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Regulating wave front dynamics 
from the strongly discrete to the 
continuum limit in magnetically 
driven colloidal systems
Fernando Martinez-Pedrero1, Pietro Tierno1,2, Tom H. Johansen3,4 & Arthur V. Straube5

The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be 
found in a broad range of physical and biological disciplines. Here we report the direct experimental 
observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter 
propelled above a traveling wave potential generated by a structured magnetic substrate. We develop 
a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a 
generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a 
wide range of field parameters close to and far from depinning, where the discrete and continuum limits 
apply. We show how symmetry breaking and finite size of chains are used to control the direction of 
front propagation, a universal feature relevant to different systems and important for real applications.

Examples of driven spatially discrete systems are widespread in both living and nonliving matter, ranging from 
signal propagation in biological cells1,2 to motion of interfaces3,4, charge density waves (CDWs)5–8, vortices in 
type-II superconductors9–11, frictional surfaces12,13. In general, a pinned system subjected to an external force 
may generate propagating fronts when reaching a threshold force. These fronts may induce depinning of the 
whole system, via transport of matter accompanied by energy dissipation. In discrete systems, emergence of 
propagating fronts under such conditions has received much theoretical attention in the past, mainly in relation 
to excitable cells14, burst waves in array of reaction sites15 and semiconductor superlattices16. In contrast, direct 
observations of wavefront dynamics in microscale systems have often been restricted to averaged quantities, such 
as current-voltage characteristics in CDWs17 and vortices in superconductors18, or dedicated surface imaging in 
chemical waves19.

Ensembles of interacting colloidal particles assembled above periodic optical20–22 or magnetic23,24 potentials 
represent simplified laboratory-scale model systems where the dynamics can be investigated in real time and 
space25. However, systems displaying well controlled fronts in ensembles of interacting colloidal particles are 
difficult to realize due to the strong damping of the dispersing medium, unless a pinning potential combined with 
an external force is used.

In this article, we explore the propagation of fronts along mobile chains assembled from interacting para-
magnetic colloidal particles and driven above a magnetic structured film via a traveling potential landscape. 
In contrast to the magnetic chains propelling longitudinally with respect to the direction of motion24, here we 
employ a system where chains move perpendicular to their main axis. Although Brownian dynamics simulations 
are capable of replicating experimental observations, we develop a coarse grained analytically tractable descrip-
tion that admits a much deeper insight. We show that the complexity of the original system can be significantly 
reduced and it can be rigorously mapped to a generalized dissipative Frenkel-Kontorova (FK) model, allowing for 
a simple and accurate interpretation.

1Estructura i Constituents de la Matèria, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain. 
2Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain. 3Department of Physics, 
The University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway. 4Institute for Superconducting and Electronic 
Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong NSW 2500, Australia. 
5Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany. Correspondence 
and requests for materials should be addressed to P.T. (email: ptierno@ub.edu) or A.V.S. (email: straube@physik.
hu-berlin.de)

received: 08 September 2015

accepted: 21 December 2015

Published: 03 February 2016

OPEN

mailto:ptierno@ub.edu
mailto:straube@physik.hu-berlin.de
mailto:straube@physik.hu-berlin.de


www.nature.com/scientificreports/

2Scientific Reports | 6:19932 | DOI: 10.1038/srep19932

Being thoroughly studied in the conservative limit26, when the system becomes strictly nondissipative, the FK 
model is a cornerstone for understanding various nonlinear systems27,28, from coupled oscillators29 to discrete 
reaction-diffusion systems30, where many important questions remain open. Modifications of the FK model are 
also widely used in nanotribology31 to understand on a simplified ground frictional mechanisms occurring at 
the atomic scale32, or in sliding biological filaments33. In relation to the dissipative case, most efforts have been 
mainly theoretical and either focusing on the dynamics at29, or close to30,34, the depinning transition or those per-
formed for continuum systems8,35. Our work presents an experimental realization of a dissipative FK system with 
emergent discrete fronts which can be generated and controlled by an applied external field. The dynamics of the 
system is systematically analyzed from the strongly discrete to the continuum limit by tuning the external field 
and consequently the coupling strength. Relevant for potential applications, we show that the finite system size 
allows us to polarize the emerging fronts via controlled symmetry breaking which results from uncompensated 
edge effects.

Results
Observing discrete fronts.  We assemble and transport paramagnetic colloidal chains by using a bismuth 
substituted ferrite garnet film (FGF) characterized by a series of parallel ferromagnetic domains with alternating 
perpendicular magnetization and a spatial periodicity of λ =  2.5 μ m (see Methods). The periodic arrangement of 
the nanoscale domain walls in the FGF film creates a one-dimensional (1D) sinusoidal potential landscape along 
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Figure 1.  Propagation of fronts along propelling colloidal chains. (a) Schematic of a mobile chain of 
paramagnetic colloidal particles following a traveling periodic energy landscape, as realized by an external 
magnetic field precessing around the y-axis. The particles are held together by applying the static component Hy 
and the translation of the otherwise stationary periodic landscape along the x axis (green arrows) is prompted 
by the precession of the magnetic field. The chain is aligned along a valley of the landscape. Under the the 
combination of the drag forces and thermal fluctuations, a terminal particle jumps to the neighboring valley 
behind the chain, which triggers the front propagation along the chain (black arrows). (b) Sequence of images 
showing a front propagating downwards at a speed vf =  26.7 μ m s−1 along a chain composed of N =  28 
paramagnetic colloidal particles (MovieS1 in Supporting Information). Field parameters are H0 =  Hy =  1500 A 
m−1, ω =  37.7 rad s−1; time lapse between images is 0.18 s and the scale bar is 10 μ m. (c) Space-time diagram of 
the chain bending rate κ , showing that fronts can propagate in both directions, upwards (along the y axis) and 
downwards (against the y axis).
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the x direction, as shown in Fig. 1(a). Above this potential, we place paramagnetic microspheres of diameter 
d =  2.8 μ m, which are attracted by the stray field of the film Hsub and reside in minima of the energy landscape. In 
a magnetic field H, the particles acquire an induced dipole moment m =  υχH, where υ =  πd3/6 is the volume of 
particle and χ is the effective magnetic volume susceptibility of the particles. Application of an external alternat-
ing (ac) Hac magnetic field rotating in the (x, z) plane,

ω ω= ( , , − ), ( )H t tH cos 0 sin 1ac
0

modulates the stray field of the FGF and causes the energy potential landscape to translate at a constant speed

ω ω
( ) = . ( )v

k 20

Here, H0 and ω are respectively the amplitude and angular frequency of the ac field and k =  2π/λ is the wave num-
ber of the landscape. At low enough frequency, the particles follow the running energy minima with an average 
translational speed =x v0.

To assemble the magnetic particles into a traveling chain aligned along the y axis, we add to Hac a constant 
(dc) in-plane magnetic field, such that this field tilts the otherwise parallel magnetic moments along the y axis. As 
shown in ref. 36, the critical field above which the particles confined to the same minimum of the energy land-
scape experience net attractive interactions is:

= .
( )

⁎H H
2 3y
0

Note that this critical value can also be derived from the effective potential of mean force, see Eq. (19) in the 
Methods section. For the considered chain configuration, the effective potential describing dipolar interaction 
between a pair of particles in the chain is given by: ( )γ( ) = − − /U r H H r2 ydd

eff 2
0
2 3, where γ =  μ0(υχ)2/(8π) >  0, 

μ0 =  4π ×  10−7 H m−1, and r is the distance between the particles. At the field given by Eq. (3) the dipolar force 
vanishes, separating the cases of repelling ( )< ⁎H Hy y  and attracting ( )> ⁎H Hy y  particles. Thus, Hy is used not 
only to assemble the particles in chains but also to control the chain stiffness, while Hac is an independent means 
to induce their propulsion. A schematic showing the moving sinusoidal landscape with a chain of paramagnetic 
colloids is shown in Fig. 1(a).

A typical front is shown in Fig. 1(b), which is generated when the combination of the drag force and the ther-
mal fluctuations displace a particle from its current dynamic equilibrium position in the propelling chain to the 
one that lags behind the chain by one spatial period λ. The front travels along the chain at an average speed vf >  v0. 
We quantify the chain transverse deformation by measuring the bending rate κ κ= ∂ /∂


t, which describes the 

change in shape of the traveling chain37. Here, the curvature is given by κ(s, t) =  |∂2x/∂s2| with s the arc length of 
the chain. As a consequence of the finite size of the chain, the fronts are typically excited at one of the two chain 
ends, since those particles only have one pulling neighbor and consequently are more susceptible to lose their 
phase. The spatial symmetry of the system with respect to y implies that fronts propagating upwards and down-
wards (against and along the y axis, respectively) are equally probable, as shown in Fig. 1(c).

Coarse-grained model capable of front propagation.  To obtain insight into the basic physics and 
quantify the dynamics of fronts, we apply a reduced one-dimensional (1D) model capable of front propagation 
along propelling chains. As shown in Methods, the complexity of full two-dimensional time-dependent sys-
tem of a finite number N of magnetically interacting particles can be reduced. As a result of consistent coarse 
graining, the experimental system is cast into a generalized FK model with a “sine-Gordon” on-site potential 
V(ϕ) =  ωc(1 −  cosϕ) −  ωϕ,

ϕ ω ω ϕ ϕ ξ= − + ( ) + ( ), ( )
L tsin 4l c l l l
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Note that the dynamics of particles with the coordinates xl (l =  1, …, N) is formulated in the reference frame 
moving with the speed v0, Eq. (2), in terms of the phase variables, ϕl(t) =  − k(xl(t) −  v0t).

The overdamped dynamics of phase in Eq. (4) is determined by the constant term ω caused by the external 
modulation, Eq. (1), the critical frequency ωc that sets the amplitude of the sinusoidal landscape, a discrete linear 
coupling term originating from the dipolar interactions with the nearest neighbor particles, Eq. (5), and a stochas-
tic term ξl effectively taking into account the presence of thermal fluctuations and possible structural disorder38. 
Here, β =  β(H0, Hy) is the coupling strength that has the dimension of frequency, Δ ω =  Δ ω(Hx, Hy) is an effective 
frequency shift, and ξl(t) is a Gaussian white noise with zero mean, 〈 ξl(t)〉  =  0, and covariance given by 〈 ξl(t)ξl′(t′ )〉   
=  2k2Dδll′δ(t −  t′ ) with D being the coefficient of Brownian diffusion (see Methods). For noninteracting particles 
(γ =  0), the coupling term vanishes, ϕ( ) =L 0l , Eq. (4) reduces to the generic stochastic Adler equation (for the 
discussion of its properties, see refs 39,40),

ϕ ω ω ϕ ξ= − + ( ), ( )
tsin 6l c l l
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which admits a stable phase-locked solution Φ (ω) =  arcsin(ω/ωc) for ω <  ωc and a phase-drift solution, ϕl =  ϕl(t), 
with the deterministic mean speed ϕ ω ω= −

 l c
2 2 for ω >  ωc.

We note that the invariance of Eqs. (4) and (5) with respect to the transformation ϕl →  ϕl +  2π makes it effec-
tively bistable with the stable equilibria ϕ− =  Φ  and ϕ+ =  Φ  +  2π. As a result, for β >  0, the model given by Eqs. 
(4) and (5) admits monotonic discrete front solutions8,34

ϕ ϕ ϕ ϕ= ( − ) → → ±∞, ( )


y v t l: as 7l l f l

ϕ ϕ ϕ ϕ= ( + ) → → ±∞, ( )±y v t l: as 8l l f l

with a front speed vf(ω, β) >  0, describing the fronts traveling along and against the y axis, respectively.
It is also important to note that the parameter Δ ω, which enters only the governing equations for the terminal 

particles, introduces asymmetric frequency shifts, ω →  ω ±  Δ ω, cf. Eqs. (4) and (5) for l =  1 and l =  N. In the 
partial case of Δ ω =  0, Eqs. (4) and (5) are invariant under the transformation y →  − y, and the fronts traveling 
in opposite directions, along and against the y axis, remain equally probable. This property of the model reflects 
the experimental observation shown by Fig. 1(c). The case Δ ω ≠ 0, however, breaks this symmetry and front 
solutions in Eqs. (7) and (8) are no longer equally probable. Depending on the sign of the parameter Δ ω, one (or 
the opposite one) direction of front propagation becomes preferable. Both these situations are discussed below.

Dynamic state diagram. Discrete fronts as a result of depinning of flexible chains.  We now 
analyze the symmetric case, Δ ω(Hx =  0) =  0, when the asymmetry in the behavior of the terminal particles 
described by Eqs. (4) and (5) for l =  1 and l =  N disappears. For this reason, properties of front propagation exhib-
ited by finite chains composed of few tens of particles can be drawn equally well from the model of an infinite 
chain. In Fig. 2(a), we show a state diagram illustrating the various dynamic regimes and types of chain deforma-
tion experimentally observed in the (ω, Hy) plane. We first note that the propelling chain is stable for positive 
coupling strengths β >  0, which corresponds to large enough fields, > = /⁎H H H 2y y 0 , as follows from Eq. (3) 
and Eq. (23) in the Methods section. For smaller fields ( )< ⁎H Hy y , the coupling strength is negative, β <  0, and 
the chain breaks up. The critical line = = −⁎H H 1060A my y

1 predicted by the model for H0 =  1500 A m−1 is in 
agreement with the experimental observations, Fig. 2(a). Above this line, for ω ∈  [25.1, 64.7]rad s−1, we observe 
chains running with a net speed of v ≈  v0 accompanied by fronts propagating along the chains, where v0 is given 
by Eq. (2). For frequencies ω ω ≈ . −64 7rad sc

1, the chain propulsion slows down and stable fronts are no 
longer observed.

This behavior is explained by a global instability of Eq. (4) at ω =  ωc(H0), at which the stable equilibria ϕ±(ex-
isting for ω <  ωc) disappear and the phase starts to drift. As described by Eq. (6), a deterministic chain of nonin-
teracting particles either locks to the landscape and runs together with it uniformly, with the constant speed v0 
(ω <  ωc), or decouples from the landscape and slides across it asynchronously with a lower net speed, 

ω ω= ( − − / ) <v v v1 1 c0
2 2

0 (ω >  ωc), see Fig. 2(c). The extinction of stable equilibria ϕ± prohibits front solu-
tions. We confirm this expectation by observing beyond ωc multiple bending fluctuations typical of dynamic 
roughening phenomena41, as shown in the space time plot of κ  in Fig. 2(b).

From Fig. 2(a) it becomes clear that there is also a lower bound for the existence of fronts. It is set by the 
dependence ω =  ωd(β) <  ωc, which represents the depinning transition caused by the discretness of the system. At 
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Figure 2.  Existence of fronts and dynamics of individual colloidal particles. (a) State diagram in the (ω, Hy) 
plane denoting regions with no fronts (black segments), propagating fronts (red circles), dynamic roughening 
(shaded area) and chain rupture (blue squares) below the blue dashed line = /H H 2y 0  with H0 =  1500 A m−1. 
The depinning transition, ωd(Hy) (solid line), is calculated by numerically solving Eqs. (4) and (5); The 
asymptotic behavior of ωd(Hy) at small and large values of Hy is in accordance with Eqs. (9) and (10), 
respectively; recall that β =  β(Hy), see Eq. (23) in Methods. (b) Space-time diagram of κ  of a chain showing 
dynamic roughening occurring in the sliding state, see MovieS2 in the Supporting Information. (c) Normalized 
velocity of a single particle v/v0 versus angular frequency ω for H0 =  1500 A m−1 showing the transition from the 
running to sliding states separated by a critical frequency ωc. In the inset we show the critical frequency versus 
H0.
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low frequencies, ω <  ωd, inhomogeneous solutions with front-like profiles remain “pinned” and fail to propagate. 
The fronts depin and start to propagate for ω >  ωd. The critical dependence ωd =  ωd(β(Hy)) is evaluated numeri-
cally by solving the FK model, Eqs. (4) and (5).

In the strongly discrete limit, when front profiles are sharp, ωd is largest and can be evaluated similarly to the 
approach applied in ref. 30,

ω ω β
ω

π ω β
ω





 − ( + )





 → , → .

( )
 1 2 as 0

9d c
c

c
c

In the continuum limit29, the dependence is known to decay exponentially with the coupling strength,

ω β
ω

β
ω
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ω
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


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In this limiting case, fronts are smooth and the discrete FK model, Eqs. (4) and (5) applied to an infinite chain, 
can be approximated by a conventional continuum reaction-diffusion equation. The discrete coupling term, 
β(ϕl+1 −  2ϕl +  ϕl−1), is replaced by a 1D continuum diffusion term, βd2∂yyϕ.

Transition from the strongly discrete to continuum limit for the front speed.  In order to charac-
terize the front dynamics we perform a series of experiments by measuring the front velocity vf versus the field 
amplitude Hy for different driving frequencies ω. Figure 3 shows the growth of the normalized front speed vf/v0 
with the increase in Hy, which demonstrates a smooth transition from the strongly discrete to continuum limit 
predictions. Indeed, close to the depinning transition at Hy ≈  1400 A m−1, the front speed can be evaluated as

ω β
ω ω

π
β

ω ω
( , ) ≈
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as analytically derived in ref. 34. Note that because ωd is a function of β, cf. Eq. (9), the dependence of vf on β 
deviates from a simple power law. In the continuum reaction-diffusion formalism we obtain an estimate,

ω β
πω β

ω
( , ) ≈ ,

( )
v d

4 12f
c

Figure 3.  Magnetic control of front speed switching from the discrete to continuum limits. Normalized 
front velocity vf/v0 as functions of the magnetic field Hy (bottom axis) and the normalized coupling strength 
β/ωc (top axis). Scattered symbols denote experimental data for different ω (H0 =  1500 A m−1). Continuous 
(red) lines with filled red and green circles are results of respectively deterministic (D =  0) and stochastic 
(effective diffusion coefficient . µ −

D 0 3 m s2 1) simulations of Eqs. (4) and (5) for N =  20 particles. The value of 
D in the stochastic simulation effectively accounts for both thermal fluctuations and structural disorder, leading 
to rounding of the transition close to the depinning point and converging to the deterministic result away from 
it. Black continuous and dashed lines represent the predictions in the discrete, Eq. (11), and continuum, Eq. 
(12), limits, respectively.



www.nature.com/scientificreports/

6Scientific Reports | 6:19932 | DOI: 10.1038/srep19932

which is consistent with the scaling ω β∼v f  reported previously29. To derive analytic prediction (12), we 
assumed that the front profile does not significantly deviate from the stationary kink solution valid at ω =  0, 
which is justified in the continuum approximation and is a posteriori confirmed by numerical simulations in the 
continuum limit.

We emphasize that neither of the asymptotic predictions, Eqs. (11) and (12), are uniformly valid in the 
whole range of Hy, when compared with the results of simulations of Eqs. (4) and (5), shown as filled circles 
in Fig. 3. The numerical data are in good agreement with the experimental ones in the whole range of Hy for 
γ/ζ =  75 μ m7mA−2s−1, used as a fit parameter with ζ being the coefficient of viscous friction. The only discrepancy 
occurs close to the depinning point, where the experimental data deviate from the theoretical prediction.

On one hand, this distinction can be attributed to the presence of thermal fluctuations and structural disorder. 
As known from the literature42,43, these factors accounted as effective thermal noise result in rounding of the tran-
sition in the vicinity of depinning. As confirmed by our simulations (see Fig. 3), while the purely deterministic 
limit displays a sharp transition (red circles), the presence of thermal noise leads to its softening (green circles). 
On the other hand, a reliable estimate for the front speed close to the depinning point, where front speeds are 
small, requires accumulation of large enough statistics. These amounts of data can be obtained within the frame-
work of the numerical model but are not always available in the experiment.

However, because β =  β(Hy), see Eq. (23) in the Methods section, by uniformly changing Hy, our experimental 
system allows us to explore systematically the whole range of β, from strongly discrete, β ≪  ωc, to nearly contin-
uum limits. From the comparison of the results of the full FK model, Eqs. (4) and (5), with the continuum-limit 
prediction Eq. (12) in Fig. 3, we conclude that the continuous limit sets already at β ωc.

Controlling the direction of front propagation.  Finally, we demonstrate how by adding a small con-
stant component Hx to the external field such that |Hx| ≪  H0, we can control the direction of front propagation. 
In Fig. 4, we plot the probabilities to observe an upwards, P+, or downwards, P−, propagating front versus Hx. The 
physical mechanism underlying this front polarization effect is based on an interplay between the finite size of 
chains, which implies broken spatial symmetry of the system for Hx ≠ 0 for terminal particles, and thermal noise.

We recall that front propagation is typically triggered by a terminal particle in the chain, as soon as the termi-
nal particle overcomes a potential barrier Δ V needed to undergo the transition ϕ− →  ϕ+. As follows from Eqs. 
(4) and (5), for the perfectly symmetric case, Hx =  0, the stable equilibria are ϕ−(ω) =  Φ (ω) and ϕ+(ω) =  Φ (ω) +  2π 
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Δ ω/ω (top axis) for H0 =  Hy =  1500 A m−1, ω =  37.7 rad s−1. Points correspond to experimental data, and lines 
are fits according to the theoretical model, Eq. (13), performed as described in the text. (b,c) Space-time 
diagrams of the bending rate κ  showing the polarization of fronts moving either downwards (b) or upwards (c). 
Experimental conditions correspond to the two circles in panel (a).
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with Φ (ω) =  arcsin(ω/ωc), and the corresponding barrier Δ V(ω) =  πω − 2ωΦ (ω)− 2 ω ω−c
2 2. The symmetry of 

the model is broken for the terminal particles via the term |Δ ω(Hx)| ≪  ω with Δ ω ∝  Hx, see Eq. (23) in Methods 
section. Therefore, the equilibria positions for the terminal particles are slightly shifted from ϕ±(ω) for Hx =  0 to 
ϕ±(ω ±  Δ ω) for Hx ≠ 0. Note that the equilibria positions of the inner particles remain unaffected, which particu-
larly indicates that the mechanism is essentially independent of the chain length, ensuring its universality. As a 
result, the barrier Δ V(ω ±  Δ ω) which the terminal particle has to overcome in the case Hx ≠ 0 decreases for 
± Δ ω >  0 and increases for ± Δ ω <  0, respectively.

In the presence of thermal fluctuations, the associated Kramers’ escape rates, r±(Δ ω) ∝  exp[− Δ V(ω ±  Δ ω)/
(k2D)] lead us to the probabilities P± =  r±/(r+ +  r−). Their approximate evaluation yields the following 
expressions:

ω
ω ω ω

∆ ( ) =



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13x
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1

which are used to fit the experimental data (scattered points) in Fig. 4. Equation (13) can be considered as a func-
tion of the Hx field, ( ) = / + ( )± P H cH1 [1 exp ]x x , where c is a fit parameter. A good agreement between this 
analytic prediction and the experimental data is achieved at c =  0.04 mA−1. A similar dependence in terms of β 
can be obtained by using the relation between β and Hx see Eq. (23) in the Methods section.

As follows from the prediction for P±, Eq. (13), the fronts propagating upwards and downwards are equally 
probable at Hx =  0, P+ =  P− =  1/2, which is well seen from Fig. 4(a). This finding is expected from the discussed 
symmetry of the model, since at Hx =  0 the frequency shift Δ ω =  0 and Eqs. (4) and (5) become invariant with 
respect to the transformation y →  − y. We note that exponential dependence of P± on Hx ensures that already rela-
tively small values of Hx ≠ 0 allow us to polarize the fronts. Indeed, at |Hx| = 100 A m−1, which is much smaller than 
the fields H0 =  Hy =  1500 A m−1, we can have polarized fronts propagating either downwards (P− ≈  1, P+ ≈  0, 
Hx <  0) or upwards (P− ≈  0, P+ ≈  1, Hx >  0), depending on the sign of Hx, see Fig. 4(b,c).

Conclusions
We have presented an experimental system showing discrete fronts which propagate along chains of paramag-
netic colloidal particles held together and driven by an external magnetic field. We develop a reduced analytically 
tractable model which exquisitely matches and explains the observed features in a wide range of field strengths 
ranging from the strongly discrete to continuum limits. The finite size of chains is used to polarize the emerging 
front via a symmetry breaking mechanism. We note that the actual number of particles in the chain is unimpor-
tant and the mechanism is effectively universal, being valid for both short and long chains. The ability to control 
the front dynamics, including its propagation direction, in driven colloidal systems is appealing for potential 
applications such as e.g. transport and precise positioning of functionalized cargos above moving fronts or col-
loidal fractionation in nanofluidic sieving processes36. Finally, the generic form of the developed model presents 
a firm implication for a greater variety of systems exhibiting similar phenomena. Particular details of our exper-
imental system present no restrictions for our findings, which can expectedly be extended to other nonlinear 
systems in biological and condensed matter contexts.

Methods
Experimental colloidal system.  We used aqueous suspension of monodisperse paramagnetic colloidal 
particles (Dynabeads M-270, Dynal) of diameter d =  2.8 μ m and effective magnetic volume susceptibility χ =  0.4. 
The particles are paramagnetic due to the uniform doping (20% by weight) with iron-oxide grains. The stripe 
patterned ferrite garnet film (FGF) of wavelength λ =  2.5 μ m was grown by dipping liquid phase epitaxy on a 
gadolinium gallium garnet substrate44. The particles were diluted in highly deionized water and deposited above 
the FGF surface. We prevented particle adhesion to the FGF substrate by coating the latter with a 1 μ m thick layer 
of a photoresist (AZ-1512 Microchem, Newton, MA) via standard spin coating and backing procedures.

The applied magnetic field was provided via custom-made Helmholtz coils perpendicular to each other. The 
coils were connected to two independent bipolar amplifiers (Kepco BOP 20-10M, KEPCO) controlled with 
a wave generator (TGA1244, TTi). To visualize the particle dynamics we used an upright optical microscope 
(Eclipse Ni, Nikon) which was equipped with a 100 ×  1.3 NA oil immersion objective and a CCD camera (Balser 
Scout scA640-74fc) working at 75 frames per second. A total field of view of 145 ×  109 μ m2 was obtained by add-
ing before to the optical path a 0.45 ×  TV adapter.

General theoretical framework.  We start by considering an ensemble of N interacting colloidal particles 
placed above the FGF at a fixed elevation z and in-plane positions rl =  (xl, yl) with l =  1, … , N. The dynamics of 
particles can be well described by two-dimensional (2D) overdamped Langevin equations

ζ
η= − ∇ + ( ).

( )


U D tr 1 2
14l l l

Here ζ is the coefficient of viscous friction, D of Brownian diffusion, and ηl =  (ηxl, ηyl) is a Gaussian white noise 
with zero mean, 〈 ηαl(t)〉  =  0, and unit covariance matrix, 〈 ηαl(t)ηα′l′(t′ )〉  =  δαα′δll′δ(t −  t′ ), where α,α′  ∈  {x, y}.

The total magnetic energy of the ensemble of induced dipoles is given by
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17
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l l
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l ll l ll
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dd 3 5

describe the individual interaction of particles with the magnetic field above the substrate and pairwise dipolar 
interactions, respectively. Here γ =  μ0(υχ)2/(8π), rll′ =  rl −  rl′ are the relative coordinates, and rll′ =  |rll′| the inter-
particle distances.

The total field above the FGF is evaluated as H =  Hac +  Hdc +  Hsub with the external time alternating field 
Hac =  (cosωt, 0, − sinωt), the external constant field Hdc =  (Hx, Hy, 0), and the field of substrate Hsub =  (4Ms/π)
e−kz(coskx, 0, − sinkx)45. Here, ω is the angular frequency of modulation, Ms is the saturation magnetization and 
k =  2π/λ the wave number of the substrate. The Hx field is assumed to be small, |Hx| ≪  H0, and is used to control 
the direction of the front propagation.

Derivation of the reduced theoretical model.  To derive an efficient rigorously reduced one-dimensional 
(1D) description in terms of a generalized Frenkel-Kontorova (FK) model, we perform two consecutive steps 
reducing the complexity of the full 2D time-dependent model, Eqs. (14)-(17).

First, by integrating out the “fast” oscillatory timescale τ =  ω−1, we focus on the slow dynamics at times τt
46,47, to arrive at effective potentials of mean force

( , ) = − ( − ) + ( ), ( )U t U k x v t O Hr cos[ ] 18l l xs
eff

0 0
2

( )γ
( ) =






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



−





− − −








+ ( ),

( )
′

′
′ ′ ′ ′U

r
H H x H H x y H H y O Hr

2
6 2

19
ll

ll
y ll x y ll ll y ll xdd

eff
5

2 0
2

2 2
0
2 2 2

where U0 =  (4/π)μ0υχMsH0e−kz, v0(ω) =  ω/k, and we have retained only the leading linear contributions in Hx and 
neglected the smaller higher order terms ( )O Hx

2 . Note that while obtaining Eq. (19), we have assumed that the 
dipolar interaction is mainly caused by the externally applied field and therefore H ≈  Hac +  Hdc, as particularly 
confirmed earlier36,47. We also note that the time dependence enters Eq. (18) via the combination ∝ (xl −  v0t) typ-
ical of the wave propagation, reflecting the translation of the spatially periodic energy landscape with the speed 
v0. Thus, expressions (18) and (19) are time independent (and the corresponding slow-timescale equations of 
motion are fully autonomous) in the co-moving reference frame.

Next, assuming a ground state in the form of chain with yl =  ld +  const, we consider Eqs. (14) and (15) with 
Us(rl, t) and Udd(rll′, t) replaced by the effective potentials (18) and (19), which leads to 1D equations of motion

∑ζ
η=





 ( , ) + ( )





 + ( ),

( )′≠
′x F t F D tr r1 2

20l l
l l

ll xls dd

with the forces ( , ) = − ∑ ∂ ( , )′ ′F t U x trl l x
ff

ls s
e

l
 and ∑ ( ) = −( / ) ∑ ∑ ∂ ( , )′≠ ′ ′ ′′≠ ′ ′ ′′F U tr r1 2l l ll l l l x l ldd dd

eff
l

. While 
the evaluation of the force due to individual interaction with the field of substrate yields a simple expression

( , ) = ( − ) = − ( − ) , ( )F t F x v t kU k x v tr sin[ ] 21l l ls s 0 0 0

the terms describing the dipolar interaction are cumbersome. Therefore, to arrive at an analytically tractable 
model, the dipolar force is evaluated approximately by linearizing it with respect to the coordinates xll′ and retain-
ing the interactions with the nearest neighbors only. Note that although dipolar forces are long ranged and for-
mally require to account for further neighbors48, the nearest neighbor approximation is often successfully applied 
to simplify the theoretical analysis41 and is known to work particularly well for systems of paramagnetic colloidal 
particles coupled via dipolar interactions both in and out of equilibrium49. As a result, for the magnetic force 
exerted on particle l by particles l ±  1, we obtain

ζβ ζ ω( ) = ( ) = − ( / )∆ , ( )± ± ± F F x x kr 22ll ll lldd 1 dd 1 1

where the following parameters are introduced:

( )β γ
ζ

ω γ
ζ

= − , ∆ = .
( )d

H H k
d

H H6 2 6
23y x y5

2
0
2

4

Thus, the dynamics of the magnetic chain is reduced to 1D equations of motion
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ω
η= − ( − ) + ′( ) + ( ), ( ) Lx

k
k x v t x D tsin[ ] 2 24l

c
l l xl0

where ωc =  k2U0/ζ=  8μ0υχkMsH0/(ζλ)e−kz is a critical frequency and

β ω
β
β ω

′( ) =




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( − ) − ∆ / , = ,
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L x
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x x k l N

if 1
2 if 1

if 25
l

l l

l l l

l l

1

1 1

1

is the linear coupling term caused by dipolar interactions with the nearest neighbors. Finally, proceeding to the 
reference frame moving with the speed v0, introducing a phase variable ϕl(t) =  − k(xl(t) −  v0t), and taking into 
account that ϕ( ) = − ′( )L Lk xl l  in Eqs. (24) and (25), we arrive at our generalized FK model given by Eqs. (4) 
and (5), where β stands for the coupling strength, Δ ω is an effective frequency shift, and the stochastic term is 
rescaled as ξ η( ) = ( )t k D t2l xl .
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