proposed the nucleolus of the airport game as the
option to allocate the fees, by solving several linear programming problems.



Conclusions

The aim of this undergraduate thesis was to gain insight into the field of Game Theory
inside Mathematics, which I was mostly unaware of when all this began. By centering our
attention on the branch of Cooperative Game Theory, although not many grandiloquent
results have been proved, we have been able to define and analyze a wide range of concepts
regarding equilibrium, fairness and stability, which I believe could prove to be increasingly
important as Game Theory earns its spot as a tool to analyze any situation involving
interaction, be it conflict or cooperation. This work also covered a wide variety of problems
which Game Theory can solve or at least propose solutions to. Therefore, I hope to have
been able to transmit my enthusiasm to the reader, who has hopefully also gained some
perspective into the usefulness of Game Theory to analyze and solve situations as diverse as
cost-sharing road building problems, the division of inheritances —the claims problem—,
or computing the power each political party has in a parliament.

Besides, I must say that Cooperative Game Theory was attractive to me because I believe
a fairer society is possible, even at this seemingly point of no return, and I yearned for
having a look at the mathematical tools that allowed us to model such interaction. Even
though such ambition is probably out of reach in an overview work, I believe that this
may be just the first step in a long journey.

Bearing in mind that there are further aspects of Cooperative Game Theory, such as non-
atomic games, that could not find their place in this thesis —not to mention the endless
proposed solution concepts one can find when reading different authors—, nevertheless,
what I relish the most is the chance to study more realistic and tangible applications of
Game Theory to economy, politics, global environmental sustainability, management of
finite resources or wealth distribution and the possible implication this could have on such
fields —fields which are utterly strategic for our future—. One can never stop learning, so
although I wish I had had more time to get more out of the theory developed with broader
and more exotic types of applications and problems, on the other side, this thesis may act
as an inflection point in my studies whether it means keeping my academic career related
with this field or following it on my own.
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2010. ISBN 978–0–8218–5151–7.

[6] S.C. Littlechild and G. Owen. A Simple Expression for the Shapely Value in a Special
Case. Management Science 1973, Vol. 20 No. 3, pp.370–372.

[7] R.J. Aumann and M. Maschler. “Game theoretic analysis of a bankruptcy problem
from the Talmud”. J. Econom. Theory 36, 1985. pp.195-213.

[8] A. Mas-Colell. “Algunos comentarios sobre la teoŕıa cooperativa de los juegos”.
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