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    Abstract  

 
This paper has two main objectives. First, it estimates the impact of related 

and unrelated variety of European regions’ knowledge structure on their 

patenting activity. Second, it looks at the role of technological relatedness 

and extra-local knowledge acquisitions for local innovative activity. 

Specifically, it assesses how external technological relatedness affects 

regional innovation performance. Results confirm the strong relevance of 

related variety for regional innovation; whereas the impact of unrelated 

variety seems relevant only for the generation of breakthrough innovations. 

The study also shows that external knowledge flows have a higher impact, 

the higher the similarity between these flows and the extant local knowledge 

base.   
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1. INTRODUCTION 

 

It is now an established fact in the literature that the combination and recombination of 

previously unconnected ideas lead to new knowledge production, subsequent 

technological innovations, and ensuing economic growth and well-being (Aghion and 

Howitt, 1992; Jones, 1995;  Weitzman, 1998). Further, knowledge diffusion in the form 

of knowledge spillovers is central to this literature as a cause of endogenous growth 

(Romer, 1990, 1986) and geographic agglomeration of firms (Audretsch and Feldman, 

2004, 1996; Jaffe et al., 1993). This paper builds on different strands of literature and 

documents the influence of local diversity, i.e., related and unrelated variety, on 

regional innovation, for a large sample of European regions. We also assess whether the 

relation of the regional technological structure with external-to-the-region sources of 

knowledge boosts regions’ innovation potential. The latter constitutes the main novelty 

of our analysis. 

 

A recurrent theme in the knowledge externalities literature is whether firms located in 

agglomerations mainly learn from other local firms in the same industry or from other 

local firms in a range of other industries (Glaeser et al., 1992). The former dates back to 

Marshall's (1920) contributions on the benefits arising from spatial concentration. The 

latter relates to Jane Jacobs’ contributions on cities, externalities and innovation 

(Jacobs, 1969; see also Glaeser et al., 1992). From her work we learn that a diversified 

economy brings benefits to local firms because it generates new knowledge and 

innovation steaming from the cross-fertilization of ideas across different industries. At 

the regional level, regions with a more diverse stock of knowledge have greater 

potential for innovation and growth. Since Frenken et al. (2007), several authors have 

argued that Jacob’s concept of diversification needs to be more thoroughly elaborated, 

by differentiating between diversification of related industries and diversification of 

unrelated industries – or related versus unrelated variety. Regions hosting related 

industries, with different but connected knowledge bases, can more easily engage in 

recombinant innovation. On the contrary, the combination of previously unrelated 

industries or technologies is more difficult to succeed into the production of new ideas. 

 

Besides, while much of the related literature assumes innovation production to draw on 

geographically localized knowledge (Audretsch and Feldman, 2004), a recent strand of 



studies has challenged this traditional view (Boschma, 2005). As these scholars posit, at 

some point, co-located agents may start to combine and recombine local knowledge that 

eventually becomes redundant and less valuable. As a result, processes of lock-in may 

begin to occur (Boschma, 2005; David, 1993). Conversely, firms looking for external 

sources of knowledge may find that the knowledge they require is available beyond the 

boundaries of the region where the firm is located (Bergman and Maier, 2009). Hence, 

the interplay between a vibrant ‘local buzz’ and more intentional ‘global pipelines’ is 

important to ensure an optimal regional rate of innovation adoption and further 

knowledge creation  (Bathelt et al., 2004).  

 

This paper contributes to these different strands of literature in several ways. First, 

within a regional knowledge production function (KPF) framework, we assess which 

diversified technological structure (related vs. unrelated variety) generates more 

knowledge spillovers which will ultimately enhance the regional innovation output. 

Second, we study how the internal technological structure of regions interacts with 

external sources of knowledge in the production of regional innovation. In particular, 

we assess (1) whether the more similar the internal and external knowledge structures, 

the larger the innovation outputs; and (2) whether different, but related, internal and 

external knowledge bases are more prone to innovation creation. Finally, our outcome 

variable distinguishes the effect of variety on regional innovation intensity versus 

quality-weighted regional innovation intensity. We expect the latter to draw more on 

unrelated and distant pieces of knowledge, as ideas with high impact tend to stem from 

knowledge cross-fertilization and the combination of unrelated technologies (Fleming, 

2001; Saviotti and Frenken, 2008). 

 

Our methodological approach builds upon the large literature analysing the impact of 

variety (related and unrelated) on economic outcomes (see section 2 for a throughout 

review), with some differences. First, given our interests, we compute variety indexes 

using the technological classification provided in patent documents, which turns out to 

be more meaningful for our purposes. This is in contrast with the majority of studies, 

which define the variety variables using either employment or imports. We exploit 

technology information using the International Patent Classification (IPC) codes 

contained in patent applications to the European Patent Office (EPO) to build the 

diversity indexes, establishing a more direct link between regional diversification and 



its underlying technological nature.i Second, we make use of a large sample of 

European regions (261 NUTS2 regions, the largest coverage in Europe of studies of this 

kind) for several years, allowing us to introduce time and region fixed-effects (FE) to 

control for a large number of unobservables. Finally, and more importantly, our study is 

one of the few investigating cross-regional linkages and related variety, for which trade 

data has mostly been used to depict related linkages across regions (Boschma and 

Iammarino, 2009). Instead, we use citations to patents as a cleaner and more direct 

measure of knowledge flows across the space. Patent citations directly point to the prior 

knowledge to which the current innovations draw upon, and therefore represent a good 

proxy for cross-regional linkages and knowledge flows (Jaffe and Trajtenberg, 1999; 

Schoenmakers and Duysters, 2010).  

 

The outline of the paper is as follows. Section 2 reviews the related literature and 

theoretical framework. Section 3 sets the empirical analysis and section 4 describes the 

data. We give the main results in section 5 and finally section 6 concludes. 

 

2. RELATED LITERATURE AND THEORY 

 

Much research on the geography of innovation and localized knowledge spillovers has 

addressed the question of whether specialization or diversity boosts local innovation. 

However, the concept of diversity is complex and subtle, as first signalled by Frenken et 

al. (2007). These authors pose the central question of whether it is related or unrelated 

diversity which is most relevant for growth. Related diversity, or variety, facilitates 

local knowledge spillovers across industries at a relatively low cost. This is because the 

cognitive distance across these industries is not too large so that complementarities exist 

among them in terms of shared competences, which enable effective connections as 

well as sharing knowledge and information. Conversely, unrelated variety may slow 

down the diffusion of ideas, given that they draw on very different and completely 

disconnected knowledge bases making it more difficult for them to engage in 

recombinant innovation, thereby hampering the production of new local innovation. 

However, unrelated variety protects a region against external asymmetric shocks in 

demand and thus against rising unemployment, since the risk is spread over unrelated 

sectors (Frenken et al., 2007) – known as the portfolio effect of variety.  

 



Frenken’s et al (2007) pioneering study shows how related variety impacts regional 

economic growth in the Netherlands. Results are confirmed by studies in other 

countries: Bishop and Gripaios (2010) for Great Britain, Boschma and Iammarino 

(2009) and Quatraro (2010) for Italy, Hartog et al. (2012) for Finland and Boschma et 

al. (2012) for Spain. The role of unrelated variety is more controversial: whereas Bishop 

and Gripaios (2010) find that unrelated variety affects employment growth in a larger 

set of industries than related variety, Boschma et al. (2012) and Hartog et al. (2012) do 

not find any growth effect. Meanwhile, Frenken et al. (2007) find that unrelated variety 

dampens unemployment growth, which the authors interpret as evidence of unrelated 

industries spreading risks of potential negative shocks – i.e., the portfolio effect of 

variety.   

 

Yet, despite the emphasis put on earlier studies on related variety as knowledge 

spillovers facilitator, only recently scholars have investigated its direct links with 

knowledge production. For instance, Tavassoli and Carbonara (2014) and Castaldi et al. 

(2015) analyse the role of related and unrelated variety on the regional innovation 

output, for the Swedish and the United States (US) cases, respectively. Their findings 

suggest that when it comes to variety of knowledge within regions or US states, 

unrelated variety does not affect regional innovation output in general, whereas the 

impact is robust and positive for related variety. Conversely, Castaldi et al. (2015) also 

show that a high degree of unrelated variety do enhance technological breakthroughs – 

i.e., innovation with a high technological and economic impact. 

 

In this paper we follow these latter contributions and regress regional innovative 

performance on regional knowledge variety. We expect variety of the knowledge within 

a region to play a key role in the generation of knowledge spillovers, as it is associated 

to the Schumpeter’s notion of novelty by combination of previous ideas. In evolutionary 

thinking, the creation of new knowledge is often the result of novel recombinations of 

known pieces of knowledge or the reconfiguration of the way in which such knowledge 

pieces are connected (Aharonson and Schilling, 2016).  

 

In this search for recombination, most of the firms and inventors tend to focus only on 

the technological pieces in which they have prior experience (related variety), since this 

previous expertise allows them to understand better the nature of the new knowledge 



and the relationships between different knowledge pieces. As a consequence, when a 

region presents a diversity of related technologies, connections are more effectively 

established given that related technologies are more easily recombined. On the other 

hand, if knowledge is originated in technologies that are very different from the each 

other (unrelated variety), regional actors would not be able to easily absorb it so that 

little spillovers would be generated. To put it differently, the different pieces of 

knowledge should be neither too close nor too far from each other, so that agents can 

develop interactions and ensure that new ideas rise and develop the innovation process. 

 

We contribute to the related variety literature in a critical way. An important debate 

within the geography of innovation literature that has emerged recently is the role of 

external knowledge in the process of regional knowledge creation. Indeed, the widely 

accepted assumption that agents usually source their innovations from their immediate 

vicinity might have limited our understanding of the ways in which knowledge flows 

across space and the way in which innovations are generated (Coe and Bunnell, 2003). 

Thus, it has been highlighted the increasing importance of agents’ needs to access extra-

local knowledge pools to overcome potential situations of regional ‘entropic death’ or 

‘lock-in’ (Boschma, 2005; Camagni, 1991; Grabher, 1993; David, 1993). Otherwise, 

subsequent local interactions lead to the combination and recombination of the same 

pieces of knowledge, and firms would end up stuck in strong social structures that tend 

to resist social change (Boschma and Frenken, 2010; Morrison et al., 2011) and prevent 

them from recognizing opportunities in new markets and technologies (Lambooy and 

Boschma, 2001). Recent empirical works have extensively documented the influence of 

extra-local knowledge sources on firms’ innovative performance and knowledge 

acquisition (Owen-Smith and Powell, 2004; Gittelman, 2007; Gertler and Levitte, 2005; 

Rosenkopf and Almeida, 2003; Zhou and Li, 2012; Bell and Zaheer, 2007).  

 

However, inflows of extra-regional knowledge need to be understood by the local actors 

in order to transform it into new knowledge (Cohen and Levinthal, 1990). Yet, when the 

external knowledge basically integrates prior art from the same technologies, it can be 

easily absorbed but the new knowledge will not add much to the existing local one. On 

the contrary, when the external knowledge basically integrates prior art from 

technologies different from the local ones, it will be more difficult to understand but 

once it is integrated, the chances that they lead to more radical or breakthrough 



innovations are higher. Thus, not only the amount of knowledge flows coming from 

other regions is important, but also the degree of relatedness between the external 

knowledge that flows into the host region and the existing local one. 

 

The scarce extant empirical literature on the role of relatedness of extra-regional 

knowledge flows has approached the issue using regional trade data –either imports or 

exports (Boschma and Iammarino, 2009, for Italian regional employment growth; 

Tavassoli and Carbonara, 2014, for Swedish regional innovation). Their findings 

suggest that it is not enough being connected to the outside world, but different, yet 

related, connections provide real learning opportunities and boost economic outcomes.  

In a similar vein, Boschma et al. (2009) look at labour mobility, workers skills’ 

portfolio, and plant performance, for the Swedish economy. The authors show that 

inflows of workers with related, but different, skills do enhance plant performance. 

However, inflows of unrelated skills only contribute positively if they come from the 

same region. Meanwhile, when labour inflows come from other regions, only related 

skills have a positive effect on plant’s productivity. 

 

We depart from these latter contributions, but directly look at the actual knowledge 

flows, instead of using indirect ways to infer these flows across regions (such as the 

ones commented above). This is particularly appropriate in our framework, given our 

focus on the role of incoming flows for knowledge diffusion and recombination, and 

subsequent local innovation. We use patent citations as a proxy for knowledge flows. 

Patent citations point directly to prior art on which the patent is based (Trajtenberg, 

1990) and, consequently, represent a “paper trail” worthwhile for the analysis of 

knowledge diffusion (Jaffe et al., 1993). Since Jaffe’s et al. pioneering paper, patent 

citations have been considered to be useful to depict knowledge linkages between 

inventions, inventors and applicants along time, geographical space and technological 

fields, among other dimensions (Hall et al., 2005; Jaffe and Trajtenberg, 1999; 

Schoenmakers and Duysters, 2010). Jaffe et al. (2000), using a detailed survey of 

inventors and the relationship of their patented inventions to previous patents, confirm 

that citations do contain significant information on knowledge flows, albeit with a 

certain amount of noise. In our case, since patents record the residence of the inventors, 

they are an exceptional source for studying knowledge flows across regions.  

 



We expect the degree of relatedness between the local knowledge base and external 

inflows of knowledge to be neither too small, to avoid lock-in in the same technology, 

nor too large, to facilitate the absorption of such extra-regional knowledge.  

 

3. EMPIRICAL ANALYSIS 

 

3.1 Empirical model  

 

We test our hypotheses under a KPF framework at the regional level. Our point of 

departure is the simplest specification of this model: 

 

),,( ititit ZRDfY   (1) 

 

Where Y  is the innovative output of a given region, which depends on regional R&D 

expenditures (RD) as well as Z , a number of time-variant controls that account for 

specific features of the region i at time t. Among them, we include measures of variety 

and relatedness, as explained in the following subsections. Note that regional 

differences in size are accounted for by dividing the dependent and explanatory 

variables by total population. All in all, the following model is suggested: 

 

,·lnln ittiititit ZRDpcYpc      (2) 

 

where  itYpcln  is the log-transformation of the annual number of patent applications per 

million inhabitants in region i and year t, itRDpcln  is the log-transformation of R&D 

expenditures per capita in region i and year t,  and Z are a number of focal variables – as 

explained below – and controls. For the latter, we include a proxy for human capital, 

measured as the share of human resources devoted to science and technology (HRST), 

as well as a variable accounting for differences in the economic structure of regions, 

proxied by the share of manufacturing employment (ShareInd). In addition, iδ  and tδ  

stand for, respectively, regional FE and time FE. In order to consider deviations from 

the theory, a well-behaved error term is also introduced, it .  

 



3.2 Related and unrelated variety 

 

We first aim to analyse the impact of knowledge diversification on regional patenting 

activity. In line with previous papers, as a proxy for this diversified knowledge we 

measure variety as well as related and unrelated variety with entropy measures  

(Frenken et al., 2007). We borrow from Castaldi et al. (2015) the use of the 

technological classification of patents in order to construct the measures of regional 

knowledge variety. Our entropy indicators are computed using information retrieved 

from applications to the EPO. In particular, we use the IPC system, which provides a 

hierarchical system of codes for the classification of patents according to the different 

areas of technology to which they pertain – directly assigned by the patent office, the 

EPO in this case. These codes are grouped into eight sections, which are the highest 

level of hierarchy of the classification. Each section is divided into three-digit classes 

and four-digit subclasses. The current version of the IPC classification contains 635 

technological subclasses.ii Scholars have reorganized these technological subclasses in 

meaningful fields and broad fields of technology, similar to the grouping of products or 

economic activities into sectors (such as the Standard International Trade Classification 

used in trade or International Standard Industrial Classification of All Economic 

Activities). The aim of this grouping is to allow time and cross-country comparisons of 

innovation activities, and it is based on minimizing technological heterogeneity within 

technology fields and broad fields. Here we use the classification built by Schmoch 

(2008), which grouped subclasses into 35 technology fields (35-field), which are further 

grouped into 5 broad fields (5-field), namely: Electrical engineering, Instruments, 

Chemistry, Mechanical engineering, and Other fields.iii 

 

Using the IPC codes and Schmoch's (2008) classification of technological fields, the 

variety variable measures the degree of knowledge diversification through the 

computation of an entropy measure at the four-digit level (subclasses), where pj is the 

share of the four-digit sector j:  

   

𝑉𝑎𝑟𝑖𝑒𝑡𝑦 =∑𝑝𝑗𝑙𝑜𝑔2

𝐽

𝑗=1

(
1

𝑝𝑗
) 

(3) 

 



The value of this index will by higher in regions characterized by a high diversified 

sectoral composition in its knowledge base.  

 

We break down this measure in two different indicators. Following Frenken et al. 

(2007), if all four-digit subclasses j fall under a 35-field technology Sg, where g=1,…, 

G, it is possible to derive the 35-field shares, Pg, by summing the four-digit shares pj 

 

𝑃𝑔 = ∑ 𝑝𝑗
𝑗∈𝑆𝑔

 

 

(4) 

Related variety is then measured by the weighted sum of the entropy at the four-digit 

within each 35-field technology: 

 

𝑅𝑉 = ∑𝑃𝑔𝐻𝑔

𝐺

𝑔=1

 
(5) 

 

where: 

 

𝐻𝑔 = ∑
𝑝𝑗
𝑃𝑔
𝑙𝑜𝑔2

𝑗∈𝑆𝑔

(
1

𝑝𝑗 𝑃𝑔⁄
) 

(6) 

 

Equation (6) measures the diversity of a region’s portfolio at the most fine 

disaggregation. Thus, it assumes that knowledge in sectors that belong to the same 35-

field technology are technologically related to each other and, as a consequence, can 

learn from each other through knowledge spillovers.  

 

Unrelated variety is proxied by the entropy of the 5-field distribution. Formally, being K 

the total number of 5-field sectors (k=1,…, K), the unrelated variety index is given by 

   

𝑈𝑉 = ∑𝑝𝑘𝑙𝑜𝑔2

𝐾

𝑘=1

(
1

𝑝𝑘
) 

(7) 

 



Thus, equation (7) measures the extent to which a region is diversified in very different 

types of activities. This measure assumes that knowledge in technologies that do not 

share the same broad field (5-field) are unrelated to each other. Theoretically, high 

levels of this variable are associated to less knowledge spillovers.  

 

The indices of related and unrelated variety are not opposites. One region can have both 

a high related variety (diversified into many specific subclasses in each field) and a high 

unrelated variety (diversified into unrelated broad 5-field technologies). In fact, they 

tend to correlate positively (Frenken et al., 2007; Boschma et al., 2012), although it is 

not always the case. In addition, given the decomposable nature of the entropy measure, 

variety calculated at different digit levels can be included in a regression analysis 

without necessarily generating collinearity.  

 

Following with the empirical model sketched above, we include now the indices 

proxying for related and unrelated variety in the Z  vector including controls that 

account for specific features of the region,  

 

),( ititit UVRVgZ  , (8) 

 

which once inserted into the main equation yields to: 

 

ittiitititititit UVRVShareIndHRSTRDpcYpc    121112111·lnln  (9) 

 

Note that we introduce the subscript t-1 to all the explanatory variables in order to 

indicate that they have been time lagged one period to lessen endogeneity concerns due 

to system feedbacks. Section 4 includes further details regarding the construction of all 

the variables used in the present analysis.  

 

3.3 Relatedness and external interactions 

 

As sketched in section 2, we aim to evaluate the role of external knowledge in the 

process of regional knowledge creation. Although some studies, at the level of 

European regions, have consistently shown the importance of cross-regional 



interactions to the process of regional innovation (Maggioni and Uberti, 2009; Ponds et 

al., 2010), little attention has been paid to which kind of external interactions may be 

more beneficial. We conjecture that, even if new variety may enter a region thanks to 

the interactions with other regions – in the form of, e.g. trade linkages, FDI, research 

collaboration or labour mobility, extra-regional knowledge flows should be related to  

the technological base of a region in order to positively impact the region’s outcomes.  

 

To build our variables, we use citations made by inventors resident in the focal region to 

EPO applications of inventors living outside the region. In particular, we look at 

backward citations listed in patents produced in a given region and collect the cited 

patents (alongside their technology codes) with all inventors living outside the region. 

Patent citations are widely used as a proxy for knowledge flows since they signal the 

previous knowledge, or prior art, on which the patents are based, and represent a “paper 

trail” useful for studying knowledge diffusion (Jaffe et al., 1993; Schoenmakers and 

Duysters, 2010; Trajtenberg, 1990). Even though the use of patent citations does not 

come without limitations – e.g., some citations are added by the examiner, and not the 

applicant (Alcacer and Gittelman, 2006), they have been widely used in innovation 

economics as a proxy for knowledge flows (Criscuolo and Verspagen, 2008; Jaffe et al., 

1993; Jaffe and Trajtenberg, 1999). Moreover, as citations relate cited patents with 

citing ones, they include detailed descriptions of technological characteristics and 

classification into technical domains (Popp et al., 2011) allowing the computation of the 

indexes measuring the degree of relatedness between the local knowledge base and the 

inflows of external knowledge. 

 

To determine the similarity between the external knowledge entering a region and its 

existing knowledge base, we use a SIMILARITY index, as in Boschma and Iammarino 

(2009). In our case it is computed as the sum of the products of the absolute sizes of the 

four-digit subclass patents (PAT4(j)), as a proxy of the knowledge stock in a region, and 

the four-digit subclass extra-regional patents the former have cited (CIT4(j)):  

 

𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 = 𝑙𝑜𝑔∑𝑃𝐴𝑇4(𝑗)

𝑗

𝐶𝐼𝑇4(𝑗) (10) 

 



This measure gets a maximum when the region is specialized in just one technology and 

this technology coincides with the extra-regional patents cited. The lowest values are 

obtained when the more diverse the region is in its patent portfolio as well as in the 

extra-regional patents it cites, and at the same time the less similar both profiles are.  

 

When a region gets knowledge from other regions, but such knowledge comes from the 

same technologies that are present in the region, the knowledge base of the economy 

will be able to absorb it but it will not add much to the existing knowledge. Therefore, it 

can also be of interest to use a more subtle measure of the degree of relatedness between 

the knowledge base in the region and the incoming knowledge flows from other regions 

as measured through the indicator RELATEDNESS, which is built in a similar fashion 

to Boschma and Iammarino (2009): 

 

𝑅𝐸𝐿𝐴𝑇𝐸𝐷𝑁𝐸𝑆𝑆 =∑𝐶𝐼𝑇4
𝑀(𝑗)

𝑗

𝑃𝐴𝑇4(𝑗) 

 

(11) 

where 𝐶𝐼𝑇4
𝑀(𝑗) is the entropy measure obtained with data for extra-regional backward 

citations in four-digit technologies (subclasses) other than j, but within the same 35-

field technology, and 𝑃𝐴𝑇4(𝑗) is the relative size of the four-digit patent technology j in 

the total regional patenting. The idea is that for each four-digit patent technology in a 

region (e.g., technology C07G), we measured the entropy of the citations to patents 

from the other four-digit subclasses (e.g., C07K, C12M, C12N, C12P, C12Q, C12R, 

and C12S) pertaining to the same 35-field sector (e.g., the biotechnology field), 

excluding the focal four-digit subclass itself (i.e., subclass C07G). 

 

With these two indices (SIMILARITY and RELATEDNESS) we aim to measure how 

related the knowledge that flows into a region is to the current regional knowledge stock 

of a given region, in order to infer the role of such relatedness in the creation of new 

knowledge. 

 

4. DATA  

 

We use a sample of 261 NUTS2 European regions of 27 countries – EU-27 (except 

Cyprus and Malta) plus Norway and Switzerland, to estimate a regional KPF from 1999 



to 2007. Our dependent variable, innovation output, is measured by patent applications, 

a variable widely used in the literature to proxy innovation outcomes. As widely 

documented, this proxy presents serious caveats since not all inventions are patented, 

nor do they all have the same economic impact, as they are not all commercially 

exploitable (Griliches, 1991). In spite of these shortcomings, patent data have proved 

useful for proxying inventiveness as they present minimal standards of novelty, 

originality and potential profits, and as such are a good proxy for economically 

profitable ideas (Bottazzi and Peri, 2003). We retrieve patent data at the regional level 

from the OECD REGPAT database  – July 2013 edition (Maraut et al., 2008). When 

patents have been produced by inventors resident in different NUTS2, they have been 

fractionally assigned to the different regions, according to the number of inventors out 

of all inventors listed in a patent living there – fractional counting. 

 

As for the explanatory variables, R&D expenditures data (both private and public 

expenditures in regions) were collected from Eurostat and some National Statistical 

Offices. Data for human resources devoted to science and technology (HRST) and the 

share of manufacturing employment (ShareInd) are collected also from Eurostat.  

 

As mentioned above, variety indexes are constructed using the information of IPC codes 

listed in patent documents (again from the OECD REGPAT database – July 2013 

edition). Again, based on the available data, there are 635 four-digit patent classes, 35 

technological fields and 5 broad fields. Knowledge flows are proxied through patent 

citations as explained in section 3. We use unit-record data retrieved from EPO patents 

– OECD REGPAT database, July 2013 edition – to construct the patent citation 

variables (OECD Citations database, July 2013 edition; see Webb et al., 2005). All the 

patent data used to build the focal explanatory variables are retrieved for moving time 

windows of five years. 

 

 

 

 

 

 

 



Table 1 provides summary statistics of the variables used in the present analysis.  

 

Table 1. Summary statistics 

Variable Obs. Mean Std.Dev Min. Max. 

      PATpc 2,235 111.65 131.32 0 1,017.78 

Weighted PATpc 2,235 263.90 323.62 0 2,575.42 

Variety 2,235 5.84 1.50 0 7.78 

Related Variety 2,235 1.78 0.77 0 3.20 

Unrelated Variety 2,235 1.96 0.35 0 2.31 

Similarity 2,235 6.31 3.37 0 13.68 

Relatedness 2,235 0.03 0.03 0 0.43 

Similarity Int’l 2,235 6.15 3.30 0 13.60 

Relatedness Int’l 2,235 0.03 0.03 0 0.43 

R&Dpc 2,235 0.40 0.41 0 2.88 

HRST 2,235 14.16 4.73 3.90 34.40 

ShareInd 2,235 19.16 6.75 5.21 38.55 

GDPpc PPP 1,835 21,291.66 8,807.90 3,400 84,600 
Note: Variables in this table are expressed without taking the logarithmic transformation. 

 

 

 

5. RESULTS 

 

5.1 Local variety and innovation 

 

We estimate an unbalanced panel FE model of 9 periods (from 1999 to 2007, both 

inclusive). Table 2 provides the two-way FE estimates for the regional KPF model, 

including all the controls listed in section 3. Columns (i) and (ii) use as dependent 

variable the logarithmic transformation of the number of patents per million inhabitants. 

Because of the existence of zero patents in some cases, a small constant, 1, is added 

before the logarithmic transformation. 

 

 

 

 

 

 



Table 2. Related/unrelated variety and regional innovation 

 (i) (ii) (iii) (iv) 

 Patents pc Patents pc Quality-

weighted 

patents pc 

Quality-

weighted 

patents pc 

     

Variety 0.104***  0.159***  

 (0.0308)  (0.0374)  

Related Variety  0.240***  0.292*** 

  (0.0653)  (0.0784) 

Unrelated Variety  0.0804  0.207** 

  (0.0690)  (0.0823) 

ln(R&D per capita) 0.167*** 0.174*** 0.146* 0.161** 

 (0.0540) (0.0561) (0.0773) (0.0782) 

HRST 0.0123* 0.0118* 0.0136 0.0134 

 (0.00707) (0.00671) (0.00874) (0.00846) 

ShareInd 0.0442*** 0.0457*** 0.0661*** 0.0661*** 

 (0.00925) (0.00856) (0.0114) (0.0109) 

Constant 2.377*** 2.383*** 2.513*** 2.544*** 

 (0.283) (0.291) (0.371) (0.374) 

     

Observations 2,235 2,235 2,235 2,235 

Number of regions 261 261 261 261 

Region FE yes yes yes yes 

Time FE yes yes yes yes 

Overall-R2 0.557 0.587 0.385 0.421 

F-stat 24.39 25.81 16.76 15.36 

F-prob 0.000 0.000 0.000 0.000 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 

In all the cases, the Hausman test rejects the null hypothesis that individual effects are 

uncorrelated with the independent variables, so the FE model is preferred to the expense 

of the random-effects – results provided upon request. In general, the KPF holds in the 

European regional case for the period under consideration. The elasticity of patents with 

respect to R&D expenditures presents significant values (0.10-0.20), which is in line 

with the value obtained in the literature (Jaffe, 1989; Bottazzi and Peri, 2003).  

 

With respect to the variety index, results indicate that the variety in knowledge stocks of 

regions is indeed positively and significantly related to regions’ innovation output. The 

same as for the case of employment and productivity (Boschma and Frenken, 2010), 

diversity of knowledge, rather than specialization, is more relevant for regional 

innovation, given that diversity and variety of knowledge in clusters eases the transfer 

of knowledge between local actors.     



 

Interestingly, once variety is split into related and unrelated, only related variety is 

significant. This result seems to indicate that the higher the number of related 

technologies in a region, the larger the knowledge spillovers and, as a consequence, the 

more the learning opportunities across them (Frenken et al., 2007). That is, learning 

opportunities generated by a variety of technologies within the region are relevant when 

such technologies are related, which ultimately will generate more knowledge 

externalities across them. Meanwhile, if the knowledge flows across technologies far 

away from each other (unrelated variety), it will be more difficult to assemble them and 

produce new ideas and innovation. 

 

Columns (iii) and (iv) of Table 2 slightly modify our dependent variable in order to 

weight the innovation output measure, patents, according to their impact. As largely 

argued in the related literature, the number of forward citations received presumably 

conveys information about the importance of patents, thus providing a way of assessing 

the enormous heterogeneity in the value of patents (Hall et al., 2005). This extreme is 

confirmed by several studies that have found strong correlations between the number of 

forward citations received and the economic value of patents (Trajtenberg, 1990; 

Harhoff et al., 1999; Lanjouw and Schankerman, 2004). We therefore use citations as an 

imperfect, but widely used, proxy for patent quality and weight the number of patents 

by the number of citations the patent has received in subsequent patent documents.  

 

All our results and conclusions with respect to columns (i) and (ii) hold, except for the 

case of unrelated variety, that increases considerably its point estimate and becomes 

now highly significant. It seems therefore that the combination of unrelated 

technologies does not necessarily imply the creation of new average knowledge (as 

inferred from results in columns (i) and (ii)); but if such combination is achieved, the 

knowledge that is generated is presumably of high value and economic impact. Put 

differently, European regions seem to be capable of generating breakthrough 

innovations when the knowledge base in the region is composed of inventors 

sufficiently different from each other (for comparable results for the US context, see 

Castaldi et al., 2015). 

 

 



5.2 Technological relatedness and external linkages 

 

This section looks at the role of external-to-the-region inflows of knowledge. As it has 

been set forth above, it is critical for regions to maintain external connections bringing 

new knowledge into the region from a variety of sectors located elsewhere. We 

distinguish between incoming knowledge flows that remain within the same technology 

(SIMILARITY) from those transferred from different technologies (RELATEDNESS), 

using data on patent citations to build our variables. 

 

Table 3 shows the results when the SIMILARITY and the RELATEDNESS indices are 

included to explicitly consider to what extent the knowledge that flows from other 

regions is related to the knowledge stock of the host region. As observed in column (i), 

the higher the SIMILARITY between the technological composition of the local 

knowledge and that of the cross-regional knowledge flows, the higher the impact on the 

regions’ innovative output. In other words, if the knowledge that flows into a region 

comes from technologies in which the region already patents, there seems to be plenty 

of opportunities for absorbing such knowledge without having the problem of not 

adding much to the already existing local knowledge base. We interpret this result as 

evidence that the knowledge coming from other regions already convey a certain degree 

of novelty as compared to the local knowledge base, which is not embodied in the 

technological classification used in the present paper. Conversely, the non-significant 

parameter of the RELATEDNESS index implies that when only a certain degree of 

relatedness exists, it is not easy to create useful interconnections that can end up 

producing any significant innovation outcome; therefore, larger similarity is needed.  

 

 

 

 

 

 

 

 

 

 



Table 3. Relatedness and external linkages 

 (i) (ii) (iii) (iv) 

 Patents pc Quality-weighted 

patents pc 

Patents pc Quality-weighted 

patents pc 

     
Variety 0.0863*** 0.140*** 0.0868*** 0.141*** 
 (0.0282) (0.0349) (0.0282) (0.0349) 
Similarity 0.0724*** 0.0757***   
 (0.0149) (0.0180)   
Relatedness 0.441 0.862**   
 (0.346) (0.430)   
Similarity int'l   0.0712*** 0.0748*** 
   (0.0152) (0.0185) 
Relatedness int'l   0.504 0.877** 
   (0.363) (0.441) 
ln(R&D per capita) 0.134** 0.113 0.134** 0.112 
 (0.0521) (0.0757) (0.0520) (0.0757) 
HRST 0.00887 0.00989 0.00877 0.00984 
 (0.00632) (0.00794) (0.00629) (0.00790) 
ShareInd 0.0394*** 0.0609*** 0.0395*** 0.0610*** 
 (0.00861) (0.0112) (0.00864) (0.0113) 
Constant 2.107*** 2.230*** 2.122*** 2.243*** 
 (0.254) (0.339) (0.252) (0.337) 
     

Observations 2,235 2,235 2,235 2,235 
Number of regions 261 261 261 261 
Region FE yes yes yes yes 
Time FE yes yes yes yes 
Overall-R2 0.720 0.554 0.712 0.546 
F-stat 29.60 20.94 29.68 21.05 
F-prob 0.000 0.000 0.000 0.000 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 

 

Interestingly again, when the patents are weighted by their quality (column ii), the 

coefficient accompanying the RELATEDNESS index increases considerably and 

becomes statistically significant, suggesting that an extra-regional knowledge that is 

complementary, but not similar, to the existing knowledge base in the region will 

particularly boost interactive learning that can bring out breakthrough innovations 

(Bunnell and Coe, 2001). We can conclude, therefore, that in order to develop a worthy 

interexchange of knowledge across regions, it is necessary to have a certain level of 

similarity so as to have the opportunity to learn across technologies. However, when the 

value of the innovations produced is taken into account, related, but not the same, 

incoming knowledge flows are also critical.  

 



For robustness purposes, columns (iii) and (iv) of Table 3 mimic columns (i) and (ii) but 

using international incoming knowledge flows, that is to say, the indices of 

SIMILARITY and RELATEDNESS are computed using backward citations to other 

countries only. This modification allows us to be sure that the incoming knowledge 

really comes from external sources, and it is not the result of commuting or labour 

mobility within the same local labour markets. In general, results and conclusions with 

respect to columns (i) and (ii) are maintained.  

 

5.3 Robustness analysis 

 

In Table 4 we present alternative econometric specifications to test the robustness of our 

results. Specifically, we test the theoretical statements discussed earlier through the use 

of a more general dependent variable on regional economic performance, such as the 

annual growth rate of GDP per capita. Despite the fact that GDP growth does not reflect 

a direct measure of innovation, its use avoids potential criticisms derived from the use 

of patent data to build both the dependent and independent variables, as we did in 

previous sections. Data on regional GDP per capita is retrieved from Eurostat, and the 

dependent variable is computed as the log of the ratio between per capita GDP at time t1 

and per capita GDP at t0. Moreover, regressions include the log of per capita GDP at t0 

as an additional control, as done in much of the growth literature.  

 

Results reported in columns (i) and (ii) concerning related and unrelated variety are in 

line with much of the related literature for specific countries (Frenken et al., 2007, for 

the Netherlands; Boschma and Iammarino, 2009, for Italy; Bishop and Gripaios, 2010, 

for Great Britain; Quatraro, 2010, for Italy; Hartog et al., 2012, for Finland and 

Boschma et al., 2012, for Spain) even if in our regressions, variety indicators are 

computed using technology fields from patent applications, instead of employment by 

economic activities. The results reported show the significant impact of variety, both in 

related and unrelated technologies. This evidence supports the hypothesis that economic 

growth benefits from diversification in technologies too. Note that in previous tables we 

found that unrelated variety only impacts innovation if weighted by their value using 

forward citations – breakthrough innovations. Interestingly, both related and unrelated 

variety strongly influence regional economic growth, which we attribute to the strong 

link between economic growth and breakthrough innovations, as witnessed by the 



recent report of the World Intellectual Property Organization (Wipo, 2015). Results 

concerning incoming knowledge flows and regional economic growth (columns (iii) 

and (iv)) are also consistent with the previous results presented in Table 3.  

 

Reassuringly, we have shown that our results are not driven by mechanical correlation 

between dependent and independent variables, given that the use of an alternative 

measure not directly retrieved from patent documents, such as per capita GDP growth, 

does support our key findings.  

 

Table 4. Robustness analysis: technological variety and economic growth  

 (1) (2) (3) (4) 

     

     

Ln GDP -0.129*** -0.120*** -0.137*** -0.137*** 

 (0.0278) (0.0267) (0.0275) (0.0275) 

Variety 0.0104***  0.00935*** 0.00943*** 

 (0.00222)  (0.00225) (0.00224) 

Related Variety  0.0117**   

  (0.00574)   

Unrelated Variety  0.0116***   

  (0.00432)   

Similarity   0.00424***  

   (0.00132)  

Relatedness   -0.0454  

   (0.0337)  

Similarity int'l    0.00413*** 

    (0.00131) 

Relatedness int'l    -0.0506 

    (0.0337) 

ln(R&D per capita) 0.00171*** 0.00176*** 0.00154** 0.00154** 

 (0.000628) (0.000606) (0.000615) (0.000615) 

HRST 0.00476*** 0.00501*** 0.00452*** 0.00452*** 

 (0.00136) (0.00137) (0.00137) (0.00137) 

Constant 1.125*** 1.043*** 1.192*** 1.192*** 

 (0.264) (0.255) (0.261) (0.261) 

     

Observations 1,835 1,835 1,835 1,835 

Number of regions 238 238 238 238 

Region FE yes yes yes yes 

Time FE yes yes yes yes 

Overall-R2 0.176 0.176 0.176 0.176 

F-stat 86.20 86.20 86.20 86.20 

F-prob 0 0 0 0 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Dependent variable: annual growth rate of GDP per capita. 

  



 

6. CONCLUSION 

 

Previous studies have looked at the impact of related and unrelated variety on regional 

economic performance, under the assumption that the relationship between them goes 

via the generation of knowledge spillovers and innovation – yet, without directly testing 

this relationship. In this paper, we focus explicitly on the impact of technological 

variety within the region for the generation of innovation and we assess which 

diversified technological structure (related vs. unrelated variety) generates more 

knowledge spillovers which will ultimately enhance the innovation output. In addition, 

since knowledge can also be brought into a region from “outside”, we assess whether 

the degree of relatedness between incoming knowledge that flows into a region and the 

local knowledge base influences regional innovation performance. As it is usually done 

in the related literature, knowledge flows are proxied through the use of backward 

patent citations, which is more related to our scope of analysis that the use of trade or 

labour mobility as conduits of knowledge flows (e.g. Boschma and Iammarino, 2009; 

Tavassoli and Carbonara, 2014;  Boschma et al., 2009). 

 

According to our results, diversity of knowledge, or variety, is more relevant for 

regional innovation than specialization. However, only knowledge flowing from 

different but similar technologies (related variety) will generate new knowledge that 

incrementally constructs on established cognitive structures across related technologies. 

Notwithstanding these results, an interesting conclusion arises when the patenting 

activity is weighted by the quality of such patents through the forward citations received 

– which is used as an attempt to give more importance to breakthrough innovations: in 

this particular case, the more diversified across unrelated technologies is a region, the 

higher is the output in terms of breakthrough innovations. Thus, evidence supports the 

hypothesis that innovation in general benefits from diversification in related 

technologies whereas more radical innovation also benefits from variety in unrelated 

technologies. 

 

Our study also shows that not only being connected to the outside world is important, as 

signalled in previous studies (Bathelt et al., 2004; Camagni, 1991; Grabher, 1993), but 

that extra-regional incoming knowledge flows have a higher impact, the higher the 



similarity between these knowledge flows and the extant local knowledge base. While 

this is true for the generation of average innovations, again differences emerge when 

accounting for the impact of the innovations produced: for the generation of 

breakthrough innovations, the technological contents of the extra-regional linkages do 

not necessarily need to be very similar to the local technological base, but a certain 

degree of relatedness seems to be sufficient. This degree of relatedness assures certain 

cognitive proximity between agents located at a geographical distance, while at the 

same time brings in the necessary variety to offer the building blocks for technological 

revolutions.  

 

From our results we can conclude that there is a need for a regional system to have 

certain degree of variety but at the same time certain cognitive proximity in its 

industries, so as to promote innovation in the region. This entails that regional 

governments may establish policies targeted to develop a collection of complementary 

technologies in the region, possibly taking away the bottlenecks that may impede some 

sectors to enter.  

 

Future research should thoroughly look at the effect of regional unrelated variety on 

breakthrough innovations. On the one hand, it could be interesting to analyse if 

breakthrough innovations – i.e., those at the upper-tail of the citations distribution - in a 

region actually combine technology classes that are unrelated, defined through co-

occurrence analysis (see Boschma et al., 2015, as an example of this type of analysis), 

but present in the region concerned. On the other hand, it is plausible to think that the 

impact of technological unrelated variety on the generation of breakthrough innovations 

can be stronger in the long run since the combination and recombination of previously 

unrelated technologies may imply some time to be fulfilled. Thus, it would be 

interesting to analyse the time profile of the impact of related and unrelated variety on 

the probability to produce breakthroughs. 
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APPENDIX 

 

Table A1: Technology fields based on IPC codes 

Broad field Technology field 

  

Electrical engineering Electrical machinery, energy 

Electrical engineering Audio-visual technology 

Electrical engineering Telecommunications 

Electrical engineering Digital communication 

Electrical engineering Basic communication processes 

Electrical engineering Computer technology 

Electrical engineering IT methods for management 

Electrical engineering Semiconductors 

Instruments Optics 

Instruments Measurement 

Instruments Analysis of bio materials 

Instruments Control apparatus 

Instruments Medical technology 

Chemistry Organic fine chemistry 

Chemistry Biotechnology 

Chemistry Pharmaceuticals 

Chemistry Macromolecular chemistry, polymers 

Chemistry Food chemistry 

Chemistry Basic materials chemistry 

Chemistry Materials metallurgy 

Chemistry Surface tech coating 

Chemistry Micro-structure and nano-technology 

Chemistry Chemical engineering 

Chemistry Environmental technology 

Mechanical engineering Handling 

Mechanical engineering Machine tools 

Mechanical engineering Engines, pumps, turbines 

Mechanical engineering Textile and paper 

Mechanical engineering Other spec machines 

Mechanical engineering Thermal processes and apparatus 

Mechanical engineering Mechanical elements 

Mechanical engineering Transport 

Other Furniture, games 

Other Other cons goods 

Other Civil engineering 

Other Other 

Source: Schmoch (2008). 

 
                                                 
i For an application to the US using USPTO data, see Castaldi et al., 2015. 
ii Subclasses are further divided into groups and subgroups, so each IPC code can contain up to 10 digits. 
iii See the Appendix for the list of the 35 fields and the 5 broad fields. 
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