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Abstract

We study longevity and usage of medical resources of a sample of
individuals aged 65 years or more who are covered by a private in-
surance policy. A longitudinal analysis is presented, where the yearly
cumulative number of medical coverage requests by each subject char-
acterizes insurance intensity of care until death. We confirm that there
is a significant correlation between the longitudinal data on usage level
and the survival time processes. We obtain dynamic estimations of
event probabilities and we exploit the potential of joint models for
personalized survival curve adjustment.

1 Introduction

The gradual development of medical science and technology leads to a larger

number of years lived with disabilities, which in turn increases the demand

of medical resources. This is a key challenge for health insurance companies

∗The support received from the Spanish Ministry of Science/FEDER ECO2013-48326-
C2-1-P is acknowledged. Guillén thanks ICREA Academia.
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who have to face additional costs in order to meet the care needs in the

event of a large cohort of elderly people. Furthermore, it is well known that

private insurance policy holders are generally supposed to have a higher socio-

economic level compared to the rest of the population because they can afford

private health coverage (Schoen et al., 2010). So, the mortality tables of the

general population may be biased for the insureds subgroup and insurance

companies estimate specific survival probabilities for their portfolios using

standard actuarial methods (Yue and Huang, 2011; Denuit, 2009; Denuit and

Frostig, 2008). In practice, however, they disregard longitudinal information

on their policy holders that is continuously being collected. Health insurance

companies accumulate data on the intensity and the type of use of medical

resources which can be extremely valuable to predict personalized survival

probabilities and to quantify the risk of medical care demand of their clients

above the expected values.

The aim of our study is to show how historical and follow-up records,

which are in fact repeated measures of a longitudinal marker that counts the

number of times that the policy holder has used the insurance policy coverage,

can effectively predict personalized survival probabilities. Our proposed joint

modeling approach, which is a powerful methodology that has recently been

introduced in statistics for medicine (Rizopoulos and Lesaffre, 2014, see),

allows to examine the association between a given medical care usage trend

and longevity prospects.

In is well known that medical usage intensity increases substantially at

older ages (Blane et al., 2008) and end-of-life care expenditures is significantly

larger than throughout life (Dao et al., 2014; Murphy, 2012), but according

to Bird et al. (2002) men’s and women’s health care experiences differ as
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they age. While increasing attention has been focused on gender differences

in health status, prevalence of illnesses, and access to quality care among

older adults, little is known about differences in their health care in the last

years of their lives. This is precisely what we study.

The dynamic personalized predictions that we are aiming at are based on

both baseline subject’s time-to-event covariates, recorded at the start of the

study, and subject’s longitudinal information measured at fixed time points

within an observation window. Therefore, both the longitudinal and the

survival information is part of a single statistical model, which allows :(i)

to establish the degree of association between the value of the longitudinal

variable and the time to event outcome, (ii) to estimate subject-specific sur-

vival probabilities based on personalized longitudinal outcomes and (iii) to

update personalized survival estimations as additional longitudinal responses

are collected. This can provide a comprehensive risk assessment of a health

insurance portfolio using all available information.

To the best of our knowledge, no study has evaluated how health care

usage and risk of death can be modeled jointly. The main results of our

analysis are: 1) we confirm age and gender are main factors influencing

changes in survival for a health insurance member, 2) we find evidence of

a significant association between serial measurements of cumulative private

insurance care usage and longevity, and 3) we obtain dynamic estimations of

event probabilities by exploiting the potential of joint models. In summary,

our contribution shows that an increase in health care usage intensity is

negatively associated with survival, but that its influence varies as usage

accumulates and depending on other factors such as sex and age, as well as

previous insurance conditions.
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2 Data and methods

The motivating dataset corresponds to the information provided by a Spanish

private health insurance mutual company, containing historical data which

started being collected on January 1st, 2006 and ended on February 1st,

2014. In particular, our study is limited to 39,399 insurance policy holders

(39.8% men and 60.2% women) who had reached the age of 65 before the

observation period started.

Table 2 presents the definition of the variables that are used in the anal-

ysis. Two variables are central in our study. First, the longitudinal process

which counts the number of times that the health insurance company has

provided a service to the policy holder. The unit service can be a variety

of possible coverage functions such as a doctor visit, a blood or an X-ray

test, a prescribed therapy, a hospital stay and any other treatment that is

established in the insurance contract. We do not distinguish between differ-

ent types of services at this stage, but obviously the accumulated number of

unit services provided over time to a given patient is strongly correlated with

her health condition. Due to the right skewed shape exhibited by the longi-

tudinal outcome, a logarithmic scale is applied (Verbeke and Molenberghs,

2009). Second, we also consider the survival time, where the event of interest

is death. Information is censored because the majority of individuals sur-

vive beyond the end of the study period. Some other cancel their insurance

policy and therefore they quit the study automatically. These dropouts are

considered random, as they are generally due to personal reasons such as the

decision not to renew the policy, or a change of company.

In one part of our study, variables such as gender, age and the cumulative
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Table 1: Variables in the private insurer data set (2006-2014)
Variable name Definition
ID Subject identifier: i = 1, 2, . . . , 30580
SEX Gender of the subject: 0 = Male, 1 = Female
OBSTIME Age (years) in excess of 65 at each time point
CUM0 Cumulative number of private health service usage units

over the four years previous to entering the sample
CUM Cumulative number of private health service usage units

at each observation time point
TIME Final observation time (years), which may correspond

to an event(death) or to a right-censored data.
CENS Censoring indicator: 0 = Right-censored, 1 = Event
A private health service usage unit is a visit to a GP or a specialist,
a hospital spell, a medical test and so on

number of medical care service units play the role of baseline covariates and

become part of a first survival analysis. In another part, a longitudinal

analysis is presented, where the cumulative number of medical visits observed

in annual periods for each subject characterizes insurance intensity of use

until death. Finally, both models are considered jointly, thus establishing an

association parameter between the longitudinal and the survival processes.

The application of joint modeling techniques allows to determine whether

a pronounced increase in the cumulative number of coverage usage units

also implies a simultaneous increased risk of death for the subject. The

simultaneity is a fundamental part of joint modeling. When the two processes

are endogenously determined, they cannot be modeled separately.

The added value of joint models has been empirically illustrated by Fieuws

et al. (2008) who noted that predictions of failure in a kidney transplant study

based on a joint model using all recorded biomarkers of kidney functioning

substantially outperformed the separate analyses per marker. In addition,
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in a similar context, Rizopoulos (2011) and Proust-Lima and Taylor (2009b)

showed that joint models can also be aimed to dynamically update predic-

tions of survival probabilities and help in discriminating between patients

who have a high risk of experiencing the event of interest (e.g. death) in

relatively short time interval, from patients whose risk is rather minimal.

Let yi(t) = log.CUMi(t) = log{1+CUMi(t)} be the response variable of

the i -th subject, i = 1, . . . , n, observed at time t, where n is the total number

of observed individuals in the sample. The outcome is linearly related to a

set of p explanatory covariates and q random effects. In our application the

first response that is modeled is the number of private health usage service

units after a logarithmic transformation.

In addition, letmi(t) denote the true underlying value of the longitudinal

outcome, and Mi(t) = {mi(s), 0 ≤ s ≤ t} the complete longitudinal history.

The joint modeling approach consists in defining: (i) a model for the marker

trajectory, usually a mixed model, (ii) a model for the time-to-event, usually

a proportional hazard model, and (iii) linking both models using a shared

latent structure (Rizopoulos, 2011).

2.1 Longitudinal submodel: Random intercept model

The main goal of linear mixed effects models is to account for the special

features of serial evaluations of outcomes over time, thus being able to es-

tablish a plausible model in order to describe the particular evolution of

each subject included in a longitudinal study. The particular features of

these models are that they work with unbalanced datasets (unequal number

of follow-up measurements between subjects and varying times between re-

peated measurements of each subject), and that they can explicitly take into
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account that measurements from the same patient may be more correlated

than measurements from different patients.

The model is specified as follows:





log.CUMi(t) = mi(t)+ εi(t) = β0 + bi0 + β1t+ εi(t)
β = (β0, β1)

T

bi0 ∼ N (0, σ2
b0
)

εi(t) ∼ N (0, σ2)

This model is straightforward. It just postulates that, besides individual

random effects, a linear time trend governs the rate of increase of the number

of accumulated service units provided to insurance policy holders. This seems

plausible as we also expect that the older the policy holder the larger the rate

at which the number of requested services increases.

2.2 Survival submodel: PH Cox Model

The celebrated proportional-hazards Cox model (Cox, 1972) allows to model

the conditional hazard rate of survival times given certain baseline covariates.

It relies on a fundamental assumption, the proportionality of the hazards,

implying that the factors investigated have a constant impact on the risk

over time. The model provides the conditional hazard function hi(t|wi) at

time t of a subject’s profile given by a set of p time-independent explanatory

covariates called baseline covariates.

we assume that T ∗, or TIME in our data set, is a non-negative continuous

random variable which represents the exact time until some specified event,

which is death in our case. The survival model is specified through the hazard

function as follows:

hi(t|wi) = h0(t)Ri(t) exp{γlog.CUM0i},
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where h0(t) is an unspecified and non-negative baseline hazard function,

representing the hazard function where wi = 0, ψ(wi) is a non-negative

function which contains the information about the set of explanatory time-

independent covariates that define the i−th subject’s profile.

This model is defined as a semiparametric because a parametric form is

assumed only for the covariate effect, ψ(wi). Among the possible parame-

terizations of function ψ, the most widely used is an exponential expression:

ψ(wi;γ) = exp(γTwi), where γ = (γ1, γ2, . . . , γp)
T is the parameter vector.

Survival analysis is generally defined as a set of methods for analyzing

data where the outcome variable is the time until the occurrence of a specific

event of interest, usually designed by E . This time is called survival time,

time-to event or, simply, event time.

Bearing the above into account, what makes survival data special is that

the responses correspond to time-durations and thus they are not measured

in the same way as other variables. In practice, this fact has two important

consequences, namely that the distribution of survival times is often highly

left-skewed, and that the only information available about some subjects is

that they have not yet experienced the event E at the last time point of

follow-up, so these are termed censored or incomplete observations. In other

words, it is unknown when these remaining subjects will experience the event.

Considering these two special features, standard statistical methods can not

be applied to survival data.

Although there are various categories of censoring, the present work has

only focused on right-censoring mechanism which occurs when the subject

has not yet experienced the event of interest at the time when the follow-up

period ends. Consequently, all that is known about the true survival time is
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that it exceeds the observed survival time, t, at the study end. Furthermore,

we also assume that the censoring is non-informative. In this regard, it will

be assumed that there are only two reasons why right-censoring might occur:

The event of interest has not occurred by the end of the follow-up period

(study end) or a subject is discontinued of follow-up during the study period

due to causes unrelated to the event of interest.

The Cox model is often called a proportional hazards (PH) model be-

cause, two individuals i and i′ with respective covariate values wi and wi′ ,

have a constant hazard rate ratio, so their corresponding hazard rates are

proportional to each other and do not depend on time.

2.3 Joint model for longitudinal and survival data

To account for the fact that the longitudinal marker is an endogenous time-

dependent covariate measured with error (Kalbfleisch and Prentice, 2002)

with respect to survival, it is assumed that the risk for an event depends on

the true and unobserved value of the endogenous variable at time t, denoted

by mi(t). The endogeneity probles is quite intuitive here. There is a latent

factor causing a health deterioration, which in turn implies an increase in the

risk of death and more intensity of health care service use. So, survival and

health care are strongly related to one another, through this latent factor.

The true underlying value of the longitudinal outcome, mi(t) must be

estimated in order to successfully reconstruct the complete longitudinal his-

tory Mi(t). For this purpose, we utilize all available measurements on each

subject {yi(tij), for i = 1, . . . , n and j = 1, . . . , ni} and postulate a suitable

mixed effects model. We focus on normal data, describing the true subject-

specific evolutions by a linear mixed effects model, but we agree that a count
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data modeling approach would probably bee more suitable.

In order to quantify the effect of the true outcomemi(t) on the risk for the

event at specific time t, we use a relative risk model of the form (Therneau

and Grambsch, 2000).

hi(t|Mi(t),wi) = h0(t) exp{γ
Twi + αmi(t)}, t > 0, (1)

where Mi(t) = {mi(s), 0 ≤ s ≤ t} denotes the history of the true unobserved

longitudinal process for subject i up to time point t. The parameter α quan-

tifies the degree of association between the longitudinal marker and the risk

for the event.

In standard survival analysis, the baseline risk function h0(·) is typically

left completely unspecified (Cox, 1972; Andersen and Gill, 1982). However,

within the joint modeling framework (Hsieh et al., 2006) noted that leav-

ing this function completely unspecified leads to an underestimation of the

standard errors of the parameter estimates, so it is necessary to explicitly

define h0(·). Although we could have used the hazard function of a standard

survival distribution (e.g. Weibull or Gamma), we finally opted for a more

flexible solution such a piecewise-constant model:

h0(t) =

Q∑

q=1

ξqI(νq−1 < t ≤ νq), (2)

where 0 = ν0 < ν1 < . . . < νQ denotes a split of the time scale, with νQ

being the largest observed time, and ξq denotes the value of the hazard in

the interval (νq−1, νq].

On the basis of the expressed considerations, the true and unobserved

outcome at a specific time point t can be modeled by joining the two above
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approaches (Rizopoulos, 2012)

hi(t|Mi(t),wi) = h0(t)Ri(t) exp{γlog.CUM0i + α(β0 + bi0 + β1t)}. (3)

In particular, the hazard at age t for the i−th individual, with a true

longitudinal profile Mi(t) up to time t, can be expressed as follows:

hi(t|Mi(t),wi) = h0(t)Ri(t) exp
[
γTwi + α{xT

i (t)β + zT

i (t)bi}
]
. (4)

The models presented in this section can be generalized to higher di-

mensions (Andrinopoulou et al., 2014). More information on joint modeling

fitting can be found in Rizopoulos (2012) and details about the R package

implementation are given in Rizopoulos (2010).

2.4 Predicted survival in joint models

Once the model has been specified, estimated and validated, a powerful fea-

ture is to derive survival predictions. Thus, considering the sample Dn =

{Ti, δi,yi; i = 1, . . . , n} on which the joint model was fitted, the goal consists

of predicting conditional probability of surviving time for a new subject i that

provides a set of longitudinal measurements, Yi(t) = {yi(s); 0 ≤ s < t} and

a vector of baseline covariates, wi. The flexibility provided by the joint mod-

eling approach is in line with a growing trend towards personalized medicine

(Garre et al., 2008; Proust-Lima and Taylor, 2009a; Rizopoulos, 2011). In

particular, the real challenge focuses on estimating these probabilities not

only at each one of the time points measurements, but also at a generic time

u > t given survival up to t, i.e.

πi(u|t) = Pr(T ∗
i ≥ u | T ∗

i > t,Yi(t),wi,Dn;θ
∗), (5)
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where θ∗ denotes the true parameter values.

This approach therefore allows to obtain the so called survival dynamic

predictions for the i−th subject, arising from his survival curve which is up-

dated on the basis of any new longitudinal information that is subsequently

collected. Hence, as new information at time t′ > t is added to existing longi-

tudinal measurements, one can update the estimated survival curve πi(u | t)

to πi(u | t′), and therefore proceed in a time dynamic manner.

The estimation of the subject-specific conditional survival probabilities

takes full advantage of the conditional independence used to define the joint

model. Using a Bayesian formulation (Proust-Lima and Taylor, 2009a; Ri-

zopoulos, 2011), the problem can be written as:

Pr(T ∗
i ≥ u | T ∗

i > t,Yi(t),Dn)
=

∫
θ
Pr(T ∗

i ≥ u | T ∗
i > t,Yi(t);θ)p(θ | Dn)dθ.

(6)

The first part of the above integrand is given by

Pr(T ∗
i ≥ u | T ∗

i > t,Yi(t);θ)

=
∫
bi

Si{u | Mi(u,bi,θ);θ}
Si{t | Mi(t,bi,θ);θ}

p(bi | T
∗
i > t,Yi(t);θ)dbi,

(7)

where Si(·) denotes the survival function, and furthermore it has been ex-

plicitly noted that the true longitudinal history Mi(·) is a function of both

the random effects and the parameters. For the second part of equation (6),

it is assumed that the sample size n is large enough, such that {θ;Dn} can

be well approximated by N{θ̂, V̂ar(θ̂)}.

By combining (6), (7) and {θ;Dn} ∼ N{θ̂, V̂ar(θ̂)}, a Monte Carlo esti-

mate of πi(u | t) can be derived using the following simulation scheme:

• Draw a value of θ(l) from a normal distribution N{θ̂, V̂ar(θ̂)}

• Draw a value of b
(l)
i from the pool.
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• Compute π
(l)
i (u | t) as

Si{u | Mi(u,b
(l)
i ,θ

(l));θ(l)}/Si{t | Mi(t,b
(l)
i ,θ

(l));θ(l)}. (8)

The three steeps are repeated l = 1, . . . , L times, where L denotes the

number of Monte Carlo samples. The realizations {π(l)
i (u | t) , l = 1, . . . , L}

can be used to derive point estimates of πi(u | t), such as the median and

the mean values as follows:

π̂i
(l)(u | t) = median{π(l)

i (u | t) , l = 1, . . . , L} (9)

π̂i
(l)(u | t) =

1

L

L∑

l=1

π
(l)
i (u | t). (10)

From these estimates, it is also possible to compute the standard errors

using the sample standard deviation over the Monte Carlo samples and the

confidence intervals through the sample percentiles.

3 Results and predictions

The results for the private mutual insurer data set are presented in Table 3

separately for men and women. The association parameter α is positive and

significantly different from zero. This indicates that the larger the number

of accumulated service units provided the larger the risk of death. This is

consistent with intuition as an aggravated patient has a higher probability

of death and as a consequence, he demands health care resources. At the

same time, who demand health care services are certainly motivated by a

deteriorated health condition and therefore expected survival time decreases.

Note that a positive parameter factor in the hazard function means that the

risk of death increases, whereas a negative parameter has the contrary effect.
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Table 2: Results of the joint model estimation in the private insurer data set
(2006-2014)

Men Women
Parameters Estimate 95% CI Estimate 95% CI
β0 2.140∗ (2.100, 2.180) 2.158∗ (2.123, 2.192)
β1 0.170∗ (0.167, 0.172) 0.157∗ (0.155, 0.159)
σ 0.332∗ (0.329, 0.334) 0.314∗ (0.312, 0.316)
σb0 1.648∗ (1.597, 1.698) 1.791∗ (1.748, 1.834)
γ -1.174∗ (-1.306,-1.042) -0.964 (-1.042, -0.887)
α 1.437∗ (1.275, 1.598) 1.273∗ (1.179, 1.367)
∗ indicates significance at the 5% level. CI stands for confidence
interval.

We note that the association between the longitudinal process and the sur-

vival outcome is slightly higher for men (1.437) than for women (1.273), but

the difference is not statistically significant. All other parameter estimates

are similar for mean and women except for γ, which is not significantly dif-

ferent from zero for women. This means that pre-existing conditions, which

are represented by log.CUM0 and which refer to the number of accumulated

services receive during the four years previous to the study, do not influence

the survival of women, while they do influence negatively the hazard rate

for men. This result seems to indicate that a larger survival is expected for

those who were using medical care more intensively than others. This result

also means that if a patient accumulates a large number of services, but was

able to survive to the starting date of the study, then he has a smaller hazard

rate of death compared to another subject who has not accumulated as many

services as him. This can be interpreted as the preventive effect or health

care or the curative effect, which prove to be efficiently leading to longer life

expectancy.
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However, if suddenly a patient requires medical care, the number of accu-

mulated services increases and therefore, since parameters β0, β1 and α are

positive, that would synchronize with the hazard rate, which would increase

and lead to a higher risk of death.

A log-unit increase in the cumulate number of visits entails a exp(1.437) =

4.2-fold increase in the men risk and exp(1.273) = 3.6-fold increase for

women.

Some comments on σ and σb0 are needed. Those two parameters can be

interpreted as an inherent variability in the random effects of the longitudinal

model. Note that σb0 is slightly larger for women than for men, which could

also be caused by the fact that the average age is larger for women than for

men in this particular sample.

As an illustration, let us consider for instance the case of a woman 65

aged at study start point, for whom her cumulate service received during the

four years prior to the study starting time point is known. In Figure 3 we

can observe how the model updates the predicted survival probabilities as

new longitudinal information is collected. This is a very useful prognostic

tool.

4 Conclusions

From the analysis of our private insurance longitudinal data sample, we con-

clude that the observed number of cumulated health care service units pro-

vided is strongly as positively associated with the risk of death.

The baseline cumulated number of cumulated health care service units

provided to a patient has a protective effect. This is in line with evidence of
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Figure 1: Dynamic survival probabilities for a woman aged 65 who is still
alive at the end of the study
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a preventive affect.

The joint modeling methodology allows to continuously update the pre-

dictions of subject-specific survival probabilities, when new information on

service usage comes along.

Further work is going to be pursued on the generalization of the statis-

tical model to counting processes and to the implementation of multivariate

longitudinal markers, as they seem very natural here. Indeed the number of

medical care services needed can be categorized in big groups, those that are

routine programmed actions and exceptional treatments, such as surgery or

serious procedures.

One of the limitations of our study is the fact that all health services have

the same importance in the longitudinal counter. Another practical issues is

the fact that insurance customers switch between companies and new policy

holders could enter the sample or leave the group motivated by health-related

problems. We do not think that this was a problem in this particular data

set. Since our policyholder were above 65 years of age, they have been in

this mutual company for several year , because it is very infrequent to change
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the health insurance provider at this age. we do not expect to have adverse

selection in this group of policy holders.
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