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We use cosmology-independent measurements of the expansion history in the redshift range 0.1 <z <
1.2 and compare them with the Cosmic Microwave Background-derived expansion history predictions.
The motivation is to investigate if the tension between the local (cosmology independent) Hubble con-
stant Hy value and the Planck-derived Hj is also present at other redshifts. We conclude that there is
no tension between Planck and cosmology independent-measurements of the Hubble parameter H(z) at
0.1 < z < 1.2 for the ACDM model (odds of tension are only 1:15, statistically not significant). Con-
sidering extensions of the ACDM model does not improve these odds (actually makes them worse), thus
favouring the simpler model over its extensions. On the other hand the H(z) data are also not in tension
with the local Hy measurements but the combination of all three data-sets shows a highly significant ten-
sion (odds ~1:400). Thus the new data deepen the mystery of the mismatch between Planck and local Hyp
measurements, and cannot univocally determine whether it is an effect localised at a particular redshift.
Having said this, we find that assuming the NGC4258 maser distance as the correct anchor for Hy, brings
the odds to comfortable values.

Further, using only the expansion history measurements we constrain, within the ACDM model,
Hy = 68.5 4+ 3.5 and £2,;, = 0.32 &£ 0.05 (at 68% confidence) without relying on any CMB prior. We
also address the question of how smooth the expansion history of the Universe is given the cosmology
independent data and conclude that there is no evidence for deviations from smoothness on the expansion

history, neither variations with time in the value of the equation of state of dark energy.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The recent release of the determination of cosmological param-
eters from the Planck [1,2] Cosmic Microwave Background (CMB)
observations, has shown that for a ACDM model, the extrapolated
value at z = 0 of the Hubble parameter, Hy, is in tension with
the one measured locally via astronomical observations of the lo-
cal distance scale [3,4]. Such a difference could not be explained
by cosmic variance in the standard ACDM model [5,6] and would
require a highly inhomogeneous Universe. It could be due to unac-
counted systematics in the data in either (or both) experiment, or
to a failure of the adopted cosmological model to describe nature.

In a previous paper [3] we discussed the importance of local
(z = 0) measurements in order to assess the consistency of the
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currently favoured cosmology model: ACDM. Because the CMB
mostly probes the Universe at z &~ 1100, any cosmological param-
eter defined at any other redshift is necessarily model-dependent.
Therefore, if cosmological parameters can be measured directly,
precisely and robustly at other redshifts than z ~ 1100, the com-
parison with the same quantities derived from the CMB using the
standard ACDM model can serve as a test of the model itself.

In Ref. [4] we concluded that local measurements of the
expansion rate (Hp) and of the age of the Universe were in tension
(odds 1:53) with the Planck-derived parameters from the CMB
within the ACDM model. The tension was driven by Hy and not by
the age. With only the data-sets considered there, it was however
not possible to determine whether this tension is a signature of
systematics in either measurement or new physics: independent
data are needed to make further progress.

One way to further investigate this is to “fill the gap” by focusing
onz > 0 butstill z < 1100. This can be done by using the recent
measurements of H(z) between redshift 0.1 < z < 1.2 from the
cosmic chronometers project [7-11].

2212-6864/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.
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This method adds cosmology-independent measurements of
the expansion rate back to when the Universe was only ~1/3 of
its current age (1/3 to the distance of last-scattering), thus signif-
icantly increasing the volume surveyed in the Universe to test the
CMB-derived cosmology model. The cosmic chronometer method
is the only method that provides cosmology-independent, direct
measurements of the expansion history of the Universe. In fact,
Supernovae data measure the luminosity distance-redshift rela-
tion, which is related to an integral of H(z). However the neces-
sary marginalisation over the (unknown) intrinsic magnitude of
the standard candles is effectively equivalent to a marginalisation
over an overall amplitude i.e., over Hy. Baryon acoustic oscillations
must rely on the CMB measurement of a standard ruler (the sound
horizon at radiation drag) to extract H(z) information from radial
clustering; angular clustering yields a combination of the angular
diameter distance and the sound horizon at radiation drag and an-
gle averaged clustering yields a combination of angular diameter
distance, H(z) and sound horizon. While the CMB determination
of the sound horizon is robust e.g., Ref. [12] it is still somewhat
model-dependent (e.g., [13-15]). Following Ref. [11] we concen-
trate on the redshift range z < 1.2.

In this paper we explore whether the expansion history at inter-
mediate redshifts shows any signature of possible deviations from
the CMB-inferred one. The paper is organised as follows: we first
investigate (Section 3), in a mostly parameter-independent way
via Gaussian Processes (GP), if the H(z) data show any sign of the
expansion not being smooth: we find none. We also find no evi-
dence for variations of the dark energy equation of state parameter
(Section 4). We then explore the constraints on the parameters of
several cosmological models (the standard ACDM and its popular
extensions) using only H(z) data and no CMB prior (Section 5).
Finally we compute the tension between the H(z) data and the
Planck-derived expansion history for different cosmological mod-
els (Section 6). We conclude in Section 7.

2. The H(z) data for cosmic chronometers

The idea behind the cosmic chronometers approach is to ex-
ploit the fact that H(z) = dt/dz(1 + z) and that redshifts are easy
to measure very accurately from spectroscopic data. The difficult
quantity to measure is dt: the change in the age of the Universe as
a function of redshift. This can be achieved by measuring (relative)
ages of galaxies with respect to a fiducial model, thus circumvent-
ing the need to compute absolute ages, if one could find a galaxy
population that is uniform enough (i.e. standard clocks, or cosmic
chronometers). The cosmic chronometers approach relies on the
fact that the most massive galaxies contain the oldest stellar pop-
ulations: have less than 1% of their present stellar mass formed
at z < 1, have formed their stellar population at high redshift,
z > 2, and that since that time this population has been evolv-
ing passively. The differential ages of these galaxies can therefore
be used to estimate the rate of change of the age of the Universe
as a function of redshift and therefore H(z) for z < 2. See Refs.
[7-11] for more details. The H(z) measurements so obtained are
cosmology-independent, in the sense that they do not rely on as-
suming an underlying cosmological model, but rely on stellar pop-
ulation synthesis models to accurately model the effects of time on
the integrated spectrum of the stellar population. Here and in what
follows we use the expansion history measurements from Refs.
[8,9,11] and in particular we start from the compilation reported
in http://www.physics-astronomy.unibo.it/en/research/areas/
astrophysics/cosmology-with-cosmic-chronometers of [16]. This
compilation has data points that cover redshifts as highasz = 1.8.
Ref. [11] showed that at z > 1.2 the dependence on the assumed
stellar population model becomes important. Those authors con-
sidered two state-of the art models, “BC03” [17] and “MaStro” [18],

and we use the “BC03” results for consistency with the other ref-
erences where only results for this model are provided. A full
treatment that marginalises over the model uncertainty will be
presented elsewhere, here we only considerz < 1.2 (and therefore
for the nature of the sample the data point at the highest redshift
is at z = 1.04). Note that even in this sample there is one point
that shows some dependence on the stellar population model, this
is the highest redshift one at z = 1.04 from Ref. [11]. This de-
pendence is mild: it is 1.6 times the purely statistical error but
the final measurement errors include also sources of systematics
(not including stellar model-dependence). We therefore increase
slightly (20%) the (total) error bars of the point at z = 1.04 to en-
compass the stellar population model uncertainty. With this cor-
rected error-bars the dependence on the stellar population model
becomes insignificant and the results reported below do not de-
pend qualitatively on this point.

3. Is the expansion history “smooth”?

We start by investigating if there are any signatures of deviation
from smoothness using Gaussian Processes (GP) [19,20], which is a
non-parametric Bayesian inference formalism. Authors of Ref. [21]
have been the first ones to recently use GP on the same dataset
to extrapolate the value of the Hubble parameter at z = 0
assuming smoothness of the expansion history. Here we use GP with
a different purpose: to determine, in the least parametric way, if
the data show any deviation from smoothness as a function of
redshift.

We will not enter into a detailed description of GPs here but in-
stead refer the interested reader to the literature (see e.g., [19,20]
for standard references in the field). GP is a stochastic process that
considers independent and identically distributed Gaussian mea-
surement errors, the relations or correlations between measure-
ments are defined via a covariance matrix. Using standard Bayesian
methodology, the estimation of H at any value of z is determined
by a probability distribution (posterior predictive). This results into
a fully probabilistic estimation of the expansion history given the
measurements. In our application the different H(z) determina-
tions are uncorrelated, therefore the off-diagonal terms of the co-
variance matrix determine the smoothness of the fitting function.
In this approach, the only choice we have to make is the form of the
off diagonal terms of the covariance matrix. We have experimented
with various choices of the covariance matrix with similar results,
but we report here the outcome of employing the most commonly
used covariance matrix, the radial exponential:

, , (Z _ Z/)Z)

K(z,Z)=0 exp( o0 , (1)
where z and z" are two different z values (i.e., z # z’) and [, s are
the latent parameters or hyper-parameters' which are determined
using H(z) data themselves. Intuitively, | controls the correlation
length and therefore the “smoothness” and o controls the impor-
tance of the off-diagonal terms compared to the diagonal ones. The
bigger the I is, the smoother the predictive function would look.
Similarly, the higher the o is the lower the signal-to-noise ratio
is. The values of | and o can be obtained using maximum likeli-
hood estimation. Since we are dealing with hyper-parameters and
not parameters, we maximise the marginal likelihood (over func-
tions) and not the likelihood directly. Note that this approach is
the same as the hierarchical Bayesian one [22]. To do so we calcu-
late the partial derivative of the marginal likelihood with respect
to the hyper-parameters and optimise the hyper-parameters using
gradient based search [19].

1 Hyperparameter is a parameter of a prior distribution; the term is used to
distinguish them from parameters of the model for the underlying system under
analysis.
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Fig. 1. Marginalised (over functions) likelihood given the data as a function of the two hyperparameters, | and o. Right panel shows the marginalised (over o) of the full
likelihood shown on the left. The dotted red line indicates the 5% confidence of the | hyperparameter. This lower bound gives us the least smooth predictive posterior shown
in Fig. 2.
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Fig. 2. Top panel, Gaussian Process prediction (solid regions) of the expansion history of the Universe from the cosmic chronometers data using the best estimate for the
hyperparameters. Bottom panel: same prediction but using hyperparameters of low confidence (5%) that produce the least smooth features (this is achieved with low [
values in the covariance matrix). Note the predicted value for Hy. There is no evidence for the expansion history not being smooth over the redshift range 0.1 < z < 1.2
even at the extreme case of using very unlikely values of the hyperparameters. For reference the dash-dotted line is the (multi-dimensional) best fit from Planck data. The
68% confidence error around this lineis +1atz = 1.1.

Fig. 1 shows the marginalised likelihood given the data as a This lower bound gives us the least smooth predictive posterior
function of the two hyperparameters, | and o. The right panel shown in Fig. 2.
shows the marginalised full likelihood (left panel) over o. The The top panel of Fig. 2 shows the 68% and 95% confidence bound
dotted red line indicates the 5% confidence of the | hyperparameter. of the predicted posterior using the GP with the radial exponential
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Fig. 3. Top panel, mean value of the posterior distribution of H as a function of z. In this test, data were divided into two different subsets: 0.1 < z < 0.6 and 0.6 < z < 1.04.
Both tests were treated independently but we used the same priors. Bottom panel shows the posterior for the w for the two data sets. Clearly the two estimates are consistent.

covariance and the best estimate for the hyper-parameters, as
described above. The bottom panel shows the same prediction but
using hyper-parameters that produce the 5% least smooth features.

These regions are fully compatible with the Planck CMB derived
expansion rate (dot-dashed line). But more interestingly is the fact
that there is no signature for deviations from smoothness (over
the redshift range explored) even when we considered the least
likely value of [ that creates the least smooth curve. Any sharp or
asymmetric variation of the equation of state parameter, w, that
results in a non-smooth expansion history, does not seem to be
present at the accuracy of the data.

To be more quantitative there is no evidence for small values of
I, large values of [ - which couple different redshift bins all across
the redshift range considered and therefore give smooth curves -
are not only allowed but mildly preferred.

Another interesting feature is the value of the extrapolation at
z = 0 (as already pointed out and studied in Ref. [21]). While
the error at z = 0 is larger than the one from Planck? it is fully
compatible with it. It however points to the central value of the
locally determined Hy being slightly high. Here we use Ref. [3]
“world average” value for Hy obtained from the determinations
of [23,24].

4. Does w vary with time?

In this section, we examine possible variations of the dark
energy equation of state parameter w as a function of z. We use the
ACDM model as the true model and we simply ask if for different
domains of z the best estimates of w are statistically different or
similar.? We first estimate all three parameters for the dataset and
then we divide the data into subsets and compare the posteriors of
w looking for significant statistical differences. For easy reference,
in the Appendix we report useful formulae for the expression of
H(z) as a function of cosmological parameters.

2 The Planck determination reported here assumes a flat ACDM model.

3 We use weakly informative priors: uniform prior on §2,, between 0 and 1,
Gaussian prior on Hy centred around 68 km s~'Mpc~! with a width of 10 km
s~ 'Mpc~! and uniform prior on w between —2 and 0.

We perform multiple tests by dividing the data into different
subsets and repeat the experiment many times. None of these tests
produce any significant evidence that w varies above the noise of
the measurement given the ACDM model. In order to enhance the
power of our test, we fixed the values of Hy and £2,, to the val-
ues estimated from the whole data set and repeat the test looking
for statistically different values of w, an indication of a varying w.
This is shown in Fig. 3. In this particular test the data were divided
into two sub-sets and we find the marginalised posteriors for w for
both sub-sets. In the top panel we show the results of the fit using
Bayesian linear regression, whereas in the bottom panel we com-
pared the marginalised posteriors. All tests we performed show
similar results. We conclude that given the measurement error w
is invariant in time for the redshift range considered z < 1.04.

5. What does the expansion history tell us about the cosmolog-
ical model?

It is interesting to investigate what constraints on cosmology
(cosmological models and parameters) one can impose by using
only the cosmic chronometers data. While these data have been
used in cosmological analyses by several authors, when scanning
such a large parameter space they were almost always used
in combination with other data sets, especially CMB and/or
supernovae/BAOQ, e.g., [25,16]. This is shown in Table 1 and Fig. 4.
The models we consider are: the standard ACDM, w ACDM where
the (constant) parameter describing the equation of state of dark
energy can differ from —1, 0 ACDM where we allow the curvature
to be non-zero and finally wow,CDM, where the Universe is
spatially flat but the equation of state of dark energy can change
as a function of time as w(a) = w + wy(1 + a) where a is the scale
factor and w, w, parameters of the model [26,27]. The constraints
are qualitatively similar (and in agreement with) to the ones
obtained from Supernovae type 1 A data, perhaps not surprisingly
given that cosmic chronometers and supernovae are probes of
the expansion history. As illustrated in Fig. 4 the constraints
and degeneracy direction in parameter space, for models that
are generalisations of the ACDM are complementary to the ones
obtained from the CMB.

When considering marginalised constraints on single parame-
ters, Table 1 shows that the ACDM model is fairly well constrained
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Fig. 4. 68% and 95% joint confidence contours for different cosmological models. Top left panel: ACDM, top right panel: 0o ACDM and bottom panel: w ACDM. The thick
lines correspond to constraints obtained with expansion history data only, while the thin contours are using Planck temperature data only. Note the nice orthogonality and

complementarity of both datasets.

Table 1

Parameter constraints on different cosmology models using the cosmology-independent expansion history
determined by the cosmic chronometers compilation of Ref.[11]. Unless otherwise indicated the error-bars reported
correspond to 68% confidence. When no error-bars are reported the parameter is kept fixed at the reported value.

The “~” symbol denotes no meaningful constraint.

Model Ho 2m 24 o wWo Wq
ACDM 68.5+ 3.5 0.324+0.05 1—- 92y 0 -1 0
w ACDM 7047 <0.4 (95%) 1— Qm 0 < —0.3(95%) 0
0CDM >50 (95%) - - - 1 0
woweCDM >45 (95%) - - - - -

for the two parameters that affect the expansion history (Hy and
the density parameter £2,,,). Once the ACDM is extended, the cos-
mic chronometers data by themselves are not very constraining,
being able to provide only upper(lower) limits on the parameters
of the cosmology model. It is worth noting that for the most gen-
eral extension of the ACDM model (wow,CDM) Hy has to be larger
than 45 km s~ Mpc~!.

6. Comparing with the Universe at z = 1100

In Ref. [4] we introduced a new statistical tool to determine
the odds of two distributions being in tension and thus decide if
one could combine the two distributions to further restrict the
parameter space of the model. We briefly review here our main
argument for completeness and to clarify notation. We refer the
reader to Ref. [4] for more detailed explanations.

Imagine that we have performed two experiments: A, B and for
each experiment we produce a posterior P 5(6|D4 5) where 6 rep-
resents the parameters of the model and D, p represents the data
from experiments A, Brespectively. Let us also assume that for pro-
ducing both posteriors we have used the same, uniform priors over
the same “support”, x, i.e., 14 = 73 = 7w, 7 = 1or 0 and there-
fore mamp = . Let Hy be the (null) hypothesis that both experi-
ments measure the same quantity, the models are correct and there
are no unaccountable errors. In this case, the two experiments
will produce two posteriors, which, although can have different
(co)variances, and different distributions, have means that are in

agreement. The alternative hypothesis, H—; is when the two exper-
iments, for some unknown reason, do not agree, either because of
systematic errors or because they are effectively measuring differ-
ent things or the model (parameterisation) is incorrect. In this case,
the two experiments will produce two posteriors with two dif-
ferent means and different variances. To distinguish the two hy-
potheses we use the Bayes factor, imagine that we can perform a
translation (shift) of (one or both of) the distributions in x and let us
define P, the shifted distribution. This translation changes the lo-
cation of the maximum but does not change the shape or the width
of the distribution. If the maxima of the two distributions coincide
then

/I_DAI_)BdX = é|maxA=maxB- (2)
This can be considered as our “straw man” null hypothesis (H;). As

the distance between the maxima increases (but the shape of the
distributions remains the same),

/ﬁAI_’de =e <&, (3)
and eventually e —> 0 as the two distributions diverge. Clearly
the Evidence ratio for the (null) hypothesis E; is & /& | maxa=maxs, aS
the normalisation factors A cancel out, and the Evidence ratio for
the alternative H- is its reciprocal. We therefore introduce:

7 — Elmavi=max

¢ : (4)
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Fig. 5. Expansion history from the cosmology-independent cosmic chronometers
project compared to different best-fit Planck cosmology models in the redshift
range 0.1 < z < 1.2. Error-bars on the data points correspond to 68% confidence.

which denotes the degree of tension that can be interpreted in the
widely used (slightly modified, [28]) Jeffrey’s [29] scale. T indi-
cates the odds: 1:7 are the chances for the null hypothesis. In other
words, a large tension means that the null hypothesis (maxA =
max B) is unlikely.

Continuing on with the logic outlined above, let us consider that
experiment A gives us the prior and experiment B gives us the
data. 7 is the evidence ratio between the integrated posterior in
two cases. In the numerator: a “just so” case where the prior from
experiment A has a maximum that coincides with the maximum
likelihood from experiment B; in the denominator: the prior from
experiment A has a maximum that happened to be where it is.*
Note that since the evidence is translation-invariant it does not
matter which data set is considered as prior and which one as
“data”: the result is symmetric.

This argument can be extended to as many measurements as
we want: the relevant integral just becomes higher-dimensional.
For example let us consider the 15 H(z) measurements in light of
a Planck CMB prior for H(z).

Table 2 shows the tension and odds for three different cosmol-
ogy models while Fig. 5 shows the corresponding expansion his-
tory.

The first result to note is that the odds of the expansion history
data and the Planck CMB ACDM model derived parameters being
in tension are very low: just 1:15, which is above 1 o but below
2 o; we conclude that for the redshift range 1.04 > z > 0.1
there is no evidence for tension between “local” data and CMB
derived expansion parameters. We also note that extensions to the
ACDM model are in tension with the “local” data, thus disfavouring
extensions to the minimal ACDM model. These conclusions do not
depend on the value chosen for the data point at z = 1.04 (“BC03”
or “MaStro”) or even the inclusion of this point. In particular the
very low odds for the non-flat LCDM model are driven by the data
atz < 0.6.

Both the Planck CMB results and the local Hy ones have been
recently re-examined [30,31].

Ref. [31] excludes the 217 GHz channel from the analysis with
the motivation that it has been shown to fail a number of null tests
and therefore could be affected by some systematics. They also
independently re-do the cleaning and analysis. As a result some

4 Note that here one could loosely exchange “likelihood” with “posterior” for
experiment B since we assume uniform priors for experiments A and B that are
either 1 or O over the same “support” and therefore one can absorb the prior for
experiment B into the A prior.

Table 2

Tension (in the Jeffrey’s scale) and odds that the expansion history data from the
cosmic chronometers (1.2 < z < 0) and the Planck CMB-derived expansion in
the selected cosmological model are in tension. Note that there is no significant
tension with the Planck ACDM model. Extensions to this model increase the tension
- dramatically in the 0 ACDM case - with the model-independent expansion history
H(z) data; thus no extension of the model is justified.

Model In7 0dds

ACDM 273 1:15

wACDM 3.27 1:26

0ACDM 493 1:138
Table 3

Tension and odds within the ACDM model, for different combinations of the
datasets considered: Planck orig. refers to the Planck team’s analysis, Planck
revisited refers to Ref. [31], Hy'? refers to the “word average” of Refs. [23,24]
following [3]. HE™*" and HE®N““%® are from Ref. [30]. Clearly both re-analysis
lower the tension. Note that the numbers for the combination Planck + Hy"* are
different from Ref. [4] because here we do not include the measurement of the age
of the Universe.

Data combination Planck orig. Planck
revisited

In7T 0Odds InT 0dds
Planck + H(z) 2.73 1:15 271 1:14
Planck + Hy'* 3.55 1:35 2.85 1:17
Planck + Hg ~No¢428 0.44 1:16 027 1:13
Planck + H, " 1.77 1:6 1.33 1:37
Planck + HJ'* + H(z) 6.17 1:473 5.5 1:245
Planck + HENGA28 1 () 3.1 1:22 3.0 1:20
Planck + HE®* 4+ H(z) 44 1:81 4.0 1:55

of the parameters show some shifts, most notably £2,, (down by
1o) and Hy (up by 0.60): §2,, = 0.302 £ 0.015; Hy = 68.0 + 1
do not have access to their full posterior therefore we shift the
Planck posteriors to be centred to these values and we refer to
this as Planck “revisited”. This underestimates the final error-
bars by some 20%-30% but it is a conservative estimate of the
agreement of the new analysis with lower redshift measurements.
Ref. [30] studies the dependence of the Hy, measurement on the
choice of distance scale anchor and on the procedure for outliers
rejection. LMC and MW cepheids distance anchor yield values of Hy
in agreement with each other but NGC 4258 maser distance gives
lower values.

Using all distance anchors he obtains H™*' = 72.5 + 2.5 km

s~'Mpc~! while using the maser distance yields H~N““?% =

70.6 £ 3.3 km s~ 'Mpc~'. The combination LMC + MW yields a
value very close to the “world average” (H(‘)’VA in this table) used
above (we do not consider this combination below as results are
virtually unchanged). In Table 3 we report the results of the various
combinations; the tension between CMB and cosmic chronometers
H(z) remains virtually unchanged between the original Planck and
the revisited Planck constraints.

Clearly both re-analyses lower the tension. If only Planck and
the local Hy measurements are considered either reanalysis brings
the tension to comfortable values, but if all measurements are
considered (i.e. we consider a 16 dimensional tension) both re-
analyses are needed and only the maser distance brings the odds
to comfortable values. Note that H(z) + Hy'? are consistent with
each other (odds 1:2.4, In7 = 0.9). What we see here is the
power of combining many different determinations and therefore
evaluating the tension in high-dimensions. When degeneracies are
present (as for example in the case of the Planck extrapolated
values of H(z), Hy) single determinations might be in agreement
but the multi-dimensional distribution might be less so; this is
illustrated in Fig. 6.
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Fig. 6. Two-dimensional projection of the posteriors considered. In the left panel Hy vs H(z = 0.17) and in the right panel Hy vs H(z = 0.68). The points represent the
Planck extrapolated values within the ACDM model sampled via Markov Chain Monte Carlo, the ellipses are the direct determinations.

7. Discussion and conclusions

Using the cosmology independent expansion history data
(H(z)) from the compilation of Ref. [11] we have explored if
the intermediate redshift universe is in tension with the Planck
ACDM derived one. To do so we have generalised the two-
dimensional tension introduced in Ref. [4] to an arbitrary number
of dimensions. The inclusion of new data adds cosmology-
independent measurements of the expansion rate back to when
the Universe was only ~1/3 of its current age (1/3 to the distance of
last-scattering), thus significantly increasing the volume surveyed
to test the CMB-derived cosmology model. We find no tension
(odds only 1:15) between Planck and H(z). This is in contrast with
the local universe (z = 0) which is in significant tension [4] (1:57)
with Planck. However H(z) and Hy are not in tension within a
ACDM model: the central value for the Hubble constant obtained
from H(z) happens to be very near the Planck-CMB inferred one,
but the error-bars are larger. When considering the three datasets
- Planck, H(z) and Hy - the tension becomes highly significant
(odds become uncomfortably low ~1:400). Thus the addition of
H(z) deepens the mystery of the mis-match between Planck and
local Hy measurements, and cannot univocally determine whether
it is an effect localised at z ~ 0 or z ~ 1100 or if it shows as a
smooth change of the measured value of Hy as a function of the
redshift of the measurement.

Both the Planck and the local Hy measurements have been
independently re-visited and re-analysed. Either re-analysis brings
the tension between Planck and local Hy, measurements to a
comfortable level. On the other hand, when the three datasets are
considered the Planck re-analysis has very little effect, and only
assuming the NGC4258 maser distance as the correct anchor for
H, brings the odds to comfortable values. However at present there
are no compelling reasons to discard the other anchors [23,30].

The highly significant tension for the combined data set within
the ACDM model however warrants further investigation: if we
were to interpret the number in terms of Gaussian standard de-
viations it would correspond to 4.9 o. Of course at this level it is
very important to know extremely well the tails of the distribu-
tions, here we have assumed that all errors in measurements of Hy
and H(z) are Gaussian and this might not be exact. The intermedi-
ate redshift measurements from the cosmic chronometers project,
seems not to be explicitly in tension either with the z = 0 nor with
the CMB. Elsewhere [32] we will consider other probes of the ex-
pansion history that cover a similar redshift range: baryon acoustic
oscillations and supernovae. Moreover significant improvements
in the H(z) measurements is forthcoming [33], the significantly
smaller error-bars might be able to localise or to point to a possible
reason for the tension.

We have also explored how smooth the expansion history data
are. This is motivated by the fact that we wanted to investigate
if with cosmology independent expansion history data we could
see departures from a cosmological constant prediction. Using
Gaussian processes we concluded that the data are smooth with no
sign of sharp deviations from a constant equation of state of dark
energy over the redshift range 0.1 < z < 1.04.

Acknowledgements

LV is supported by FP7-IDEAS Phys.LSS 240117. LV and R] are
supported by MICINN grant FPA2011-29678.

Appendix. Useful formulas

For completeness we report here the expressions for H(z) for a
homogeneous and isotropic FRW Universe.

For a flat Universe (24, = 1 — £, and curvature parameter
2, = 0), generic equation of state parameter for dark energy

w(z') dz/]; 5)

1+2z)

for a non-flat Universe (2, = 1 — £2,; — §24), equation of state
parameter for dark energy given by the wq, w, parameterisation:

H(2) = Ho {2n(1+2)° + 2(1 +2)?

V4
H(z) = Ho(1 —|—z)3/2\/9m + 2, exp [3/
0

+ 241 +2)>F00H expl—3wez/(1+ 21} 5 (6)
of course for a flat ACDM model we have:
H(2) = Hov/2m(1+2)% + (1 — 2m). (7)
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