
 UB Riskcenter Working Paper Series 
  

 

 

University of Barcelona 

Research Group on Risk in Insurance and Finance www.ub.edu/riskcenter 

Working paper 2014/05  \\  Number of pages 25 

 

 

 

 

 

 

 

Accounting for severity of risk when 
pricing insurance products 

 

Ramon Alemany, Catalina Bolancé and Montserrat Guillén 

 

 



Accounting for severity of risk when pricing insurance
products

Ramon Alemanya,1,∗, Catalina Bolancéa,1, Montserrat Guilléna,1
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Abstract

We design a system for improving the calculation of the price to be charged for

an insurance product. Standard pricing techniques generally take into account

the expected severity of potential losses. However, the severity of a loss can be

extremely high and the risk of a severe loss is not homogeneous for all policy

holders. We argue that risk loadings should be based on risk evaluations that

avoid too many model assumptions. We apply a nonparametric method and

illustrate our contribution with a real problem in the area of motor insurance.

Keywords: quantile, value-at-risk, loss models, extremes

1. Introduction

A central problem faced by the insurance industry is to calculating the price

at which to underwrite an insurance contract, that is how much a policyholder

should be required to pay an insurer in order to obtain coverage. In principle,

the price is proportional to the insured risk and, as such, the insurer needs to

estimate the possibility of loss and its potential magnitude. Nevertheless, it is

not easy to evaluate the risk and, therefore, to evaluate the price that have to

pay the policyholder in exchange for a coverage for the insured risk. In general,
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there are a lot of features that affect the value of the insured risk that are diffi-

cult to measure, such as attitudes, responsibility, commitment, ... (see Baublyte

et al., 2012). Also, the perception of risk by the insured differs depending on

many factors: the customs, culture, risk aversion, ... (see Hayakawa et al.,

2011). Therefore, it is essential to establish criteria to help us quantify the real

risk, both from the point of view of analysis and risk assessment and from the

perspective of their coverage. Then, it is important that insurers have histor-

ical information about the accident of their insureds and, simultaneously, the

researchers in statistics should provide new methods that can help to improve

the quantification of risk based on data available to insurance companies.

In non-life insurance (including motor and house insurance), policyholders

are typically placed in risk categories or risk groups. Thus, in the case of motor

insurance, all policyholders classified as belonging to a particular risk group pay

the same price - the a priori premium - during the first contract period, which

usually has a duration of one year (see, for example, [4] and [29]). At the end

of this year, insurers will have gathered information on the losses suffered by

members of a given group and as a result it will become evident that the profiles

within each group are not necessarily homogeneous.

In this article we propose a system for calculating surcharges and price re-

bates on -a priori premiums. We develop a method for approximating the price

surcharge based on the risk margin. It is widely accepted that within a given

risk category, policyholders are distinct and present a heterogeneous claims be-

havior. This in part is purely randomness, but it may also be attributed to

certain unobservable factors. In motor insurance, a driver’s aggressiveness or

reflexes will determine his or her propensity to have an accident, as they may

impact driving habits. Many of these unobservable factors are, however, quite

often difficult to measure.

The classical risk surcharge is associated with a measure of dispersion of the

claims history presented by a risk group - the greater the degree of heterogene-

ity of policyholders within a given category, the greater the uncertainty about

the expected total claims for that group. Thus, even though policyholders in
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the same risk category have to pay the same pure premium, the surcharge is

proportional to the uncertainty of the claims outcome for that group.

Thus, we propose a novel system for calculating the risk premium that takes

into account the cost of claims and which captures the particular shape of the

distribution of the severity of a claim. It is well known that small claims are

much more frequent than large claims, i.e. the statistical distribution of claim

severities is highly skewed to the right, but usually only the mean and the

variance are of importance in the calculation of prices.

Several studies have proposed nonparametric methods as an alternative to

parametric models to estimate the shape of the severity distribution (see [20],

[10], [12], [13]), when there is no evidence that parametric assumptions are

suitable for fitting a loss distribution. Such nonparametric methods are suited to

analyze the characteristics of severities beyond those of their mean and variance.

We will continue this study with a short introduction to insurance pricing

and, in Section 3, we describe suitable nonparametric methods. In Section 4 we

present the application, and we compare different nonparametric approaches to

risk estimation in the motor insurance sector. Our two data sets contain auto-

mobile claim cost values from policyholders under 30 years and from those that

are 30 years or older, respectively. Earlier studies similarly compare the distri-

bution of accident severity for these two groups of policyholder (see [12], [20],

[13] and [10]), but no attempt has previously been made to calculate the pre-

mium price correction based on a risk adjustment of severity information. Our

conclusions and a discussion of the implementation of our proposal in insurance

companies are provided in the last section.

2. Insurance pricing

Insurance companies define risk groups in accordance with information that

is available at policy issuance. For instance, in the motor insurance sector, both

the insured person and the insured vehicle matter. Typical variables, or risk

factors, for this type of insurance include: age, zone of residence, car value,
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power of the car, etc.

A generalized linear model (GLM) is estimated to predict the expected num-

ber of claims given the risk factors and the expected cost per claim2. Addition-

ally, cluster analysis (see [22]) can also be useful to partition the portfolio of

insurance contracts into clusters of policyholders presenting a similar risk. The

so-called pure premium is calculated as the product of the expected number of

claims times the expected cost (see, for example, [4], [50]). A price surcharge

is always added to the pure premium in order to obtain the -a priori premium.

This loading covers managerial expenses, marketing, and security margins and

solvency requirements. In subsequent periods, the -a priori premium may be

corrected on the basis of the observed claims experience of the policyholders in

a procedure known as experience rating. Having been corrected, the price is

referred to as the -a posteriori premium.

Price correction is conducted in line with the information obtained from

the accumulated claims experience. Thus, policyholders that have no claims in

the previous year typically receive a bonus in the form of a reduction in their

premium on renewing their contract. By contrast, customers that claimed com-

pensation for an accident are usually charged a higher price. Such bonus-malus

systems seek to correct the -a priori risk assessment, but they also discourage

claims and play a central role in customer retention ([63], [39], [33]). As such,

experience rating serves as a deterrent to policyholders who prefer not to claim

for small accidents and so lose their price rebate. Moreover, as insurance compa-

nies receive fewer claims than they would if they did not operate a bonus-malus

system, they are able to improve their claims handling and customer service.

Many studies have focused on the estimation of -a posteriori premiums (see,

for example, [44], [50], [14], [15],[8], [9] and [4]), but procedures to guarantee

fair price loadings remain controversial. This is, in part, explained by the fact

that the initial price setting is based primarily on expectations about the new

2Alternative modeling approaches, including gradient boosting trees, have also been pro-

posed (see [30])
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customer. In accident insurance in the construction industry, Imriyas [36] ar-

gues that experience rating is not efficient and calls for further research in the

analysis of risk.

Here, we focus on the distribution of the claim costs in a given risk category,

i.e. the severity distribution. This is reported to present right skewness with a

long right tail (see [4] and [29]). This means that certain risk measures, including

variance, standard deviation and the coefficient of variation, which are useful for

identifying heterogeneous groups when a distribution is symmetric, cannot be

used for asymmetric severity distribution. Instead, risk measures based on the

right tail of the distribution, such as the Value-at-Risk (VaR) or the Tail-Value-

at-Risk (TVaR), are more useful in accounting for the heterogeneity of the claims

behavior within a given risk category. Moreover, assessing the risk of occurrence

of a large loss in a given risk category can provide -a priori information to the

insurers about their policyholders and the price structure they are marketing.

Bali and Theodossiou ([7]) analyzed different families of extreme value para-

metric distributions to estimate the VaR, and showed that the choice of a partic-

ular parametric distribution had a significant impact on VaR estimates and, as

a consequence, on the risk premium and the final -a priori premium. Dowd and

Blake ([25]) pointed out that nonparametric methods can serve as a good alter-

native to parametric methods because they avoid “the danger of mis-specifying

the distribution”, although they can be imprecise in tail regions where data are

especially sparse. However, recent contributions avoid the potential imprecision

of nonparametric methods in the tail. In [2] a nonparametric method based on

the transformed kernel estimation was proposed to estimate the VaR with no

parametric assumptions.

In the following sections we characterize the severity distribution using a

nonparametric estimation of the VaR. We then compare different risk groups

and present a method for approximating the risk premium. Our aim is to show

that nonparametric statistical methods do not need to rely on assumptions re-

garding the severity of claims and provide a flexible tool to charge policyholders

according to their risk profile. We focus on the VaR because it can be read-
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ily obtained using nonparametric methods ([59] provides an extensive review of

risk valuation). Moreover, the properties of some nonparametric methods for

estimating the VaR when the distribution is right skewed have been previously

established in [2].

3. Nonparametric quantile estimation

Let X be a random variable that represents a loss, i.e. a claim cost, with cu-

mulative distribution function (cdf) FX . The VaR is also known as the quantile

of FX , i.e. it is defined as:

V aRα (X) = inf {x, FX (x) ≥ α} = F−1
X (α) , (1)

where the confidence level α is a probability close to 1. So, we calculate a

quantile in the right tail of the distribution. V aRα is the cost level that an α

proportion of claims does not exceed. So, a fraction of claims (1 − α) would

exceed that level.

As we are interested in calculating V aRα, we need an assumption regarding

the stochastic behavior of losses and/or we need to estimate the cdf FX . In

practice, three classical statistical approaches to estimating FX can be followed:

i) the empirical statistical distribution of the loss or a smoothed version can be

used, ii) a Normal or Student’s t distribution can be assumed, or iii) another

parametric approximation can be assumed (see [47]). Sample size is a key factor

in determining the eventual method. To use the empirical distribution function,

a minimum sample size is required. The Normal approximation provides a

straightforward expression for the V aRα, but unfortunately insurance claim

losses are far from having a Normal shape or even a Student’s t distribution.

Alternatively, a suitable parametric density to which the loss data should fit

could be found (see [41]). Note that the methods proposed by [34] and [58]

for estimating V aRα are not suitable for highly asymmetric distributions as has

been shown in [2]. A nonparametric approach, such as classical kernel estimation

(CKE), smooths the shape of the empirical distribution and “extrapolates” its
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behavior when dealing with extremes. In this study we use transformed kernel

estimation and consider it suitable to estimate extreme quantiles of a skewed

distribution.

3.1. Empirical distribution

Estimation of V aRα is straightforward when FX in (1) is replaced by the

empirical distribution:

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x), (2)

where I(·) is an indicator function which takes values 1 or 0. I(·) = 1 if the

condition between parentheses is true, then

V aRα (X) = inf
{
x, F̂n (x) ≥ α

}
. (3)

The bias of the empirical distribution is zero and its variance is:

(FX (x) [1− FX (x)]) /n.

The empirical distribution is very straightforward and it is an unbiased esti-

mator of the cdf, but it cannot be extrapolated beyond the maximum observed

data point. This is particularly troublesome if the sample is not very large, and

it is suspected that a loss larger than the maximum observed loss in the data

sample might occur.

3.2. Classical Kernel Methods

Classical kernel estimation of cdf FX is obtained by integration of the clas-

sical kernel estimation of its probability density function (pdf) fX , which is

defined as follows:

f̂X(x) =
1

nb

n∑
i=1

k

(
x−Xi

b

)
, (4)

where k is a pdf, which is known as the kernel function. Some examples of

very common kernel functions are the Epanechnikov and the Gaussian kernel

(see [60]). Parameter b is known as the bandwidth or smoothing parameter. It
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controls the smoothness of the cdf estimate. The larger b is, the smoother the

resulting cdf. Function K is the cdf of k.

The usual expression for the kernel estimator of a cdf is easily obtained:

F̂X(x) =
∫ x

−∞ f̂X(u)du =
∫ x

−∞
1
nb

∑n
i=1 k

(
u−Xi

b

)
du

= 1
n

∑n
i=1

∫ x−Xi
b

−∞ k (t) dt = 1
n

∑n
i=1 K

(
x−Xi

b

)
.

(5)

To estimate V aRα, the Newton-Raphson method is applied:

F̂X

(
̂V aRα (X)

)
= α.

The classical kernel estimation of a cdf as defined in (5) bears many simi-

larities to the expression of the well-known empirical distribution in (2). In (5)

K
(
x−Xi

b

)
should be replaced by I(Xi ≤ x) in order to obtain (2). The main

difference between (2) and (5) is that the empirical cdf only uses data below x

to obtain the point estimate of FX(x), while the classical kernel cdf estimator

uses all the data above and below x, but it gives more weight to the observations

that are smaller than x than it does to the observations that are greater than x.

It has already been noted by [52] and [6] that, when n → ∞, the mean squared

error (MSE) of F̂X (x) can be approximated by:

E
{
F̂X (x) − FX (x)

}2

∼ FX (x)[1−FX (x)]
n − fX (x) b

n

(
1− ∫ 1

−1
K2 (t) dt

)
+b4

(
1
2f

′
X (x)

∫
t2k (t) dt

)2
.

(6)

The resulting first two terms in (6) correspond to the asymptotic variance and

the third term is the squared asymptotic bias. The kernel cdf estimator has less

variance than that of the empirical distribution estimator, but it has some bias

which tends to zero if the sample size is large.

The value for the smoothing parameter b that minimizes (6) asymptotically

is:

b∗x =

(
fX (x)

∫
K (t) [1−K (t)] dt(

f ′
X (x)

∫
t2k (t) dt

)2
) 1

3

n− 1
3 , (7)

where subindex x indicates that the smoothing parameter is optimal at this

point. Moreover, Azzalini in [6] showed that (7) is also optimal when calculating
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the quantiles (i.e. V aRα). However, in practice, calculating b∗x is not simple

because it depends on the true value of fX(x) and the quantile x is also unknown.

An alternative to the smoothing parameter in (7) is to use the rule-of-thumb

proposed in [60], but since the objective in this paper is to estimate a quantile

in the right tail of a distribution, [2] recommended calculating the bandwidth

using a smoothing parameter that minimizes the weighted integrated squared

error (WISE) asymptotically, i.e.:

WISE
{
F̂X

}
= E

{∫ [
FX(x) − F̂X(x)

]2
x2dx

}
.

The value of b that minimizes WISE asymptotically is:

b∗∗ =

(∫
fX (x) x2dx

∫
K (t) [1−K (t)] dt∫

[f ′
X (x)]2 x2dx

(∫
t2k (t) dt

)2
) 1

3

n− 1
3 . (8)

and when replacing the theoretical true density fX by the Normal pdf, the

estimated smoothing parameter is:

b̂∗∗ = σ
5
3

X

(
8

3

) 1
3

n− 1
3 . (9)

Various methods to calculate b exist. For instance, cross-validation and

plug-in methods (see, for example, [18] and [3]) are very usual. However, these

methods require considerable computational effort in large data sets.

3.3. Transformed Kernel Estimation

Transformed kernel estimation is better than classical kernel density estima-

tion when estimating distributions with right skewness (see [12], [20], [13] and

[10]). Even if a large sample is available, the number of observations in the right

tail are scarce and standard nonparametric estimates are inefficient to estimate

an extreme quantile, such as when α = 0.995.

Transformed kernel estimation is based on applying a transformation to the

original variable so that the transformed variable has a symmetric distribution.

Once classical kernel estimation is implemented on the transformed data, the

inverse transformation returns to the original scale.
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Let T (·) be a concave transformation, Y = T (X) and Yi = T (Xi), i =

1 . . . n are the transformed data, the transformed kernel estimation of the orig-

inal cdf is:

F̂X (x) = F̂T (X)(T (x)) =
1

n

n∑
i=1

K

(
T (x)− T (Xi)

b

)
(10)

where b and K are as defined in Section 3.2.

When estimating V aRα, the following equation needs to be solved to find

T (X):

F̂T (X)(T
(
̂V aRα (X)

)
) = α

and then ̂V aRα is estimated using the inverse of the transformation on T (X).

The smoothing parameter in the transformed kernel estimation of a cdf or

quantile is the same as the smoothing parameter in the classical kernel esti-

mation of cdf associated to the transformed variable. We can calculate the

bandwidth in (9) if σX is replaced by σY .

Many studies have proposed transformations in the context of the trans-

formed kernel estimation of the pdf (see [64], [12], [20], [54] and [10]). However,

only a few studies analyze the transformed kernel estimation of the cdf and

quantile (see [2], [61] and [1]). These transformations can be classified into those

that are a cdf and those that do not correspond to a specific cdf. Moreover,

nonparametric cdf transformations can also be considered.

The double transformed kernel estimation (DTKE) method for estimating

the quantile was proposed by [2]. First, the data are transformed with a cdf

function (for instance, the generalized Champernowne cdf3 and, second, the

transformed data are again transformed using the inverse cdf of a Beta(3, 3)

distribution defined on the domain [−1, 1] (see [2] for further details and [16]

for computer codes in SAS and R). The double transformation approach is

3A generalized Champernowne distribution has the following cdf:

TX (x) = ((x+ c)γ − cγ) / ((x+ c)γ + (M + c)γ − 2cγ) . c, γ,M > 0 − c < x
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based on the fact that the cdf of a Beta(3, 3) can be estimated optimally using

classical kernel estimation (see [62]). Given that double transformed data have

a distribution that is close to the Beta(3, 3) distribution, an optimal bandwidth

for estimating V aRα can be used. Details as to how this optimal bandwidth

can be calculated are to be found in [2].

4. Data Study

We analyze a data set obtained from a Spanish insurance company that

contains a sample of 5,122 automobile claim costs. This is a standard insurance

data set with observations on the cost of accident claims, i.e. a large, heavy-

tailed sample containing many small values and a few large extremes. The

sample represents 10% of all insured losses reported to the company’s motor

insurance section in 1997.

The original data are divided into two groups: claims from policyholders who

were under 30 years of age (younger policyholders) when the accident took place

and claims from policyholders who were 30 years old or over (older policyholders)

when they had the accident that gave rise to the claim for compensation. The

first group consists of 1,061 observations in the claim cost interval of 1 to 126,000

and the second group comprises 4,061 observations in the interval ranging from

1 to 17,000. Costs are expressed in monetary units. In Table 1 we present

some descriptive statistics. The loss distributions of both the younger and older

policyholders present right skewness and, furthermore, the distribution of claim

severity for younger policyholders presents a heavier tail than that associated

with the older policyholders (see [12]).

For each data set of younger and older drivers, respectively, we seek to esti-

mate the V aRα with α = 0.95 and α = 0.995. The Value-at-Risk is needed to

determine which of the two groups is more heterogeneous in terms of accident

severity, so that a larger premium loading can be imposed on that group. We

also compare the relative size of risk between the group of younger and older

policyholders. The following nonparametric methods are implemented: i) The
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empirical distribution, Emp, as in expression (2), ii) the classical kernel estima-

tion of a cdf (CKE), as described in section 3.2 with a bandwidth based on the

minimization of WISE and iii) the double transformed kernel estimation of cdf

(DTKE), as described in section 3.3 with a bandwidth based on the minimiza-

tion of MSE at x = V aRα. Epanechnikov kernel functions were used for CKE

and DTKE.

Table 1: Summary of the younger and older policyholders’ claims cost data

Data n Mean Median Std. Deviation Coeff. Variation

All 5,122 276.1497 67 1,905.5420 690.0394

Younger 1,061 402.7012 66 3,952.2661 981.4388

Older 4,061 243.0862 68 704.6205 289.86445

Cost of claims are expressed in monetary units.

In Table 2 we show the values of estimates V aR0.95 and V aR0.995 using the

original samples. For α = 0.95, all methods produce similar estimated values.

However, with α = 0.995, the results differ from one method to another. We

observe that for the younger drivers, the classical kernel estimation produces a

V aR0.995 estimate similar to the empirical quantile, while for the older drivers

this nonparametric method provide estimates above the empirical quantile.

The results in Table 2 show that the double transformation kernel estima-

tion does not underestimate the risk. As expected, it is a suitable method “to

extrapolate the extreme quantile” in the zones of the distribution where almost

no sample information is available. The estimated V aR0.995 with this method

is higher than the empirical quantile.

In Figure 1, we plot the estimated V aRα for a grid of α between 0.99 and

0.999 for younger and older drivers, using the empirical distribution (Emp), the

classical kernel estimation (CKE) and the double transformed kernel estimation

(DTKE). Plots in Figure 1 show that Emp and CKE are very similar, i.e. in the
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Table 2: V aRα results for automobile claim cost data.

α=0.95 α=0.995

Method Younger Older All Younger Older All

Emp 1104.00 1000.00 1013.00 5430.00 3000.00 4678.00

CKE 1293.00 1055.33 1083.26 5465.03 4040.40 4695.80

DTKE 1257.33 1005.98 1048.51 7586.27 4411.11 4864.08

zone where the data are scarce CKE does not smooth Emp. In both plots we

observe that DTKE is a smoother version than Emp and CKE and, therefore,

it allows the extrapolation of the V aRα beyond the maximum observed in the

sample with a smoothed curve.

The double transformation kernel estimation is, in this case, the most ac-

curate method for estimating extreme quantiles, as is shown in the bootstrap

approach described in the appendix. Therefore, we can conclude that DTKE

is a nonparametric method that can be used to produce risk estimates at large

tolerance levels such as 99,5%.

It is immediately apparent that the risk among the group of younger poli-

cyholders is higher than that recorded among the older policyholders. Thus, a

young claimant is more likely to make a large claim and this risk is higher for the

younger policyholders than for their older counterparts. As a consequence, the

risk loading should be proportionally higher for this younger age group. In other

words, younger drivers should pay higher insurance premiums because they are

more likely to be involved in severe accidents. Moreover, once involved in an

accident, young drivers present a higher risk than older drivers of presenting a

higher claim. The frequency of claims has not been specifically examined here;

yet, it is also the case that younger drivers with similar characteristics (other

than age) to those of older drivers usually present a higher expected number of
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Figure 1: Estimated Value-at-Risk for tolerance levels (x-axis) above 99%. Above: Compar-

ison of three methods for all policyholders. Solid, dashed and dotted lines correspond to the

empirical, the classical kernel and the transformed kernel estimation method, respectively. Be-

low: Value-at-Risk estimated with double transformed kernel estimation given the tolerance

level. Solid line and dotted line correspond to older and younger policyholders, respectively.
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claims4.

In order to calculate the risk premium, when the loss severity distribution

presents right skewness, we can compute V aR0.995 for each group and then com-

pare the risk groups. Here, for instance, the younger versus older policyholders

presents a risk ratio equal to 7586/4411 = 1.72 (see the last row in Table 2).

In Table 1 we can see that the mean cost of a claim for younger drivers is

402.7, while it is only 243.1 for older drivers. So, the pure premium, which serves

as the basis for the price of an insurance contract, takes into account the fact

that younger drivers should pay more than older drivers based on the average

cost per claim5.

In Table 1 the standard deviation for the younger group (3952) is more than

five times greater than the standard deviation of the older group (705). thus,

many insurers would charge younger drivers a risk premium loading that is five

times higher. This increases the price of motor insurance for younger drivers

significantly because, in practice, the price of the loading is proportional to

the standard deviation. For instance the risk loading might be 5% times the

standard deviation. In this case, older drivers would pay 243.1 + 0.05 · 705 =

278.4, but younger drivers would pay 402.7 + 0.05 · 3952 = 600.3. As a results,

the premium paid by younger drivers would exceed that paid by older drivers

by 600.3/278.4 = 115%.

We propose that the loading should, in fact, be proportional to a risk measure

that takes into account the probability that a loss will be well above the average.

For instance, V aRα can be used with α = 99.5%. Given that the risk ratio for

the younger versus the older driver at the 99.5% tolerance level equals 1.72,

the risk premium loading for younger drivers (0.005 · 7586) should not be 72%

higher than the risk premium loading for older drivers ((0.005 ·4411) - note that

4We do not consider models for claim counts, limiting ourselves to claims severity only.
5A young driver with the same expected number of claims as an older driver should pay

a premium that is 66% higher than that paid by an older driver (402.7/243.1 = 1.66) due to

this difference in the average claim cost.
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0.005 = 0.5% is the risk level that corresponds to a tolerance of 99.5%. Thus,

the price for older drivers is 243.1 + 0.005 · 4411 = 265.2 while the price for

younger drivers should be equal to 402.7 + 0.005 · 7586 = 440.63. In this way,

although the price of motor insurance is higher for younger drivers, it is only

66% higher than the price charged to older drivers.

Finally, we should stress that to determine the final product price, the ex-

pected number of claims needs to be taken into account. Thereafter, general

management expenses and other safety loadings, such as expenses related to

reinsurance, should be added to obtain the final commercial price.

5. Conclusions

When analyzing the distribution of claim costs in a given risk class, we

are aware that right skewness is frequent. As a result, certain risk measures,

including variance, standard deviation and the coefficient of variation, which are

useful for identifying groups when the distribution is symmetric, are unable to

discriminate distributions that contain a number of infrequent extreme values.

By way of alternative, risk measures that focus on the right tail, such as V aRα,

can be useful for comparing risk classes and, thus, calculating risk premium

loadings.

Introducing a severity risk estimate in the calculation of risk premiums is

of obvious interest. A direct interpretation of the quantile results in a straight-

forward implementation. The larger the distance between the average loss and

the Value-at-Risk, the greater the risk for the insurer of deviating from the

expected equilibrium between the total collected premium and the sum of all

compensations.

In this paper we have proposed a system for comparing different insurance

risk profiles using a nonparametric estimation. We have also shown that certain

modifications of the classical kernel estimation of cdf, such as transformations,

give a risk measure estimate above the maximum observed in the sample without

assuming a functional form that is strictly linked to a parametric distribution.
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Given the small number of values that are typically observed in the tail of a

distribution, we believe our approach to be a practical method for risk analysts

and pricing departments. We show that the double transformation kernel esti-

mation is a suitable method in this context, because no statistical hypothesis

regarding the random distribution of severities is imposed.

Our method can establish a distance between risk classes in terms of dif-

ferences in the risk of extreme severities. An additional feature of our system

is that a surcharge to the a priori premium can be linked to the loss distri-

bution of severities. The loadings for each risk class have traditionally been

the same for all groups, i.e. insensitive to the risk measures, or proportional

to the standard deviation of their respective severity distributions. We suggest

that risk loadings should be proportional to the risk measured within the sever-

ity distribution of each group. Our approach has the advantage of needing no

distributional assumptions and of being easy to implement.
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claims in bonus-malus systems, Astin Bulletin, 31, 337-348.

[51] Pitt, D., Guillén, M. and Bolancé, C. (2012) An introduction to paramet-

ric and non-parametric models for bivariate positive insurance claim severity
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Appendix

To analyze the accuracy of the different methods we generate 1,000 bootstrap

random samples of the costs of the younger and older policyholders. Each

random sample has the same size as the original sample, but observations are

chosen with a replacement so that some can be repeated and some can be
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excluded. We estimate the V aRα for each bootstrap sample. In Table 3 we show

the mean and the coefficient of variation (CV). The coefficient of variation is

used to compare accuracy given that the nonparametric estimates, except for the

empirical estimation, have some bias in finite sample size. The mean and the CV

of the estimated V aRα for the bootstrap samples, with α = 0.95 and α = 0.995,

is shown for the claim costs of younger drivers, for the claim cost of older

drivers and for all drivers together. The empirical distribution supposes that

the maximum possible loss is the maximum observed in the sample. However,

as the sample is finite and the extreme values are scarce, these extreme values

may not provide a precise estimate of V aRα. So, we need “to extrapolate the

quantile”, i.e. we need to estimate the V aRα in a zone of the distribution where

we have almost no sample information. In Table 3 we observe that the bootstrap

means are similar for all methods at α = 0.95, but differ when α = 0.995.

Moreover, if we analyze the coefficients of variation we observe that, for the

younger policyholders, the two kernel-based methods are more accurate than

the empirical estimation.

Given that the means of the V aRα estimates for younger driver are larger

than the means for the older drivers, we conclude that the younger drivers have

a distribution with a heavier tail than that presented by the older policyholders.

For older drivers, and similarly for all the policyholders, empirical estimation

seems the best approach at α = 0.95, but not at α = 0.995..

When α = 0.995, underestimation of the Empirical distribution method

(Emp) is evident compared to the lower quantile level at α = 0.95. The DTKE

method has the lowest coefficient of variation compared to the other methods.
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Table 3: Results of bootstrap simulation for Value-at-risk (V aRα) estimation in the claim

cost data sets.

α=0.95

Method Younger Older All

Mean CV Mean CV Mean CV

Emp 1145.02 0.124 1001.57 0.040 1021.92 0.034

CKE 1302.19 0.104 1060.24 0.051 1086.88 0.045

DTKE 1262.58 0.105 1008.28 0.054 1049.64 0.045

α=0.995

Method Younger Older All

Mean CV Mean CV Mean CV

Emp 5580.67 0.297 4077.89 0.134 4642.61 0.093

CKE 5706.69 0.282 4134.66 0.123 4643.42 0.087

DTKE 7794.70 0.217 4444.75 0.095 4883.85 0.080
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